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Abstract

We present a first theoretical analysis of the power
of polynomial-time preprocessing for important
combinatorial problems from various areas in AI.
We consider problems from Constraint Satisfac-
tion, Global Constraints, Satisfiability, Nonmono-
tonic and Bayesian Reasoning. We show that, sub-
ject to a complexity theoretic assumption, none
of the considered problems can be reduced by
polynomial-time preprocessing to a problem kernel
whose size is polynomial in a structural problem
parameter of the input, such as induced width or
backdoor size. Our results provide a firm theoretical
boundary for the performance of polynomial-time
preprocessing algorithms for the considered prob-
lems.

Introduction
Many important computational problems that arise in var-
ious areas of AI are intractable. Nevertheless, AI research
was very successful in developing and implementing heuris-
tic solvers that work well on real-world instances. An im-
portant component of virtually every solver is a powerful
polynomial-time preprocessing procedure that reduces the
problem input. For instance, preprocessing techniques for
the propositional satisfiability problem are based on Boolean
Constraint Propagation (see, e.g., Eén and Biere, 2005), CSP
solvers make use of various local consistency algorithms
that filter the domains of variables (see, e.g., Bessiere, 2006);
similar preprocessing methods are used by solvers for Non-
monotonic and Bayesian reasoning problems (see, e.g., Geb-
ser et al., 2008, Bolt and van der Gaag, 2006, respectively).

Until recently, no provable performance guarantees for
polynomial-time preprocessing methods have been ob-
tained, and so preprocessing was only subject of empirical
studies. A possible reason for the lack of theoretical results
is a certain inadequacy of the P vs NP framework for such
an analysis: if we could reduce in polynomial time an in-
stance of an NP-hard problem just by one bit, then we can
solve the entire problem in polynomial time by repeating the
reduction step a polynomial number of times, and P = NP
follows.

With the advent of parameterized complexity (Downey,
Fellows, and Stege 1999), a new theoretical framework be-
came available that provides suitable tools to analyze the
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power of preprocessing. Parameterized complexity consid-
ers a problem in a two-dimensional setting, where in addi-
tion to the input size n, a problem parameter k is taken into
consideration. This parameter can encode a structural aspect
of the problem instance. A problem is called fixed-parameter
tractable (FPT) if it can be solved in time f(k)p(n) where
f is a function of the parameter k and p is a polynomial of
the input size n. Thus, for FPT problems, the combinatorial
explosion can be confined to the parameter and is indepen-
dent of the input size. It is known that a problem is fixed-
parameter tractable if and only if every problem input can be
reduced by polynomial-time preprocessing to an equivalent
input to the same problem whose size is bounded by a func-
tion of the parameter (Downey, Fellows, and Stege 1999).
The reduced instance is called the problem kernel, the pre-
processing is called kernelization. The power of polynomial-
time preprocessing can now be benchmarked in terms of
the size of the kernel. Once a small kernel is obtained, we
can apply any method of choice to solve the kernel: brute-
force search, heuristics, approximation, etc. (Guo and Nie-
dermeier 2007). Because of this flexibility a small kernel is
generally preferable to a less flexible branching-based fixed-
parameter algorithm. Thus, small kernels provide an addi-
tional value that goes beyond bare fixed-parameter tractabil-
ity.

In general the size of the kernel is exponential in the pa-
rameter, but many important NP-hard optimization problems
such as Minimum Vertex Cover, parameterized by solution
size, admit polynomial kernels, see, e.g., (Bodlaender et al.
2009) for references.

In previous research several NP-hard AI problems have
been shown to be fixed-parameter tractable. We list some
important examples from various areas:
• Constraint satisfaction problems (CSP) over a fixed

universe of values, parameterized by the induced
width (Dechter and Pearl 1989; Gottlob, Scarcello, and
Sideri 2002).

• Consistency and generalized arc consistency for in-
tractable global constraints, parameterized by the cardi-
nalities of certain sets of values (Bessière et al. 2008).

• Propositional satisfiability (SAT), parameterized by the
size of backdoors (Nishimura, Ragde, and Szeider 2004).

• Positive inference in Bayesian networks with variables of
bounded domain size, parameterized by size of loop cut-
sets (Pearl 1988; Bidyuk and Dechter 2007).

