
Solving Difficult CSPs with Relational Neighborhood Inverse Consistency

Robert J. Woodward1 Shant Karakashian1 Berthe Y. Choueiry1 Christian Bessiere2

1Constraint Systems Laboratory, University of Nebraska-Lincoln, USA
{rwoodwar|shantk|choueiry}@cse.unl.edu

2LIRMM-CNRS, University of Montpellier, France
bessiere@lirmm.fr

Abstract

Freuder and Elfe (1996) introduced Neighborhood In-
verse Consistency (NIC) as a strong local consistency
property for binary CSPs. While enforcing NIC can
significantly filter the variables domains, the proposed
algorithm is too costly to be used on dense graphs or
for lookahead during search. In this paper, we intro-
duce and characterize Relational Neighborhood Inverse
Consistency (RNIC) as a local consistency property that
operates on the dual graph of a non-binary CSP. We de-
scribe and characterize a practical algorithm for enforc-
ing it. We argue that defining RNIC on the dual graph
unveils unsuspected opportunities to reduce the compu-
tational cost of our algorithm and increase its filtering
effectiveness. We show how to achieve those effects
by modifying the topology of the dual graph, yielding
new variations the RNIC property. We also introduce
an adaptive strategy to automatically select the appro-
priate property to enforce given the connectivity of the
dual graph. We integrate the resulting techniques as full
lookahead strategies in a backtrack search procedure for
solving CSPs, and demonstrate the effectiveness of our
approach for solving known difficult benchmark prob-
lems.

1 Introduction

Solving difficult Constraint Satisfaction Problems (CSPs)
remains a challenge today despite the dramatic advances of
hardware technology. To counter the exponential growth of
the size of the search space of CSPs, consistency properties
and algorithms for enforcing them have been proposed since
the inception of Constraint Programming (CP). Lower lev-
els of consistency, such as Arc Consistency (AC) for binary
constraints and Generalized Arc Consistency (GAC) for
non-binary constraints, are commonly and advantageously
used. However, solving difficult problems often requires en-
forcing higher orders consistency, which typically requires
the use of more costly algorithms in time and/or in space.
Freuder and Elfe (1996) introduced Neighborhood Inverse
Consistency (NIC) for binary CSPs as a particularly promis-
ing consistency property because:

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1. Enforcing it is light in terms of space requirements (in-
verse consistency is enforced by filtering the variables do-
mains), and

2. It focuses the attention on where a variable’s value most
tightly interacts with the problem, namely its neighbor-
hood.

Despite its promise and filtering effectiveness, NIC remains
relatively unexploited because the algorithm for enforcing it
is too costly in terms of processing time, which prevented
its use on dense networks or in a lookahead scheme during
backtrack search.

In this paper, we revisit NIC and generalize it to Re-
lational Neighborhood Consistency (RNIC) for non-binary
CSPs. We characterize RNIC and describe an effective al-
gorithm for enforcing it that operates on the dual encoding
of the CSP. We also introduce weakened and strengthened
variations of this property to cope with the difficulties raised
by the topology of the dual graph, and propose a strategy
for automatically choosing the property to enforce. We in-
tegrate our algorithm as a full lookahead strategy in a back-
track search procedure for solving CSPs. We compare its
performance, on difficult benchmark problems, with that
of GAC2001 (Bessière et al. 2005) and the recently intro-
duced algorithms for m-wise consistency (i.e., wR(∗,m)C
for m = 2, 3, 4 of (Karakashian et al. 2010)). We conclude
that the proposed techniques for enforcing RNIC

1. Achieve strong local consistency on non-binary CSPs and
can be effectively used in a full lookahead scheme during
search.

2. Enjoy the low space requirements of domain-filtering al-
gorithms, such as GAC, and the pruning effectiveness of
relation-filtering algorithms, such as R(∗,m)C.

3. Unlike R(∗,m)C, they are not hampered by the difficulty
of choosing the appropriate consistency level to enforce;
and, finally.

4. Locally adjust the consistency level enforced to the con-
nectivity of each vertex in the dual graph.
This paper is structured as follows. Section 2 reviews

background information about CSPs. Section 3 introduces
RNIC and an algorithm for enforcing it on the dual encod-
ing of the CSP. Section 4 discusses three variations of RNIC
obtained by removing redundant edges in the dual graph

112

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

and/or triangulating the considered graph, and a strategy for
deciding which of the four properties to enforce. The goal
of this deliberation is to reduce computational cost and/or
strengthen propagation depending on the topology of the
dual graph. Section 5 reviews the state of the art in relational
consistency. Section 6 discusses our experimental results.
Finally, Section 7 discusses the extension of our approach to
relations specified as conflicts or in intension and concludes
this paper with directions for future research.

2 Background
A Constraint Satisfaction Problem (CSP) is defined by P =
(V,D, C) where V is a set of variables, D is a set of domains,
and C is a set of constraints. Each variable Vi ∈ V has a
finite domain Di ∈ D, and is constrained by a subset of
the constraints in C. Each constraint Ci ∈ C is specified
by a relation Ri defined on a subset of the variables, called
the scope of the relation and denoted scope(Ri). Given a
relation Ri, a tuple τi ∈ Ri is a vector of allowed values for
the variables in the scope of Ri. Solving a CSP corresponds
to finding an assignment of a value to each variable such that
all the constraints are satisfied.

