
A General Nogood-Learning Framework
for Pseudo-Boolean Multi-Valued SAT

Siddhartha Jain
Brown University, Providence, RI 02912

sj10@cs.brown.edu

Ashish Sabharwal and Meinolf Sellmann
IBM Watson Research Center, Yorktown Heights, NY 10598

{ashish.sabharwal,meinolf}@us.ibm.com

Abstract

We formulate a general framework for pseudo-Boolean multi-
valued nogood-learning, generalizing conflict analysis per-
formed by modern SAT solvers and its recent extension for
disjunctions of multi-valued variables. This framework can
handle more general constraints as well as different domain
representations, such as interval domains which are com-
monly used for bounds consistency in constraint program-
ming (CP), and even set variables. Our empirical evaluation
shows that our solver, built upon this framework, works ro-
bustly across a number of challenging domains.

Introduction

Jain, O’Mahony, and Sellmann (2010) recently introduced
a new nogood learning approach for multi-valued satisfac-
tion (MV-SAT) problems. This approach was shown to in-
fer significantly stronger nogoods than those inferred by a
mechanism that is based on a Boolean representation of a
multi-valued problem. Like earlier methods, the learning
approach is based on an implication graph where nodes rep-
resent variable domain events and edges represent implica-
tions inferred by the clauses or constraints of the given prob-
lem. One of the novelties of Jain et al. was the sole focus on
variable inequations to infer minimal reasons for a failure.

In this paper, we investigate why the particular use of
inequations results in stronger nogoods and we formulate
a general framework for multi-valued nogood-learning that
can handle more general constraints, and also different do-
main representations, such as interval domains, which are
commonly used for bounds consistency in constraint pro-
gramming (CP). This is an essential step towards an integra-
tion of pseudo-Boolean and multi-valued SAT.

SAT vs. CP. Although both are concerned with feasibility
problems, state-of-the-art SAT and CP methods differ sig-
nificantly in style and philosophy. In SAT, we use one fixed,
simple input format, allowing only one type of constraints,
namely clauses, and variables that can take only two differ-
ent values. To model a real-world problem, any structure
that it may exhibit must be crushed into a number of loosely
connected atomic parts: Boolean variables and clauses.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In CP, on the other hand, the input format is not fixed
a priori. Practically all CP solvers support variables that
can take more than just two values, and many support more
involved constraints, such as linear inequalities on two or
more numeric variables, element constraints, or even global
constraints such as all-different, shortest path, knapsack, or
grammar constraints.

Arguably, CP solvers ought to have a significant advan-
tage over SAT solvers, given the additional benefit of be-
ing provided with structural information of the problem to
be solved. Interestingly, CP solvers that are based on SAT
reformulations are highly competitive nevertheless, such as
Sugar (Tamura, Tanjo, and Banbara 2008), which won
the CP global constraints competition in two consecutive
years (CSP Competition 2008 2009). With important excep-
tions, it appears that approaches that exploit structure “just
in case” tend to be more expensive while approaches that
improve inference “just in time” are often more efficient.

SAT-X Hybrids. Consequently, hybrid approaches have
been introduced, such as pseudo-Boolean solvers (e.g.,
(Dixon, Ginsberg, and Parkes 2004)) supporting inequal-
ities over binary variables, SAT modulo theories or SMT
“attaching” additional theories to a SAT solver (Nieuwen-
huis, Oliveras, and Tinelli 2006), and the award-winning
lazy clause generation approach (Ohrimenko, Stuckey, and
Codish 2007). In the adjacent field of integer programming,
the SCIP solver (Achterberg 2004) computes nogoods based
on an analysis of the linear program at the “conflict” and an
analysis of a Boolean-SAT like inference graph. Another re-
lated contribution is the recently proposed multi-valued SAT
solver CMVSAT-1 which strengthens nogood learning by di-
rectly incorporating the knowledge that each variable must
take exactly one out of a number of values (Jain, O’Mahony,
and Sellmann 2010).