• Nonmonotonic reasoning with normal logic programs,
parameterized by feedback width (Gottlob, Scarcello, and
Sideri 2002).
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However, only exponential kernels are known for these fun-
damental AI problems. Can we hope for polynomial ker-
nels?
Results Our results are throughout negative. We provide
strong theoretical evidence that none of the above fixed-
parameter tractable AI problems admits a polynomial ker-
nel. More specifically, we show that a polynomial kernel for
any of these problems causes a collapse of the Polynomial
Hierarchy to its third level, which is considered highly un-
likely by complexity theorists.

Our results are general: The kernel lower bounds are not
limited to a particular preprocessing technique but apply to
any clever technique that could be conceived in future re-
search. Hence the results contribute to the foundations of AI.

Our results suggest the investigation of alternative ap-
proaches to polynomial-time preprocessing; for instance,
preprocessing that produces in polynomial time a Boolean
combination of polynomially sized kernels instead of one
single kernel.

Formal Background
A parameterized problem P is a subset of Σ∗ × N for some
finite alphabet Σ. For a problem instance (x, k) ∈ Σ∗ × N

we call x the main part and k the parameter. We assume
the parameter is represented in unary. For the parameterized
problems considered in this paper, the parameter is a func-
tion of the main part, i.e., k = π(x) for a function π. We
then denote the problem as P(π), e.g., U -CSP(width) de-
notes the problem U -CSP parameterized by the width of the
given tree decomposition.

A parameterized problem P is fixed-parameter tractable if
there exists an algorithm that solves any input (x, k) ∈ Σ∗×
N in time O(f(k) ·p(|x|) where f is an arbitrary computable
function of k and p is a polynomial in n.

A kernelization for a parameterized problem P ⊆ Σ∗ ×N

is an algorithm that, given (x, k) ∈ Σ∗ × N, outputs in time
polynomial in |x| + k a pair (x′, k′) ∈ Σ∗ × N such that
(i) (x, k) ∈ P if and only if (x′, k′) ∈ P and (ii) |x′|+ k′ ≤
g(k), where g is an arbitrary computable function, called the
size of the kernel. In particular, for constant k the kernel has
constant size g(k). If g is a polynomial then we say that P
admits a polynomial kernel.

Every fixed-parameter tractable problem admits a kernel.
This can be seen by the following argument due to Downey,
Fellows, and Stege (1999). Assume we can decide instances
(x, k) of problem P in time f(k)|n|O(1). We kernelize an
instance (x, k) as follows. If |x| ≤ f(k) then we already
have a kernel of size f(k). Otherwise, if |x| > f(k), then
f(k)|x|O(1) ≤ |x|O(1) is a polynomial; hence we can de-
cide the instance in polynomial time and replace it with a
small decision-equivalent instance (x′, k′). Thus we always
have a kernel of size at most f(k). However, f(k) is super-
polynomial for NP-hard problems (unless P = NP), hence
this generic construction is not providing polynomial ker-
nels.

We understand preprocessing for an NP-hard problem as
a polynomial-time procedure that transforms an instance of
the problem to a (possible smaller) solution-equivalent in-
stance of the same problem. Kernelization is such a pre-

processing with a performance guarantee, i.e., we are guar-
anteed that the preprocessing yields a kernel whose size is
bounded in terms of the parameter of the given problem in-
stance. In the literature also different forms of preprocess-
ing have been considered. An important one is knowledge
compilation, a two-phases approach to reasoning problems
where in a first phase a given knowledge base is (possibly in
exponential time) preprocessed (“compiled”), such that in a
second phase various queries can be answered in polynomial
time (Cadoli et al. 2002).

Tools for Kernel Lower Bounds
In the sequel we will use recently developed tools to obtain
kernel lower bounds. Our kernel lower bounds are subject to
the widely believed complexity theoretic assumption NP �⊆
co-NP/poly (or equivalently, PH �= Σ3

p). In other words, the
tools allow us to show that a parameterized problem does not
admit a polynomial kernel unless the Polynomial Hierarchy
collapses to its third level (see, e.g., Papadimitriou, 1994).

A composition algorithm for a parameterized problem
P ⊆ Σ∗ × N is an algorithm that receives as input a se-
quence (x1, k), . . . , (xt, k) ∈ Σ∗ × N, uses time polyno-
mial in

∑t
i=1 |xi| + k, and outputs (y, k′) ∈ Σ∗ × N with

(i) (y, k′) ∈ P if and only if (xi, k) ∈ P for some 1 ≤ i ≤ t,
and (ii) k′ is polynomial in k. A parameterized problem is
compositional if it has a composition algorithm. With each
parameterized problem P ⊆ Σ∗×N we associate a classical
problem UP[P] = {x#1k : (x, k) ∈ P } where 1 denotes
an arbitrary symbol from Σ and # is a new symbol not in Σ.
We call UP[P] the unparameterized version of P.