A binary CSP is represented by its constraint graph where
the vertices are the variables of the CSP and the edges rep-
resent the constraints. A non-binary CSP is similarly repre-
sented by its hypergraph where the hyperedges represent the
non-binary constraints. Another graphical representation of
a non-binary CSP is the primal graph where the vertices are
the CSP variables and edges connect every two vertices cor-
responding to variables in the scope of a relation (Dechter
2003). Neigh(Vi) denotes the set of variables that are ad-
jacent to Vi the constraint graph of a binary CSP and the
primal graph of a non-binary CSP. The dual encoding of a
CSP P is a binary CSP whose variables are the relations of
P , their domains are the tuples of those relations, and the
constraints enforce equalities over the shared variables. The
representation as a graph of this encoding is the dual graph
of the CSP. Neigh(Ri) denotes the set of relations adjacent
to a relation Ri in the dual graph. Janssen et al. (1989) and
Dechter (2003) observed that, in the dual graph, an edge be-
tween two vertices is redundant if there exists an alternate
path between the two vertices such that the shared variables
appear in every vertex in the path. Redundant edges can be
removed without affecting the set of solutions. Janssen et al.
(1989) introduced an efficient algorithm for computing the
minimal dual graph by removing redundant edges. Many
minimal graphs may exist, but all are guaranteed to have the
same number of edges. Figures 1, 2, 3, and 4 illustrate the
hypergraph, primal graph, dual graph, and a minimal dual
graph of a small non-binary CSP.

CSPs are in general NP-complete and solved by search.
To reduce the severity of the combinatorial explosion, they
are usually ‘filtered’ by enforcing a given local consistency
property (Bessiere 2006). One common such property is
Generalized Arc Consistency (GAC). A CSP is GAC iff, for
every relation, any value in the domain of any variable in
the scope of the relation can be extended to a tuple satisfy-
ing the relation. Our work extends, to non-binary CSPs, the
local consistency property known as Neighborhood Inverse

A

B C GD E F

R1 R4 R3

R2 R5
Figure 1: Hypergraph.

A
B

C
D E

F

G

Figure 2: Primal graph.

ABD BCF

CFG
ADE ACEG

R1 R2

R4 R3

R5
AD

B
A C
AE CG

CF

Figure 3: Dual graph.

ABD BCF

CFG
ADE ACEG

R1 R2

R4 R3

R5
AD

B

AE CG
CF

Figure 4: No redundant edges.

Consistency (NIC) introduced, for binary CSPs, in (Freuder
and Elfe 1996). NIC ensures that every value in the domain
of a variable can be extended to a solution of the subprob-
lem induced by the variable and the variables in its neigh-
borhood. Algorithms for enforcing GAC and NIC typically
operate by filtering the domains of the variables. In (2010),
Karakashian et al. introduced the property R(∗,m)C with
m ≥ 2, which ensures that every tuple in every relation can
be extended in a consistent assignment to every combination
of m−1 relations in the problem. Using the terminology in-
troduced in (Debruyne and Bessière 1997), we say that a
consistency property p is stronger than another one p′ if, in
any CSP where p holds, p′ also holds. Further, we say that
p is strictly stronger than p′ if p is stronger than p′ and there
exists at least one CSP in which p′ holds but p does not. We
say that p and p′ are equivalent when p is stronger than p′
and vice versa. Finally, we say that that p and p′ are in-
comparable when there exists at least one CSP in which p
holds but p′ does not, and vice versa. In practice, when a
consistency property is stronger (respectively, weaker) than
another, enforcing the former never yields less (respectively,
more) pruning than enforcing the latter on the same problem.

3 Relational NIC

The algorithm for enforcing NIC on binary CSPs of (Freuder
and Elfe 1996) was tested in a preprocessing step to back-
track search on instances whose constraint density1 did not
exceed 4.25%. Despite its pruning power and light space
overhead, NIC received relatively little attention in the liter-
ature, likely because of the prohibitive cost of the algorithm
for enforcing it. Below, we introduce RNIC, a generaliza-
tion of NIC to non-binary CSPs, and characterize it. Then,
we describe and analyze an algorithm for enforcing it.

3.1 Defining RNIC

Definition 1 A relation Ri is said to be RNIC iff ev-
ery tuple in Ri can be extended to the variables in⋃

Rj∈Neigh(Ri)
scope(Rj)\scope(Ri) in an assignment that

simultaneously satisfies all the relations in Neigh(Ri). A
network is RNIC iff every relation is RNIC.

1The constraint density of a binary CSP is the density of its
constraint graph.

113

Informally, every tuple τi in every relation Ri can be ex-
tended to a tuple τj in each Rj ∈ Neigh(R) such that to-
gether all those tuples are consistent with all the relations in
Neigh(Ri). Like R(*,m)C, RNIC can be enforced by fil-
tering the existing relations and without introducing any new
relations to the CSP. A straightforward algorithm for enforc-
ing RNIC applies the following operation to every relation
Ri in the problem until quiescence:

Ri ← πscope(Ri)(��Rj∈{Ri}∪Neigh(Ri) Rj) (1)

where π and �� are the relational operators project and join.
The space requirement of this algorithm is prohibitive in
practice.