In this paper, we analyze the nogood learning compo-
nent of CMVSAT-1 and generalize the approach by pro-
viding a framework for strong multi-valued nogood learn-
ing. We identify sufficient conditions for constraint prop-
agators to support nogood learning effectively. Moreover,
we show that the generalized framework is capable of han-
dling various domain representations, such as interval do-
mains and set variables, and associated propagators that en-
force bounds consistency. We note that, unlike SMT solvers,

48

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

this work deals with generalized constraints that are native to
the solver, and performs nogood-learning directly on them.

CMVSAT-1

We begin by briefly reviewing the nogood learning compo-
nent of CMVSAT-1, in the context of multi-valued SAT.

Definition 1 (Multi-Valued Variables). A multi-valued
variable Xi is a variable that takes values in a finite set Di
called the domain of Xi.

Definition 2 (Multi-Valued Clauses). Given a multi-valued
variable Xi and a value v, we call the constraint Xi = v a
variable equation on Xi; the variable equation is satisfiable
iff v ∈ Di. Further, given a set of multi-valued variables X =
{X1, . . . ,Xn} and a set T ⊆X , a clause over T is a disjunction
of variable equations on variables in T .

Definition 3 ((Partial) Assignments and Feasibility).
Given a set of multi-valued variables X = {X1, . . . ,Xn}, let
D be the union of all their domains D1, . . . ,Dn. Furthermore,
let S,T be subsets of X .

• A function α : S → D is called an assignment of variables
in S. α is called partial iff |S| < n, and complete other-
wise. If |S|= 1, α is called a variable assignment.

• α is called admissible iff α(Xi) ∈ Di for all Xi ∈ S.
• α is called feasible w.r.t. a clause c over T iff T \S �= /0 or

if there exists a variable equation Xi = α(Xi) in c.
• Given a clause c, a complete, admissible, and feasible as-

signment for c is called a solution to c.

Definition 4 (Multi-Valued SAT Problem). Given a set X
of multi-valued variables and a set C of clauses over subsets
of X , the multi-valued SAT problem (MV-SAT) is to decide
whether there exists an assignment that is a solution to all
clauses in C.

Multi-Valued Nogood Learning

Boolean SAT nogood learning is commonly based on a so-
called implication graph. Analogously, the conflict analysis
proposed by Jain, O’Mahony, and Sellmann (2010) is also
based on a graph. Curiously, this graph was set up to only
represent the implications that result in variable inequations.
That is to say, even when propagation could show that some
variable must take a certain value in its domain, the infor-
mation added to the graph is that it cannot take any of the
remaining values.

Note that this is not merely a matter of choice akin to rep-
resenting a binary CP constraint as positive list of allowed
tuples or as a negative list of disallowed tuples. The reason
the proposed approach is based on variable inequations only
is that this is the most atomic information that is communi-
cated between constraints. This way, when a reason for a
conflict is sought, it can be traced back to the minimal do-
main reductions that are needed to reduce the domains fur-
ther. To make the discussion less abstract, let us consider the
following example.

Example 1. Consider a multi-valued SAT problem with
five variables X1, . . . ,X5 with domains D1 = D2 = D4 =

1 1

1

2

2 2

3

3 33

3
conflict

UIV

Conflict Partition

3
X3 �= 2

X1 �= 3 X4 �= 1

X1 �= 2

X2 �= 1

X2 �= 3 X3 �= 2

X4 �= 3

X5 �= 2 X4 �= 2

X3 �= 7

X3 �= 6

Figure 1: MV-SAT Implication Graph.

{1,2,3},D3 = {1, . . . ,7}, and D5 = {1,2}. The clauses are

(X1 = 2 || X1 = 3 || X4 = 2 || X4 = 3)
(X2 = 1 || X2 = 3 || X3 = 1 || X3 = 3 . . .7)
(X4 = 1 || X4 = 2 || X3 = 6,7)
(X4 = 1 || X4 = 3 || X5 = 2)
(X5 = 1 || X3 = 6,7)

Figure 1 depicts the implication graph that emerges when
we branch by setting or “committing” X1 ← 1, then X2 ← 2,
and finally X3 ← 1, which leads to a conflict.