The following result is the basis for our kernel lower
bounds.

Theorem 1 (Bodlaender et al., 2009, Fortnow and San-
thanam, 2008). Let P be a parameterized problem whose
unparameterized version is NP-complete. If P is composi-
tional, then it does not admit a polynomial kernel unless
NP ⊆ co-NP/poly, i.e., the Polynomial Hierarchy collapses.

Let P,Q ⊆ Σ∗ × N be parameterized problems. We say
that P is polynomial parameter reducible to Q if there exists
a polynomial time computable function K : Σ∗ × N →
Σ∗×N and a polynomial p, such that for all (x, k) ∈ Σ∗×N

we have (i) (x, k) ∈ P if and only if K(x, k) = (x′, k′) ∈ Q,
and (ii) k′ ≤ p(k). The function K is called a polynomial
parameter transformation.

The following theorem allows us to transform kernel
lower bounds from one problem to another.

Theorem 2 (Bodlaender, Thomassé, and Yeo, 2009). Let
P and Q be parameterized problems such that UP[P] is NP-
complete, UP[Q] is in NP, and there is a polynomial pa-
rameter transformation from P to Q. If Q has a polynomial
kernel, then P has a polynomial kernel.

Constraint Networks
Constraint networks have proven successful in modeling ev-
eryday cognitive tasks such as vision, language comprehen-
sion, default reasoning, and abduction, as well as in appli-
cations such as scheduling, design, diagnosis, and temporal
and spatial reasoning (Dechter 2010). A constraint network
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is a triple I = (V,U, C) where V is a finite set of variables,
U is a finite universe of values, and C = {C1, . . . , Cm} is set
of constraints. Each constraint Ci is a pair (Si, Ri) where Si

is a list of variables of length ri called the constraint scope,
and Ri is an ri-ary relation over U , called the constraint re-
lation. The tuples of Ri indicate the allowed combinations
of simultaneous values for the variables Si. A solution is a
mapping τ : V → U such that for each 1 ≤ i ≤ m and
Si = (x1, . . . , xri), we have (τ(x1), . . . , τ(xri)) ∈ Ri. A
constraint network is satisfiable if it has a solution.

With a constraint network I = (V,U, C) we associate its
constraint graph G = (V,E) where E contains an edge be-
tween two variables if and only if they occur together in the
scope of a constraint. A width w tree decomposition of a
graph G is a pair (T, λ) where T is a tree and λ is a labeling
of the nodes of T with sets of vertices of G such that the fol-
lowing properties are satisfied: (i) every vertex of G belongs
to λ(p) for some node p of T ; (ii) every edge of G is is con-
tained in λ(p) for some node p of T ; (iii) For each vertex v
of G the set of all tree nodes p with v ∈ λ(p) induces a con-
nected subtree of T ; (iv) |λ(p)| − 1 ≤ w holds for all tree
nodes p. The treewidth of G is the smallest w such that G
has a width w tree decomposition. The induced width of a
constraint network is the treewidth of its constraint graph
(Dechter and Pearl 1989). We note in passing that the prob-
lem of finding a tree decomposition of width w is NP-hard
but fixed-parameter tractable in w.

Let U be a fixed universe containing at least two elements.
We consider the following parameterized version of the con-
straint satisfaction problem (CSP).

U -CSP(width): the instance is a constraint network I =
(V, U, C) and a width w tree decomposition of the constraint
graph of I . w is the parameter. The question is whether is I
satisfiable.

It is well known that U -CSP(width) is fixed-parameter
tractable over any fixed universe U (Dechter and Pearl 1989;
Gottlob, Scarcello, and Sideri 2002), for generalizations see
(Samer and Szeider 2010). We contrast this classical re-
sult and show that it is unlikely that U -CSP(width) ad-
mits a polynomial kernel, even in the simplest case where
U = {0, 1}.

Theorem 3. {0, 1}-CSP(width) does not admit a polyno-
mial kernel unless the Polynomial Hierarchy collapses.