3.2 Characterizing RNIC

After enforcing RNIC, we filter all variable domains by pro-
jecting the filtered relations on the variables. Interestingly,
these domain reductions do not break the RNIC property.
Theorem 1 If a network is RNIC, domain filtering by GAC
cannot enable further constraint filtering by RNIC.
Proof: Similar to the corresponding proof for R(∗,m)C in
(Karakashian et al. 2010).

We compare RNIC with R(∗,m)C, defined for m ≥ 2.
Theorem 2 RNIC is strictly stronger than R(∗,m)C, m ≤ 3.
Sketch of proof: For a relation Ri, RNIC requires that each
tuple of Ri and at least one tuple from each of the relations
in Neigh(Ri) be consistent, all together. R(∗,2)C requires
that the tuple of Ri be consistent with some tuple in each of
the relations in Neigh(Ri), taken in separation. Thus, RNIC
is strictly stronger than R(∗,2)C. For R(∗,3)C, at least one
relation in each combination of three relations is such that its
neighborhood encompasses at least the other two relations.
Thus, RNIC is strictly stronger than R(∗,3)C. �
Theorem 3 R(∗,m)C with m > δ, where δ is the degree of
the dual graph, is strictly stronger than RNIC.
Sketch of proof: When m > δ, every set of relations con-
sidered by RNIC is a subset of at least one set of relations
on which R(∗,m)C is enforced. �
Theorem 4 For 4 ≤ m ≤ δ, R(∗,m)C and RNIC are not
comparable.
Sketch of proof: If a dual graph has a chain of relations of
length between four and δ − 1, R(∗,m)C for 4 ≤ m ≤ δ
can be stronger than RNIC. Conversely, if the dual graph is
a wheel graph of m + 1 or more vertices, Wi>m+1, RNIC
can be stronger than R(∗,m)C for 4 ≤ m ≤ δ. �
Theorem 5 RNIC and R(∗,2)C are equivalent on a dual
graph that is a star graph Si>1 or a cycle of length four
or more.
Sketch of proof: Both properties consider the same com-
binations of vertices in the dual graph, namely every two
adjacent vertices. �

Any minimal dual graph has necessarily fewer edges than
the corresponding original dual graph. wR(∗,m)C, respec-
tively wRNIC, is a weakened version of R(∗,m)C, respec-
tively RNIC, resulting from using a minimal dual graph in-
stead of the original one. The above results hold between

the weakened properties provided they are enforced on the
same minimal dual graph. Figure 5 illustrates the above dis-
cussion in a Hasse diagram.

R(*,3)C

wRNIC

R(*,4)C

RNIC
R(*,δ+1)C

R(*,2)C≡
wR(*,2)C wR(*,3)C

wR(*,4)C

wR(*,δ+1)C

Figure 5: Relating RNIC, wRNIC, R(∗,m)C, and wR(∗,m)C.

3.3 An algorithm for enforcing RNIC

We define Sτ , the support of a tuple τ ∈ R, to be the set
of tuples that verify the condition: ∀R′ ∈ Neigh(R), ∃τ ′ ∈
Sτ , τ

′ ∈ R′, and the tuples in Sτ ∪ {τ} agree on all shared
variables. PROCESSQ (Algorithm 1) enforces RNIC on a
CSP P ensuring that every tuple in every relation has a valid
support. Note that the Neigh(R) is determined by the topol-
ogy of the dual graph, which we will alter in Section 4.

PROCESSQ operates on a queue of relations Q initialized
with all the relations of P . For each relation R of P , we
maintain a queue of tuples Qt(R) initialized with all the tu-
ples in R. The function SEARCHSUPPORT(τ,R) computes
Sτ as discussed below. The function REL(τ) returns the rela-
tion to which τ belongs. The data structure SupportedBy(τ)
maintains the list of tuples supported by τ .

PROCESSQ removes from Q one relation R at a time. It
iterates over the tuples of R stored in Qt(R). For each tuple
τ ∈ Qt(R), SEARCHSUPPORT seeks a support for τ . When
a support is not found, τ is removed from R, and all tuples
τi supported by τ are added to the queue of their respec-
tive relations, and the corresponding relations added to Q.
Finally, τ is removed from Qt(R). Whenever a relation is
empty, PROCESSQ halts and returns false indicating that P
is not consistent. When Q is empty PROCESSQ terminates
successfully indicating that P is RNIC.

Algorithm 1: PROCESSQ enforces RNIC

Input: Q a queue of relations, {Qt(R)} a set of queues of
tuples, one for each relation

Output: true if the problem is RNIC, false otherwise
while (Q �= ∅) do1

R ← POP(Q)2

foreach τ ∈ Qt(R) do3

support ←SEARCHSUPPORT(τ, R)4

if support = false then5

DELETE(τ, R)6

if R = ∅ then return false7

forall τi ∈ SupportedBy(τ) do8

Ri ←REL(τi)9

Qt(Ri) ← Qt(Ri) ∪ {τi}10

Q ← Q∪ {Ri}11

Qt(R) ← Qt(R) \ {τ}12

return true13

114

3.4 SEARCHSUPPORT

SEARCHSUPPORT(τ,R) operates by conducting a back-
track search on PD

R the subproblem induced by {R} ∪
Neigh(R) on the dual encoding of P . The variables of PD

R
are the relations {R} ∪ Neigh(R). Their domains are the
tuples of the relations except for the variable correspond-
ing to R, which is assigned the tuple τ . A solution to PD

R
is {τ} ∪ Sτ . The search stops at the first solution, or re-
turns false if no solution is found. The process uses forward
checking and dynamic variable ordering (domain/degree).
Two major mechanisms significantly contributed to the suc-
cess of this search process by improving its running time:

1. The use of the index-tree data structure to determine
whether or not two tuples of two relations adjacent in the
dual graph are consistent. This data structure was pro-
posed in (Karakashian et al. 2010).