An important novelty introduced by Jain, O’Mahony, and
Sellmann (2010) is the notion of a unit implication variable:

Definition 5 (Unit Implication Variable). Given a multi-
valued SAT problem and an implication graph G, a variable
X is called a unit implication variable (UIV) if the following
holds: if all nodes associated with X are removed from G,
then there exists no path from the conflict node to any branch
node on the last (i.e., deepest) branch level.

In contrast to Boolean SAT, in multi-valued SAT a clause
is unit as soon as all remaining variable equations regard
the same variable. Consequently, a nogood computed by
analyzing the implication graph is no longer defined by a
cutpoint in the graph, but by a cutset of nodes that all regard
the same variable. As long as we compute nogoods based on
such cutsets, we can be sure that the corresponding nogood
is “unit” after backtracking and will cause propagation.

In our example, X3 is a UIV. Based on its associated cut-
set, we can compute a conflict partition and set the nogood
as the negation of the conjunction of all variable inequations
that have a direct parent in the conflict partition. We thus
find the multi-valued clause (X4 = 1 || X3 = 6 || X3 = 7). Af-
ter backjumping to the next deepest level after the conflict
level in our learned clause (in our case level 1), this clause
is unit and prunes the domain of X3 to D3 = {6,7}. That
is, equipped with this nogood the solver does not need to
branch on X3 ← 2, X3 ← 3, X3 ← 4, and X3 ← 5 as all of
these settings would fail for the very same reason as X3 ← 1

49

did. Note that the same strength of inference would not have
been achieved had we simply noted (X3 = 1) as a sufficient
reason for inferring (X4 �= 3) and (X5 �= 2).

A Generalized Framework

We now generalize this approach and identify sufficient con-
ditions under which strong nogoods can be learned effec-
tively. In multi-valued SAT, the only constraints allowed are
multi-valued clauses. Moreover, nogood learning requires
that branching decisions regard just one variable, and prop-
agation is limited to unit propagation only. By generalizing
the nogood learning component recapitulated thus far, we
liberate ourselves from these restrictions and are able to han-
dle more general constraints as well as different variable do-
main representations. This is an essential step for the design
of solvers that can handle the pseudo-Boolean multi-valued
SAT problem.

A Formal View of Constraint Programming

A canonical view in CP is to think of the set of constraints
as being split in two classes. The first class of constraints is
that of primitive constraints. Originally primitive constraints
were introduced as constraints that can be directly expressed
by the respective domain representation. However, from a
formal point of view it is actually often convenient to use
primitive constraints in the opposite way, namely to express
what domain representation is used.

For example, let us consider all unary constraints as prim-
itive. Obviously, any unary constraint can be expressed as a
truth table. Consequently, the constraint can be directly en-
coded in the domain of the variable if the latter is represented
as a list of allowed values. Alternatively, we can represent
the current domain of a variable by such a primitive con-
straint. To give another example, assume that we consider
unary at-most and at-least constraints as primitive (whereby
implicitly we assume a given ordering on the values). This
set of primitive constraints is equivalent to a domain repre-
sentation that maintains only an interval of values for each
variable, as is usually the case for approaches that maintain
bounds consistency.

The other class of constraints is usually referred to as sec-
ondary constraints. It consists of all constraints that are sup-
ported but are not primitive. Now, the propagation of a sec-
ondary constraint Cs can be viewed as the process of entail-
ment of new primitive constraints Cp from the conjunction
of the existing primitive constraints and the secondary con-
straint that is propagated: (

∧
Ci∈PrimStore Ci)∧Cs � Cp. Note

that, unlike learned clauses, these inferred constraints need
to be removed from the constraint store upon backtracking.

Nogoods as Disjunctions of Negated Primitives

Let us revisit the nogood learning approach discussed in the
previous section in the light of the above formal view of CP.
All unary inequations are primitive constraints, and multi-
valued clauses, i.e., disjunctions of variable equations, are
the only secondary constraints.