Proof. We show that {0, 1}-CSP(width) is compositional.
Let (Ii, Ti), 1 ≤ i ≤ t, be a given sequence of instances
of {0, 1}-CSP(width) where Ii = (Vi, Ui, Ci) is a con-
straint network and Ti is a width w tree decomposition of
the constraint graph of Ii. We may assume, w.l.o.g., that
Vi ∩ Vj = ∅ for 1 ≤ i < j ≤ t (otherwise we can
simply change the names of variables). We form a new
constraint network I = (V, {0, 1}, C) as follows. We put
V =

⋃t
i=1 Vi∪{a1, . . . , at, b0, . . . , bt} where ai, bi are new

variables. We define the set C of constraints in three groups.
(1) For each 1 ≤ i ≤ t and each constraint

C = ((x1, . . . , xr), R) ∈ Ci we add to C a new
constraint C ′ = ((x1, . . . , xr, ai), R

′)) where R′ =
{ (u1, . . . , ur, 0) : (u1, . . . , ur) ∈ R } ∪ {(1, . . . , 1)}.

(2) We add t ternary constraints C∗
1 , . . . , C

∗
t where C∗

i =

((bi−1, bi, ai), R
∗) and R∗ = {(0, 0, 1), (0, 1, 0), (1, 1, 1)}.

(3) Finally, we add two unary constraints C0 =
((b0), (0)) and C1 = ((bt), (1)) which force the values of
b0 and bt to 0 and 1, respectively.

Let G,Gi be the constraint graphs of I and Ii, respec-
tively. We observe that a1, . . . , at are cut vertices of G.
Removing these vertices separates G into independent parts
P,G′

1, . . . , G
′
t where P is the path b0, b1, . . . , bt, and G′

i
is isomorphic to Gi. By standard techniques (see, e.g.,
Kloks, 1994), we can put the given width w tree decompo-
sitions T1, . . . , Tt of G′

1, . . . , G
′
t and the trivial width 1 tree

decomposition of P together to a width w+1 tree decompo-
sition T of G. Clearly (I, T ) can be obtained from (Ii, Ti),
1 ≤ i ≤ t, in polynomial time.

It is not difficult to see that I is satisfiable if and only if at
least one of the Ii is satisfiable.

In order to apply Theorem 1, it remains to observe that
UP[{0, 1}-CSP(width)] is NP-complete.

Satisfiability

The propositional satisfiability problem (SAT) was the first
problem shown to be NP-hard (Cook 1971). Despite its
hardness, SAT solvers are increasingly leaving their mark
as a general-purpose tool in areas as diverse as software
and hardware verification, automatic test pattern genera-
tion, planning, scheduling, and even challenging problems
from algebra (Gomes et al. 2008). SAT solvers are capa-
ble of exploiting the hidden structure present in real-world
problem instances. The concept of backdoors, introduced
by Williams, Gomes, and Selman (2003) provides a means
for making the vague notion of a hidden structure explicit.
Backdoors are defined with respect to a “sub-solver” which
is a polynomial-time algorithm that correctly decides the sat-
isfiability for a class C of CNF formulas. More specifically,
Gomes et al. (2008) define a sub-solver to be an algorithm A
that takes as input a CNF formula F and has the following
properties: (i) Trichotomy: A either rejects the input F , or
determines F correctly as unsatisfiable or satisfiable; (ii) Ef-
ficiency: A runs in polynomial time; (iii) Trivial Solvability:
A can determine if F is trivially satisfiable (has no clauses)
or trivially unsatisfiable (contains the empty clause); (iv.)
Self-Reducibility: if A determines F , then for any variable
x and value ε ∈ {0, 1}, A determines F [x = ε]. F [τ ] de-
notes the formula obtained from F by applying the partial
assignment τ , i.e., satisfied clauses are removed and false
literals are removed from the remaining clauses.

We identify a sub-solver A with the class CA of CNF for-
mulas whose satisfiability can be determined by A. A strong
A-backdoor set (or A-backdoor, for short) of a CNF formula
F is a set B of variables such that for each possible truth as-
signment τ to the variables in B, the satisfiability of F [τ ]
can be determined by sub-solver A in time O(nc). Hence,
if we know an A-backdoor of size k, we can decide the sat-
isfiability of F by running A on 2k instances F [τ ], yield-
ing a time bound of O(2knc). Hence SAT decision is fixed-
parameter tractable in the backdoor size k for any sub-solver
A. Hence the following problem is clearly fixed-parameter
tractable for any sub-solver A.

SAT(A-backdoor): the instance is a CNF formula F , and
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an A-backdoor B of F of size k. The parameter is k, the
question is whether F is satisfiable.