2. The dynamic identification, after each variable instantia-
tion, of trees in the graph of uninstantiated variables. The
instantiation of a variable eliminates, from the problem,
the variable and the constraints that link it to the uninstan-
tiated variables, potentially breaking cycles in the graph
and yielding trees. We call those trees dangles: They can
be floating trees or may be attached to some subgraph. We
apply directional arc consistency on them to ensure that
they are solvable. If they are, we isolate them from the
search process. Otherwise, we force the search to back-
track. Dangle identification can be done in linear in the
number of vertices and edges using the Graham reduction
(Maier 1983). Its overhead, if any, was largely compen-
sated by its benefits.

3.5 Complexity analysis

The time complexity is dominated by PROCESSQ. Let d be
the maximum domain size, k the maximum constraint arity,
e the number of relations, and δ the degree of the dual graph.
The maximum number of tuples t in a relation is bounded by
O(dk). The outer loop (Line 1) iterates over the relations in
Q. This loop runs e times, the initial size of Q, plus the num-
ber of times a relation is added to Q (Line 11). Given that
a relation is adjacent to at most δ other relations, whenever
a tuple is deleted, at most δ relations are added to Q. There
are O(te) tuples in P and each tuple is deleted at most once.
Thus, Line 6 is executed O(te) times, each time enqueuing
O(δ) relations. Consequently, the outer loop (Line 1) runs
O(teδ) times.

The loop over the queued tuples (Line 3) executes O(t)
times per relation. To find the support of a tuple, SEARCH-
SUPPORT first verifies the validity of an existing support,
then, if needed, it looks for a support by running a back-
track search on the subproblem induced by the relation and
its neighbors. Verifying the validity of an existing support
costs O(δ). To build a support for a tuple, SEARCHSUP-
PORT executes a backtrack search on a problem with δ + 1
variables of maximum domain size t where the first vari-
able is instantiated. The complexity of this search is O(tδ).
Thus, PROCESSQ is O(tδ+1eδ). The space complexity of
PROCESSQ is dominated by that of the data structures. Sup-
ports require O(etδ) space. The index-trees require O(ketδ)

(Karakashian et al. 2010). The time complexity of the obvi-
ous algorithm based on Expression (1) is O(tδ+2eδ). When
intermediate joins are not stored, its space complexity is
O(tδ+1), a major bottleneck for its practical implementa-
tion. Thus, PROCESSQ saves on both time and space.

3.6 Enforcing RNIC versus R(∗,m)C

The algorithms for enforcing RNIC (above) and R(∗,m)C
(Karakashian et al. 2010) are similar in that they both try to
‘complete’ (Freuder 1991) each tuple in each relation over
one (or more) sets of relations.

The algorithm for R(∗,m)C considers every combination
of m relations that are connected in the dual graph. The
number of combinations considered is exponential in m
(O(em)). Often, computing and storing those combinations
is not possible unless redundant edges are first removed
from the dual graph. Finally, a given relation needs to be
‘checked’ against m−1 relations in each combination where
it appears.

The algorithm for enforcing RNIC does not suffer from
the above drawbacks. First, the number of combinations
considered is equal to the number of relations, and each re-
lation is ‘checked’ against a unique set of relations, which
is determined by its neighborhood. Further, the size of the
neighborhood is determined locally by the connectivity of
the relation in the dual graph. Thus, the ‘level’ of consis-
tency enforced is not necessarily the same on all relations
of the dual graph: Lower levels are enforced on sparser por-
tions of the dual graph and higher levels on the denser por-
tions. For example, on a cycle of length four or more, RNIC
reduces to R(∗,2)C.

4 Variations on RNIC

The following two conditions of the topology of the dual
graph can seriously hinder the performance of the algorithm
for enforcing RNIC (Algorithm 1):

1. High density of the dual graph.

2. The existence of cycles of length four or more.

As the density of the dual graph increases, the neighborhood
of a given relation Ri grows, which increases the cost of
enforcing RNIC. Further, on a cycle of length four or more,
the two adjacent relations of a given relation Ri in the cycle
are prevented from ‘communicating,’ thus reducing RNIC to
R(∗,2)C (see Theorem 5). To address the above issues, we
propose two reformulations of the dual graph, namely:

1. Removing redundant edges as introduced in Section 2.

2. Triangulating the dual graph to eliminate cycles of length
four or more.

Graph triangulation adds an edge (a chord) between two
non-adjacent vertices in every cycle of length four or more
(Golumbic 2004). While minimizing the number of edges
added by the triangulation process is NP-hard, MINFILL
is an efficient heuristic commonly used for this purpose
(Kjærulff 1990; Dechter 2003).