Nodes in the implication graph represent primitive con-
straints, the outgoing arcs link a node to a set of primitive

constraints that, when conjoined with some secondary con-
straint, allow the entailment of the corresponding primitive
constraint. A conflict is reached when a subset of nodes
in the graph represents a set of primitive constraints that
contradict one another. Since the only primitive constraints
are variable inequations, conflict sets are necessarily sets of
unary constraints regarding the same variable that together
exclude all potential values from its domain.

When such a set of conflicting nodes is found, any cut-
set whose removal from the graph disconnects the conflict
nodes and the nodes directly introduced through branch-
ing defines a valid redundant constraint. Namely, for the
primitive constraints in the cutset, it has been found that
they contradict each other in the given constraint system
as they entail the conflict. Consequently, we conclude that
the conjunction of these primitive constraints must be false
or, equivalently, that the disjunction of the negation of these
primitive constraints must be true. Therefore, in this frame-
work, nogoods take the form of disjunctions of negated
primitive constraints.

Valid Cutsets in the Implication Graph. While any cut-
set results in a constraint that is redundant to the given sys-
tem of constraints, in order to make progress we search for
cutsets with a desirable property. Namely, we are interested
in those redundant constraints that allow us to entail new
primitive constraints efficiently upon backtracking. For tra-
ditional SAT and also in multi-valued SAT, this means that
we try to learn a clause that will be unit upon backtracking
so that unit propagation can be effective.

To generalize this notion, we require that the constraint
reasoning system provides an efficient approach for find-
ing cutsets with the property that the disjunction of negated
primitive constraints that is implied after backtracking can
be expressed efficiently as a conjunction of primitive con-
straints. We call such cutsets valid. In particular, we require
that primitive constraints added upon branching are them-
selves valid cutsets as well.

Efficient Nogood Learning: Sufficient Conditions

To summarize, assume that the following conditions are met
by our constraint reasoning system:

(1) The system distinguishes between primitive and sec-
ondary constraints. Propagation of secondary con-
straints is the entailment of new primitive constraints.

(2) Apart from adding new primitive constraints, secondary
constraint propagators can efficiently provide a set of
primitive constraints that is sufficient for entailing the
new constraints.

(3) Conflicting sets of primitive constraints can be detected
efficiently. Disjunctions of negations of primitive con-
straints are supported as secondary constraints.

(4) Negated primitive constraints can be expressed as a
set (i.e., conjunction) of primitive constraints. Certain
disjunctions of negated primitive constraints (namely,
those arising from valid cutsets upon backtracking) can
be succinctly represented as a set of primitive con-
straints.

50

conflict

Lower Branching levels

Conflict PartitionCutset

Branching Set

Conflict Set

Branching Level k

Ck
p

Ck
p

Cb
p

Cc
p

Ck
p

Ck
p

Ck
p Ck

p

Ck
p

Ck
p

Ca
p

Ck
p

Figure 2: Abstract Implication Graph. We omit those parts
of the graph that cannot be reached from the conflict node.

(5) Branching is executed as the addition of one or more
primitive constraints. If a conjunction of primitive con-
straints is added, then the negation of this conjunction is
a valid cutset in the sense of condition (4).

If these conditions are satisfied, we can efficiently learn
strong nogoods in the following way (see Figure 2): We
maintain an implication graph where nodes represent primi-
tive constraints added by branching (5) or entailed by prop-
agators (1). Nodes are associated with the branching level
at which they were added or entailed. We add arcs from
entailed primitive constraints to those primitive constraints
that are needed for the entailment (2). When a conflict is
reached (3), we compute a valid cutset on the last branching
level that separates the conflict nodes (3) from the branching
nodes (5). A nogood is inferred as the negation of the con-
junction of these cutset nodes and nodes on lower branching
levels that are adjacent to nodes in the conflict partition in-
duced by the cutset. Note that the validity of the cutsets
allows us, upon backtracking, to propagate the remaining
disjunction of negated primitive constraints by expressing it
as a set of primitive constraints (4).