We are concerned with the question of whether instead
of trying all 2k possible partial assignments we can reduce
the instance to a polynomial kernel. We will establish a very
general result that applies to all possible sub-solvers.

Theorem 4. SAT(A-backdoor) does not admit a polyno-
mial kernel for any sub-solver A unless the Polynomial Hi-
erarchy collapses.

Proof. We devise polynomial parameter transformations
from the following parameterized problem which is known
to be compositional (Fortnow and Santhanam 2008) and
therefore unlikely to admit a polynomial kernel.

SAT(vars): the instance is a CNF formula F on n vari-
ables. The parameter is n, the question is whether F is sat-
isfiable.

Let F be a CNF formula and V the set of all vari-
ables of F . Due to property (ii) of a sub-solver, V is an
A-backdoor set for any A. Hence, by mapping (F, n) (as
an instance of SAT(vars)) to (F, V ) (as an instance of
SAT(A-backdoor)) provides a (trivial) polynomial param-
eter transformation from SAT(vars) to SAT(A-backdoor).
Since the unparameterized versions of both problems are
clearly NP-complete, the result follows by Theorem 2.

Let 3SAT(π) (where π is an arbitrary parameterization)
denote the problem SAT(π) restricted to 3CNF formula, i.e.,
to CNF formulas where each clause contains at most three
literals. In contrast to SAT(vars), the parameterized prob-
lem 3SAT(vars) has a trivial polynomial kernel: if we re-
move duplicate clauses, then any 3CNF formula on n vari-
ables contains at most O(n3) clauses, and so is a polyno-
mial kernel. Hence the easy proof of Theorem 4 does not
carry over to 3SAT(A-backdoor). We therefore consider the
cases 3SAT(HORN-backdoor) and 3SAT(2CNF-backdoor)
separately, these cases are important since the detection
of HORN and 2CNF-backdoors is fixed-parameter tractable
(Nishimura, Ragde, and Szeider 2004).

Theorem 5. Neither 3SAT(HORN-backdoor) nor
3SAT(2CNF-backdoor) admits a polynomial kernel
unless the Polynomial Hierarchy collapses.

Proof. (Sketch; for more details see http://arxiv.org/abs.
1104.5566.) Let C ∈ {HORN, 2CNF}. We show that
3SAT(C-backdoor) is compositional. Let (Fi, Bi), 1 ≤ i ≤
t, be a given sequence of instances of 3SAT(C-backdoor)
where Fi is a 3CNF formula and Bi is a C-backdoor set of
Fi of size k.

If t > 2k then we can determine whether some Fi is sat-
isfiable in time O(t2kn) ≤ O(t2n) which is polynomial in
t + n. If the answer is yes, then we output (Fi, Bi), oth-
erwise we output (F1, B1). It remains to consider the case
where t ≤ 2k. For simplicity, assume t = 2k. Let Vi de-
note the set of variables of Fi. We may assume, w.l.o.g., that
B1 = · · · = Bt and that Vi ∩ Vj = B1 for all 1 ≤ i < j ≤ t
since otherwise we can change names of variable accord-
ingly. We take a set Y = {y1, . . . , ys} of new variables.
Let τ1, . . . , τt denote all possible truth assignments to Y .
From each Fi we construct a formula F ′

i such that F ′
i [τi]

and Fi are decision-equivalent, and F ′
i [τj ] is trivially satis-

fiable for j �= i. This can be done such that (i) F is satisfi-
able if and only if at least one of the formulas Fi is satisfi-
able and (ii) B = Y ∪ B1 is a C-backdoor of F . Hence we
have a composition algorithm for 3SAT(C-backdoor). Since
UP[3SAT(C-backdoor)] is clearly NP-complete, the result
follows from Theorem 1.

Global Constraints

The success of today’s constraint solvers relies heavily
on efficient algorithms for special purpose global con-
straints (van Hoeve and Katriel 2006). A global constraint
specifies a pattern that frequently occurs in real-world prob-
lems, for instance, it is often required that variables must
all take different values (e.g., activities requiring the same
resource must all be assigned different times). The ALLD-
IFFERENT global constraint efficiently encodes this require-
ment.