Removing redundant edges reduces the density of the dual
graph and thus the cost of enforcing RNIC. Triangulating

115

the dual graph creates loops in the graph, and thus enhances
propagation and filtering. Applying one or the other of the
above two reformulations, or both, the dual graph before ap-
plying Algorithm 1 yields three variations of RNIC, namely
wRNIC, triRNIC, and wtriRNIC. Figure 6 illustrates the re-
lationships between these properties as discussed in Sec-
tions 4.1, 4.2, 4.3. In Section 4.4, we propose a selection

wRNIC
RNIC

wtriRNIC
triRNIC

Figure 6: Variations of RNIC.

procedure to automatically decide, in a preprocessing step,
which of the properties to enforce.

4.1 Use a minimal dual graph: wRNIC

Our experiments showed that RNIC is advantageous on dual
graphs of density up to around 15%.2 For higher density
values, we propose to remove the redundant edges in the
dual graph before running PROCESSQ (Algorithm 1). To
this end, we use the efficient algorithm proposed in (Janssen
et al. 1989), which guarantees a minimal dual graph. This
operation reduces the density of the original dual graph and
the size of the induced subproblems on which SEARCH-
SUPPORT is executed. It also results in a weakened consis-
tency, denoted wRNIC, that depends of the particular mini-
mal graph obtained. Because wRNIC is enforced on a min-
imal dual graph (i.e., a graph with no more edges than the
original dual graph), RNIC is strictly stronger than wRNIC.

4.2 Triangulate the dual graph: triRNIC

When the dual graph has only cycles of size four or more,
RNIC reduces to R(∗,2)C, which significantly hampers the
filtering as well as the propagation process. To remedy this
situation, we propose to triangulate the dual graph, thus
adding edges to it, increasing the size of the induced sub-
problems on which SEARCHSUPPORT is executed, boost-
ing the propagation process, but also raising the consistency
level enforced on the CSP. We denote the resulting consis-
tency property triRNIC. Similarly to wRNIC, triRNIC de-
pends on the particular triangulation of the dual graph. Be-
cause triangulation may add new edges to the dual graph,
the triangulated dual graph cannot have fewer edges than
the original dual graph. Consequently, triRNIC is strictly
stronger than RNIC.

4.3 Triangulate a minimal dual graph: wtriRNIC

While using a minimal dual graph allows us to cope with
the high density of difficult benchmark instances, triangu-
lating the minimal dual graph allows us to boost propaga-
tion. We denote wtriRNIC the consistency enforced by this

2In a related research, we studied the density of 1689 dual
graph of (binary and non-binary) CSPs from the Solver Compe-
tition Benchmarks. We identified a sharp threshold at 15% den-
sity. Indeed, 56.6% of the dual graphs (79.9% after redundancy
removal) considered had a density less than or equal to 15%. It is
not yet clear to us how to interpret the value of this threshold.

process. wtriRNIC is strictly stronger than wRNIC applied
on the same minimal dual graph, but strictly weaker than
triRNIC. Further, it is not comparable with RNIC, which is
enforced on the original dual graph.

4.4 Select the appropriate RNIC: selRNIC

Algorithm 1 discussed in Section 3.3, including its improve-
ments presented in Section 3.4, enforces any of the four
properties RNIC, triRNIC, wRNIC, and wtriRNIC on a CSP
by operating on the original dual graph or some modification
of it.

• For RNIC, it uses the original dual graph (Go).

• For wRNIC, it uses a minimal dual graph (Gw).

• For triRNIC, it uses a triangulated dual graph (Gtri).

• Finally, for wtriRNIC, it uses a triangulated minimal dual
graph (Gwtri).

The selection policy shown in Figure 7 automatically
chooses the dual graph on which to apply PROCESSQ (Algo-
rithm 1) by comparing the density dG of a given dual graph
G. The goal of this deliberation is to adjust the strength of
propagation to the topology of the dual graph.

No Yes

No Yes

No Yes Yes No

dGo ≥ 15%

dGo ≥ 2 dGw

dGtri ≤ 2 dGo dGwtri ≤ 2 dGw

Go Gwtri Gw Gtri

Start

Figure 7: Selecting a dual graph for PROCESSQ for selRNIC.

While both operations of triangulating a dual graph and
computing a minimal dual graph can be done efficiently and
do not add any perceptible overhead in our experiments, our
policy applies each operation at most once. The resulting
mechanism, which we denote selRNIC, nicely ties together
our techniques in a consistent and adaptive framework.

5 Related Work

NIC was proposed by Freuder and Elfe in (1996) and evalu-
ated by them and others on binary CSPs. In (Debruyne and
Bessière 2001), Debruyne and Bessiere showed that NIC is
ineffective on sparse graph and too costly on dense graphs.
Below, we restrict our discussion to non-binary CSPs.
In (Bacchus et al. 2002), nic(dual) denotes applying NIC to
the dual encoding of a CSP. It is identical to RNIC. However,
the paper does not go beyond stating that nic(dual) is strictly
stronger than ac(dual) (i.e., RNIC is strictly stronger than
R(∗,2)C). Otherwise, most of the research on consistency
for non-binary CSPs has focused on filtering the variables
domains, not the constraints definitions, such as the study
of ‘variable-based’ NIC (Gent, Stergiou, and Walsh 2000;
Stergiou 2007).