Framework Application Example

The abstract procedure above now allows us to general-
ize nogood learning. The framework is general enough to
handle constraints other than clauses (provided that condi-
tion (2) is met) as well as multi-valued variables. In fact,
the system can even handle set variables whose domains
(subsets of the power set over some universe of elements)
can be represented as ranges, for example by using length-
lexicographic bounds (Gervet and Van Hentenryck 2006).

Consider, for example, a constraint reasoning system
where primitive constraints are unary at-most and at-least
constraints on some variables (we call these range variables)
and inequations for the other variables (we refer to these as
domain variables). According to condition (3), we need to
support disjunctions of at-most and at-least constraints on
range variables and equations on domain variables in our
system. Let us assume that, on top of these secondary con-
straints, the system also supports linear inequalities. For

1

22

1

2

2 2

2

X1 �= true

X5 �= b X7 ≥ 75X2 ≤ 50

X3 �= FL

X6 ≥ 20

X4 ≤ 30

X7 ≤ 60

Figure 3: Implication Graph for Inequalities as Primitives.

both types of constraints it is trivial to satisfy condition (2).
If we branch by splitting domains for range variables and by
adding inequations for domain variables (5), all conditions
are satisfied and we can use our nogood learning approach.

To illustrate how nogood learning in this exemplary
system works, consider the following constraint satisfac-
tion problem. We have seven variables X1 ∈ {true, false},
X3 ∈ {NY,TX,FL,CA}, X5 ∈ {r,g,b}, and X2,X4,X6,X7 ∈
{1, . . . ,100}, along with six constraints:

(X1 = true || X3 = NY || X3 = CA)
(X2 ≥ 60 || X4 ≤ 30)
(X3 = FL || X4 ≥ 60 || X5 = r || X5 = g)
X4 +X6 ≥ 50
(X5 = b || X6 ≤ 10 || X7 ≥ 75)
X6 +X7 ≤ 80

Suppose we first branch by adding the primitive constraint
X1 �= true (see Figure 3). From here we entail by the first
secondary constraint that X3 �= FL (and X3 �= TX but we will
not use this information). Say we branch on X2 next and
add X2 ≤ 50. By the second constraint we entail X4 ≤ 30
and, by the third and fourth constraint, we entail X5 �= b and
X6 ≥ 20. The fifth and sixth constraint then entail X7 ≥ 75
and X7 ≤ 60, two primitive constraints which obviously con-
tradict each other. Analyzing the implication graph, we find
that X4 ≤ 30 is a non-dominated cutset (in the sense of Jain,
O’Mahony, and Sellmann (2010)) on the lowest branching
level, and we learn the nogood (X3 = FL || X4 ≥ 31). Impor-
tant for us is that this cutset is valid in the sense of condi-
tion (4), as the negation, X4 ≤ 30, inferred upon backtrack-
ing can obviously be expressed as a primitive constraint.

We would like to highlight two points. First, note that not
any set of primitive constraints that regards the same vari-
able results in a valid cutset. For example, assume that con-
straints (X ≥ 5) and (X ≤ 10) are part of a cutset and the
disjunction of their negations, (X ≤ 4 || X ≥ 11), is implied
upon backtracking. This disjunction cannot be expressed as
a conjunction of primitive constraints and therefore the un-
derlying cutset is not valid. Second, in general, a valid cutset
need not consist of primitive constraints that regard the same
variable. For example, it is conceivable that a constraint rea-
soning system treats inequalities over two variables (X ≤Y)
as primitive constraints. A disjunction of negated primitive
constraints would be perfectly fine here if it can be expressed
as conjunction of primitive constraints over multiple vari-
ables. Consequently, the fact that a cutset consists of primi-
tive constraints over the same variable is, in general, by itself
neither necessary nor sufficient for validity.

51

Post-Processing the Implication Graph

As in Boolean SAT, we can strengthen the learned nogoods
by computing a minimal (not necessarily minimum) con-
junction of negated literals in our nogood (note that these
negated literals are primitive constraints!) for which prop-
agation still results in a conflict (Een and Sörensson 2005).
However, we can do even more when we assume that sec-
ondary constraints provide the corresponding functionality.