116

More generally, relational consistency properties were
formalized in (Dechter and van Beek 1997) as relational
m-consistency and relational (i,m)-consistency. Enforc-
ing those properties may require adding constraints to the
problem, modifying its topology. As for relation-filtering
properties, m-wise consistency was proposed in relational
databases (Gyssens 1986). Janssen et al. (1989) showed that
arc consistency on the dual encoding of a CSP enforces pair-
wise consistency. Algorithms for R(∗,m)C, which is equiva-
lent to m-wise consistency, were proposed for arbitrary m ≥
2 and evaluated in (Karakashian et al. 2010). One limitation
of the algorithm for R(∗,m)C is the need to manually select
m and generate all combinations of m relations that form a
connected graph. The number of combinations grows expo-
nentially with m, causing space limitations. In comparison,
RNIC requires storing for each relation R a unique combina-
tion of constraints {R}∪Neigh(R) and the size of this com-
bination varies with the connectivity of R in the dual graph.
Given the space requirement for storing all combinations of
m relations, Karakashian et al. (2010) proposed to enforce
R(∗,m)C on minimal dual graphs only, namely wR(∗,2)C,
wR(∗,3)C, and wR(∗,4)C. Figure 8 summarizes the rela-
tionships between RNIC and R(∗,m)C based properties.
Bessière, Stergiou, and Walsh (2008) discussed domain-
filtering properties located between GAC and R(∗,2)C.

R(*,3)C
wRNIC

R(*,4)C
RNIC

wtriRNIC
triRNIC

R(*,δ+1)C
GAC wR(*,3)C

wR(*,4)C

wR(*,δ+1)C

R(*,2)C≡
wR(*,2)C

Figure 8: A partial order on RNIC, R(∗,m)C, and their variations.

The use of support structures to improve the performance
of propagation in PROCESSQ is similar to (Bessière et al.
2005). Finally, the insight that breaking cycles yields trees
in a search space (i.e., tree, or dangle, identification in
SEARCHSUPPORT, Section 3.4) can be related to the Cycle-
Cutset method (Dechter and Pearl 1987).

6 Experimental Results

We ran our experiments on the benchmarks of the CSP
Solver Competition3 with a time limit of one and a half hours
per instance. Below, we report our most representative re-
sults organized in Tables 1, 2, and 3. In each table, we report
the average density of the dual graphs (dD) (except for GAC
which operates on the hypergraph), the average number of
nodes visited (#NV), the average CPU time (Time) in msec
for the instances completed within the time limit. The aver-
ages are computed over only the instances completed by all
compared algorithms. Thus, the values reported in the tables
should be considered in light of the number of completed in-
stances. A ‘-’ entry indicates that, even if the corresponding
search completed on some instance, no instance completed
by this algorithm was completed by all others, and thus no
average value can be reported. A ‘mem’ entry indicates that

3http://www.cril.univ-artois.fr/CPAI09/

the corresponding algorithm ran out of memory and could
not complete. This situation occurred only in Table 2. The
dual graphs of these instances have over 4,200 edges, the
maximum arity of the relations is k = 10, and the maximum
domain size is d = 42. Such values make the polynomial
space-requirement of the index-tree structures prohibitively
high. Note that the weakened dual graph of those instances
do not suffer from this limitation. The tables also provide:
the number of completed instances (#C); the number of in-
stances with the fastest running time (#F), where ties are
awarded to all parties; and the number of instances solved
backtrack free (#BF). Further, for each benchmark class, we
report the number of instances in the class, the number of in-
stances on which the averages are computed in parenthesis,
the range of the number of constraints e, and the range of the
density of the dual graph dD. Finally, selRNIC is identical
to RNIC in Table 1 and triRNIC on benchmark lexVg in 3.
Consequently, the corresponding rows are merged.

Before we discuss the results in detail, we note that the
values of nodes visited in all experiments comply with the
partial order shown in Figure 8, except for one instance that
can be explained by the variation of the variable ordering
used during search (Table 3, lexVg, GAC and RNIC). Im-
portantly, RNIC/selRNIC solves two large and difficult in-
stances of the aim-200 benchmark and one instance of the
ssa benchmark that no other algorithm can solve. Further, it
solves the ssa instance in a backtrack-free manner.

Table 1 illustrates the usefulness of RNIC: it solves the
largest number of problems in this set, and solves, backtrack
free, the largest number of instances.

Table 1: RNIC/selRNIC completes the largest number of in-
stances, and solves, backtrack free, the largest number of instances.