Consider the previous example. The final conflict is given
by the conjunction of X7 ≥ 75 and X7 ≤ 60. It would have
been sufficient for a conflict had we just inferred X7 ≤ 74, so
let us replace the node X7 ≤ 60 with X7 ≤ 74. When the node
X7 ≤ 60 was added to the implication graph, this happened
as a result of propagating the sixth constraint X6 +X7 ≤ 80.
To achieve X7 ≤ 74 by propagation, it would have therefore
sufficed to have the primitive constraint X6 ≥ 6. Suppose
the implementation of the linear constraint can provide this
minimal primitive constraint needed for inferring X7 ≤ 74.
Then, we need to check what other implications the node
X6 ≥ 20 was needed for. We observe that, to infer X7 ≥ 75
by the fifth constraint, we needed at least that X6 ≥ 11. When
replacing the node X6 ≥ 20 we must add the strongest pre-
condition for all constraints that have added incoming arcs
to this node. We therefore replace the node with X6 ≥ 11.

Working our way through the graph this way, we find next
that X4 ≤ 30 can be replaced by the stronger of the nodes
X4 ≤ 59 and X4 ≤ 39. As we have now reached a node that is
part of the nogood, we stop further minimization that would
result from the weakening of X4 ≤ 30 to X4 ≤ 39. We finally
learn the strengthened nogood (X3 = FL || X4 ≥ 40).

Note that this post-processing of the implication graph has
the potential to remove certain nodes entirely, for example
when the initial domain bound of a range variable is enough
to infer a bound on another that is sufficient to entail the
conflict. Therefore, post-processing can also create new cut-
sets that dominate the ones in the non-processed implication
graph. Consequently, post-processing should always take
place before the cutset is computed and not (as we just did)
after the nogood is learned.

Empirical Evaluation

We devised a constraint system, CMVSAT-2, based on the
results in the previous section. The system provides for
range and domain variables, whereby primitive constraints
for range variables consists in at-most and at-least con-
straints. For domain variables, primitive constraints are in-
equations. Secondary constraints that we provide so far are
linear inequalities and disjunctions of equations and range
constraints, such as (X1 ∈ [5 . . .60] || X2 ∈ [37 . . .74] || X5 =
b || X10 ≤ 15). Note that the latter constraints include dis-
junctions of negated primitive constraints.

We consider problems from three domains, each of which
combines challenging combinatorial constraints with lin-
ear inequality constraints: ‘quasigroup with holes’ prob-
lem with costs (qwh-c), market split problem (msp), and a
weighted version of N-queens problem (nqueens-w). We
compare our solver CMVSAT-2 with the pure SAT solver
MiniSat 2.2.0 (Eén and Sörensson 2004), the CSP solver

Mistral (Hebrard 2008), and the mixed integer program-
ming (MIP) solver SCIP 2.0.1 (Achterberg 2004). In
order to generate problem instances in the various for-
mats required by the above solvers, we used the tool
Numberjack 0.1.10-11-24 (Hebrard, O’Mahony, and
O’Sullivan 2010) to create a generic model. This model was
solved directly by Mistral as the primary built-in solver for
Numberjack, and was translated using Numberjack into
“.cnf” and “.lp” formats for MiniSat and SCIP, respec-
tively. All experiments were conducted on Intel Xeon CPU
E5410 machines, 2.33GHz with 8 cores and 32GB of mem-
ory, running Ubuntu. We performed one run per machine at
a time, with a 10 minute limit.

The translation to CNF format for MiniSat is similar
to the one used by Sugar (Tamura, Tanjo, and Banbara
2008). It creates Boolean variables to capture relations of
the form X = v and X ≤ v for a variable X and a domain
value v. The use of propositions for X ≤ v eliminates the
quadratic blowup usually associated with the direct encod-
ing of a CSP variable into a set of Boolean variables. It also
allows implicitly for domain splitting as a branching strat-
egy. Like Sugar, the size of CNF encodings is kept under
control (where necessary) by using a “compact” encoding
that breaks up long inequalities into a number of smaller
ones consisting of only three variables each, by introducing
auxiliary variables. E.g., X1+X2+X3+X4+X5 ≤ 20 is bro-
ken down into Y1 = X1 +X2;Y2 =Y1 +X3;Y2 +X4 +X5 ≤ 20
in our compact encoding. The market split problem brings
out an interesting trade-off between encoding compactness
and propagation efficiency, as we will shortly see.

Our main finding is that CMVSAT-2 is a robust general
method that works well across a variety of domains. Each of
the other solvers we consider (SAT, CSP, and MIP solvers)
may perform somewhat better than CMVSAT-2 on one do-
main but they all suffer from a significant disadvantage in
other domains. The results, averaged over 100 instances
in each domain considered, are summarized in Table 1.
In all cases, we used impact based variable selection for
CMVSAT-2. For value selection, selecting the value with the
least impact worked well in general, although the “disco-
novo-gogo” heuristic (Sellmann and Ansótegui 2006) was
better on nqueens-w. Our implementation includes post-
processing of the implication graph as discussed earlier, al-
though on the benchmark set considered, CMVSAT-2 per-
formed quite well even without post-processing.

The qwh-c domain adds costs to the classic quasi-
group with holes problem (Gomes and Shmoys 2002). We
assign uniform random costs Ci, j from {1..10} to each
cell and add one additional constraint ∑1≤i, j≤N Ci, jXi, j ≤
(∑1≤i, j≤N Ci, j)/2. For our experiments, we considered
quasigroup instances of order 25 with 40% filled entries
(i.e., 375 holes). In this regime, the unweighted problem
is close to the known feasibility and hardness threshold, but
still allows enough flexibility to have solutions with various
costs. As we see from the first row of Table 1, CMVSAT-2
is able to solve all 100 instances, requiring an average of
only 0.55 seconds. The CNF translation for these instances,
even with the “compact” encoding, was too large to gener-
ate or to read using MiniSat, as the cost inequality involves

52

problem CMVSAT-2 MiniSat Mistral SCIP
domain solved runtime nodes solved runtime nodes solved runtime nodes solved runtime nodes
qwh-c 100 0.55s 231 0 MEM MEM 36 ≥403.05s ≥2.9M 99 ≥ 58.68s ≥65
msp-3 100 1.03s 10,305 100 19.41s 5,361 100 0.02s 7,527 100 0.54s 4,732

nqueens-w 100 9.08s 2,409 100 0.07s 2,018 92 ≥125.51s ≥2.3M 100 106.03s 110
all 300 3.55s – 200 ≥206.49s – 228 ≥176.19s – 299 ≥55.08s –

Table 1: Summary of results with a 10 minute cutoff, showing the average over 100 instances in each domain of the number of
solved instances, the runtime, and the number of search nodes processed by each solver. The last row, marked “all”, represents
the total number of instances solved and the average runtime.

625 variables with coefficients and variable values ranging
in {1..10}. SCIP can solve 99 instances but needs roughly a
minute on average, while Mistral shows extreme variation
in runtime and times out on 64 instances.

The msp-3 domain represents the market split prob-
lem which is notoriously hard for constraint solvers. We
used the standard Cornuejols-Dawande generator (Cornue-
jols and Dawande 1998) and created 100 instances of order
3, of which exactly 10 instances were satisfiable. As we
see from Table 1, CMVSAT-2 can solve all 100 instances in
roughly 1 second on average. Mistral and SCIP perform
better on this domain. However, MiniSat is slower than
CMVSAT-2 on average by 20x using the non-compact encod-
ing. Interestingly, while MiniSat is in general able to pro-
cess many more nodes per second than CMVSAT-2, the size
of the input files significantly limits its propagation engine
here despite techniques such as watched literals. Specifi-
cally, MiniSat takes roughly 20x longer to process roughly
half as many nodes as CMVSAT-2, because of sheer encod-
ing size. The compact CNF encoding, while significantly
reducing the size, apparently hinders effective inference as
it caused 57 instances to time out.