Algorithm dD #NV Time #C #F #BF

aim-100

Instances: 24(6), e ∈[150,570], dD ∈ [6.3%,8.1%]
wR(∗,2)C

1.9%
383 157 19 6 5

wR(∗,3)C 111 330 20 1 7
wR(∗,4)C 107 2902 20 0 12

GAC N/A 19034130 371588 17 4 1
RNIC/

selRNIC
6.8% 100 285 22 5 16

triRNIC 34.5% 100 1277638 9 1 9
wRNIC 1.9% 117 118 20 8 7

wtriRNIC 8.4% 108 30583 17 0 8
aim-200

Instances: 24(0), e ∈[302,1169], dD ∈ [3.2%,4.2%]
wR(∗,2)C

-
- - 12 10 4

wR(∗,3)C - - 15 3 8
wR(∗,4)C - - 12 0 8

GAC - - - 8 0 0
RNIC - - - 19 5 13selRNIC

triRNIC - - - 1 0 1
wRNIC - - - 13 3 5

wtriRNIC - - - 6 0 6

Table 2 illustrates the usefulness of wRNIC and wtriR-
NIC. As stated above, that sheer number of relations in the

117

dual graphs of the problems in this benchmark prevents us
from building the index-tree structures and executing RNIC
and triRNIC. This situation demonstrates the benefits of us-
ing wRNIC and wtriRNIC, which were actually automati-
cally chosen by selRNIC. Note also that wtriRNIC solves,
backtrack free, all instances in this category. We cannot
stress enough on the importance of this last fact: It is in-
dicative of the tractability of this class of problems.

Table 2: RNIC is hindered by the high density of the dual graph,
but its weakened versions outperform all others.

Algorithm dD #NV Time #C #F #BF

modifiedRenault

Instances: 50(22), e ∈[147,159], dD ∈ [35.4%,41.6%]
wR(∗,2)C 1.8% 248 2445 46 14 41
wR(∗,3)C 75 4887 49 4 48
wR(∗,4)C mem mem mem 0 0 0

GAC N/A 1606661 438255 23 12 4
RNIC mem mem mem 0 0 0

triRNIC mem mem mem 0 0 0
wRNIC 1.8% 245 4985 47 18 43

wtriRNIC 3.4% 75 181897 50 2 50

selRNIC 3.0% 221 160259 49 2 48

In both Tables 1 and 2, selRNIC largely outperforms GAC
for all measures. Even if one was to use a high-performance
GAC implementation such as the one in (Cheng and Yap
2010), the number of nodes visited by GAC remains orders
of magnitude larger than that by selRNIC, and the number of
instances solved backtrack-free significantly smaller. Only
in Table 3 does GAC outperform the other algorithms in
terms of CPU time only. Interestingly, however, on lexVg,
and despite the high density (72.6%) of the triangulated dual
graph, triRNIC/selRNIC solves in a backtrack-free manner
all but one of the instances in this set, thus hinting to the
tractability of these instances. (The last instance hit the time
threshold.)

The 169 instances reported above are representative of
the results obtained in our experiments, which were carried
over 570 instances. Below, we classify the non-reported test
instances into one of three qualitative categories identified
by the above tables.

• Table 1: aim-50 (24 instances), rand-10-20-10 (20 in-
stances), dubois (13 instances), pret (8 instances).

• Table 2: renault (2 instances), travellingSalesman-20 (15
instances), travellingSalesman-25 (15 instances), varDi-
macs (9 instances), rand-3-20-20 (50 instances), rand-3-
20-20-fcd (50 instances).

• Table 3: ogdVg (65 instances), ukVg (65 instances), and
wordsVg (65 instances).

7 Future Work & Conclusions

Our approach opens the door to the investigation of a
new type of singleton consistency properties for non-binary
CSPs. Instead of assigning the value of a single variable
before enforcing some level of consistency on the CSP, as
it is usually the case for Singleton Arc Consistency (SAC)

Table 3: GAC is best on CPU, triRNIC/selRNIC is best on #BF.
Algorithm dD #NV Time #C #F #BF

lexVg

Instances: 63(27), e ∈[8,36], dD ∈ [48.5%,57.1%]
wR(∗,2)C

52.0%
33 1117 55 4 27

wR(∗,3)C 33 13690 44 0 27
wR(∗,4)C 4 94413 28 0 26

GAC N/A 23 106 63 61 26
RNIC 52.0% 33 6241 45 7 27

triRNIC/
selRNIC

72.6% 4 303804 62 7 62

wRNIC 52.0% 33 6239 43 1 27
wtriRNIC 72.6% 4 243276 59 2 59

ssa

Instances: 8(3), e ∈[177,23563], dD ∈ [0.1%,1.3%]
wR(∗,2)C

0.2%
7017 5237 6 0 2

wR(∗,3)C 7017 15073 6 1 2
wR(∗,4)C 7017 60160 5 0 2

GAC N/A 45927 2770 6 5 2

RNIC 1.1% 7017 158827 5 1 1
triRNIC 2.2% 7013 866250 4 0 0
wRNIC 0.2% 7017 11320 4 0 0

wtriRNIC 0.6% 7017 104450 4 0 0
selRNIC 1.5% 7013 679940 5 1 1

(Bessiere et al. 2011), we should investigate the effective-
ness of ‘assigning a tuple to a relation’ in the dual prob-
lem. Such an approach would yield a new class of relational
consistency properties, which could be called relation-based
singleton consistency properties. Note however, that, un-
like RNIC, maintaining such properties during search is pro-
hibitive in practice (Lecoutre and Prosser 2006).

Our algorithm operates on relations defined in extension
as consistent tuples (supports). Relations defined in exten-
sion as conflicts (no-goods) could be converted to supports,
as we did in this paper. Further, and also for constraints de-
fined in intension, we could generate the support tuples after
applying GAC to the original CSP. For those cases where
it is important to keep all relation definitions in intension,
we claim that a similar, albeit weaker, domain pruning can
be achieved by executing RNIC on combinations of domain
values that are consistent with the relations. We propose to
mitigate the loss of information by generating new (support)
constraints of some judiciously chosen scopes. We propose
to investigate this approach in the future and evaluate its ef-
fectiveness.

Consistency properties and their algorithms are central to
CP, and perhaps best distinguish this discipline from other
fields that study the same problems. Research has focused
on defining new properties, proposing new algorithms, im-
proving the performance of known ones, and theoretically
characterizing the relationship between the consistency level
and the tractability of the CSP. Our contribution exploits and
adds to the large body of literature on consistency properties
and their propagation algorithms. However, our long-term
goal is to design techniques that allow a constraint solver
to identify tractable problem classes and automatically se-
lect and apply the appropriate tools for solving them. In that

118

sense, the ability of our techniques to adapt to a problem’s
structure and solve many difficult instances in a backtrack-
free manner is perhaps the most noteworthy contribution of
the current research: It indicates that we may be one step
closer to achieving our goal.

Acknowledgments

Experiments were conducted on the equipment of the Hol-
land Computing Center at the University of Nebraska-
Lincoln. Robert Woodward was partially supported by a
B.M. Goldwater Scholarship and by a Graduate Research
Fellowship of the National Science Foundation.

References

Bacchus, F.; Chen, X.; Beek, P. V.; and Walsh, T. 2002.
Binary vs. Non-Binary Constraints. Artificial Intelligence
140:1–37.
Bessière, C.; Régin, J.-C.; Yap, R. H.; and Zhang, Y. 2005.
An Optimal Coarse-Grained Arc Consistency Algorithm.
Artificial Intelligence 165(2):165–185.
Bessiere, C.; Cardon, S.; Debruyne, R.; and Lecoutre, C.
2011. Efficient Algorithms for Singleton Arc Consistency.
Constraints 16 (1):25–53.
Bessière, C.; Stergiou, K.; and Walsh, T. 2008. Domain Fil-
tering Consistencies for Non-Binary Constraints. Artificial
Intelligence 172:800–822.
Bessiere, C. 2006. Handbook of Constraint Programming.
Elsevier. chapter Constraint Propagation.
Cheng, K. C., and Yap, R. H. 2010. An Mdd-Based Gener-
alized Arc Consistency Algorithm for Positive and Negative
Table Constraints and Some Global Constraints. Constraints
15 (2):265–304.
Debruyne, R., and Bessière, C. 1997. Some Practicable Fil-
tering Techniques for the Constraint Satisfaction Problem.
In Proc. of the 15 th IJCAI, 412–417.
Debruyne, R., and Bessière, C. 2001. Domain Filtering
Consistencies. Journal of Artificial Intelligence Research
14:205–230.
Dechter, R., and Pearl, J. 1987. The Cycle-Cutset Method
for improving Search Performance in AI Applications. In
Third IEEE Conference on AI Applications, 224–230.
Dechter, R., and van Beek, P. 1997. Local and Global Rela-
tional Consistency. Theor. Comput. Sci. 173(1):283–308.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Freuder, E. C., and Elfe, C. D. 1996. Neighborhood Inverse
Consistency Preprocessing. In Proc. of AAAI-96, 202–208.
Freuder, E. C. 1991. Completable Representations of
Constraint Satisfaction Problems. In Second International
Conference on Principles of Knowledge Representation and
Reasoning (KR 91), 186–195.
Gent, I.; Stergiou, K.; and Walsh, T. 2000. Decomposable
Constraints. Artificial Intelligence 123 (1-2):133–156.

Golumbic, M. C. 2004. Algorithmic Graph Theory and
Perfect Graphs. Elsevier. Annals of Discrete Mathematics,
Vol 75.
Gyssens, M. 1986. On the Complexity of Join Dependen-
cies. ACM Trans. Database Systems 11(1):81–108.
Janssen, P.; Jégou, P.; Nougier, B.; and Vilarem, M. 1989. A
Filtering Process for General Constraint-Satisfaction Prob-
lems: Achieving Pairwise-Consistency Using an Associated
Binary Representation. In IEEE Workshop on Tools for AI,
420–427.
Karakashian, S.; Woodward, R.; Reeson, C.; Choueiry,
B. Y.; and Bessiere, C. 2010. A First Practical Algorithm
for High Levels of Relational Consistency. In 24th AAAI
Conference on Artificial Intelligence (AAAI 10), 101–107.
Kjærulff, U. 1990. Triagulation of Graphs - Algorithms
Giving Small Total State Space. Research Report R-90-09,
Aalborg University, Denmark.
Lecoutre, C., and Prosser, P. 2006. Maintaining Single-
ton Arc Consistency. In CPAI 06 Workshop on Symmetry in
Constraint Satisfaction Problems (SymCon 10), 47–61.
Maier, D. 1983. The Theory of Relational Databases. Pit-
man Publishing Limited.
Stergiou, K. 2007. Strong Inverse Consistencies for Non-
Binary CSPs. In Proceedings of the 19th IEEE International
Conference on Tools with Artificial Intelligence, volume 1 of
ICTAI 07, 215–222.

119