Finally, the nqueens-w domain adds weights to the
classic N-queens problem. We assign uniform random
weights Wi, j ∈ {1, . . . ,maxweight} to the cells and aug-
ment the problem with the constraint ∑Queen on (i, j)Wi, j ≥
0.7 × N × maxweight. Table 1 shows results for N = 30
and maxweight = 10. CMVSAT-2 can solve all 100 instances
within an average of 9 seconds each. MiniSat fares better
here, while Mistral times out on 8 instances and SCIP is
slower than CMVSAT-2 on average by 11x.

Overall, Table 1 demonstrates that our general framework
is capable of good performance across a variety of domains,
while other solvers do not generalize as well. The last line
of Table 1, for example, shows that CMVSAT-2 was able to
solve all 300 instances considered within 4 seconds an aver-
age, while MiniSat could solve only 200 in over 206 sec-
onds on average, Mistral could solve only 228 in over 176
seconds on average, and SCIP could solve 299 but needed
over 55 seconds on average.

Conclusion

This work presented a generalized framework for perform-
ing SAT-style conflict driven nogood-learning in any set-
ting where primitive and secondary constraints (and the
corresponding consistency notions) supported by the sys-
tem satisfy certain sufficient conditions. The framework

shows how low-overhead nogood learning can be achieved
in solvers that combine the benefits of multi-valued vari-
ables and pseudo-Boolean solvers. We believe that this is
an important step towards the development of a new class
of solvers that favor opportunistic learning over the expen-
sive exploitation of structure even on problems with multi-
valued variables and more elaborate constraints. Our em-
pirical results attest to the robustness of this new class of
solvers whose potential we are just beginning to explore.

References
Achterberg, T. 2004. SCIP - a framework to integrate constraint
and mixed integer programming. Technical Report ZR-04-19, Zuse
Institute Berlin.
Cornuejols, G., and Dawande, M. 1998. A class of hard small 0-1
problems. In IPCO, 284–293.
CSP Competition. 2008-2009. International CSP competition re-
sult pages.
Dixon, H. E.; Ginsberg, M. L.; and Parkes, A. J. 2004. Gener-
alizing Boolean satisfiability I: Background and survey of existing
work. JAIR 21:193–243.
Eén, N., and Sörensson, N. 2004. An Extensible SAT-solver. In
SAT-2005, volume 2919 of LNCS, 333–336.
Een, N., and Sörensson, N. 2005. MiniSat v1.13 - A SAT
Solver with Conflict-Clause Minimization, System description for
the SAT competition.
Gervet, C., and Van Hentenryck, P. 2006. Length-lex ordering for
set csps. In AAAI-06, 48–53.
Gomes, C., and Shmoys, D. 2002. Completing quasigroups or
Latin squares: A structured graph coloring problem. In Computa-
tional Symposium on Graph Coloring and Extensions.
Hebrard, E.; O’Mahony, E.; and O’Sullivan, B. 2010. Con-
straint Programming and Combinatorial Optimisation in Number-
jack. CPAIOR-2010 181–185.
Hebrard, E. 2008. Mistral, a constraint satisfaction library. In 3rd
International CSP Solver Competition, 31–40.
Jain, S.; O’Mahony, E.; and Sellmann, M. 2010. A complete multi-
valued sat solver. In CP-2010, 281–296.
Nieuwenhuis, R.; Oliveras, A.; and Tinelli, C. 2006. Solv-
ing sat and sat modulo theories: From an abstract davis-putnam-
logemann-loveland procedure to dpll(t). J. ACM 53(6):937–977.
Ohrimenko, O.; Stuckey, P. J.; and Codish, M. 2007. Propagation
= lazy clause generation. In CP-07. Springer-Verlag.
Sellmann, M., and Ansótegui, C. 2006. Disco-Novo-GoGo: Inte-
grating local search and complete search with restarts. In AAAI-06.
Tamura, N.; Tanjo, T.; and Banbara, M. 2008. System descrip-
tion of a SAT-based CSP solver Sugar. Proceedings of the Third
International CSP Solver Competition 71–75.

53