More formally, a global constraint is defined for a set S of
variables, each variable x ∈ S ranges over a finite domain
dom(x) of values. An instantiation is an assignment α such
that α(x) ∈ dom(x) for each x ∈ S. A global constraint
defines which instantiations are legal and which are not. A
global constraint is consistent if it has at least one legal in-
stantiation, and it is domain consistent (or hyper arc consis-
tent) if for each variable x ∈ S and each value d ∈ dom(x)
there is a legal instantiation α with α(x) = d. For all types
of global constraints considered in this paper, domain con-
sistency can be reduced to a quadratic number of consistency
checks, hence we will focus on consistency. We assume that
the size of a representation of a global constraint is polyno-
mial in

∑
x∈S |dom(x)|.

For several important types T of global constraints, the
problem of deciding whether a constraint of type T is con-
sistent (in symbols T -Cons) is NP-hard. Examples for such
intractable global constraints are NVALUE, DISJOINT, and
USES (Bessière et al. 2004). An NVALUE constraint over a
set X of variables requires from a legal instantiation α that
|{α(x) : x ∈ X }| = N ; ALLDIFFERENT is the special
case where N = |X|. The global constraints DISJOINT and
USES are specified by two sets of variables X,Y ; DISJOINT
requires that α(x) �= α(y) for each pair x ∈ X and y ∈ Y ;
USES requires that for each x ∈ X there is some y ∈ Y
such that α(x) = α(y). For a set X of variables we write
dom(X) =

⋃
x∈X dom(x).

Bessière et al. (2008) considered dx = |dom(X)| as pa-
rameter for NVALUE, dxy = |dom(X) ∩ dom(Y )| as pa-
rameter for DISJOINT, and dy = |dom(Y )| as parameter
for USES. They showed that consistency checking is fixed-
parameter tractable for the constraints under the respective
parameterizations, i.e., the problems NVALUE-CONS(dx),
DISJOINT-CONS(dxy), and USES-CONS(dy) are fixed-
parameter tractable. We show that it is unlikely that their
results can be improved in terms of polynomial kernels.

Theorem 6. The problems NVALUE-CONS(dx),
DISJOINT-CONS(dxy), USES-CONS(dy) do not admit
polynomial kernels unless the Polynomial Hierarchy
collapses.
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Proof. We devise a polynomial parameter reduction from
SAT(vars) using a construction of Bessière et al. (2004).
Let F = {C1, . . . , Cm} be a CNF formula over vari-
ables x1, . . . , xn. We consider the clauses and variables
of F as the variables of a global constraint with domains
dom(xi) = {−i, i}, and dom(Cj) = { i : xi ∈ Cj } ∪
{−i : ¬xi ∈ Cj }. Now F can be encoded as an NVALUE
constraint with X = {x1, . . . , xn, C1, . . . , Cm} and N = n
(clearly F is satisfiable if and only if the constraint is con-
sistent). Since dx = 2n we have a polynomial parameter
reduction from SAT(vars) to NVALUE-CONS(dx). Simi-
larly, as observed by Bessière et al. (2009), F can be en-
coded as a DISJOINT constraint with X = {x1, . . . , xn}
and Y = {C1, . . . , Cm} (dxy ≤ 2n), or as a USES con-
straint with X = {C1, . . . , Cm} and Y = {x1, . . . , xn}
(dy = 2n). Since the unparameterized problems are clearly
NP-complete, the result follows by Theorem 2.

Further results on kernels for global constraints have been
obtained by Gaspers and Szeider (2011).

Bayesian Reasoning
Bayesian networks (BNs) have emerged as a general rep-
resentation scheme for uncertain knowledge (Pearl 2010).
A BN models a set of stochastic variables, the indepen-
dencies among these variables, and a joint probability dis-
tribution over these variables. For simplicity we consider
the important special case where the stochastic variables
are Boolean. The variables and independencies are mod-
elled in the BN by a directed acyclic graph G = (V,A),
the joint probability distribution is given by a table Tv for
each node v ∈ V which defines a probability Tv|U for each
possible instantiation U = (d1, . . . , ds) ∈ {true, false}s of
the parents v1, . . . , vs of v in G. The probability Pr(U) of
a complete instantiation U of the variables of G is given
by the product of Tv|U over all variables v. We consider
the problem Positive-BN-Inference which takes as input
a Boolean BN (G, T ) and a variable v, and asks whether
Pr(v = true) > 0. The problem is NP-complete (Cooper
1990). The problem can be solved in polynomial time if
the BN is singly connected, i.e, if there is at most one
undirected path between any two variables (Pearl 1988).
It is natural to parametrize the problem by the number of
variables one must delete in order to make the BN singly
connected (the deleted variables form a loop cutset). In
fact, POSITIVE-BN-INFERENCE(loop cutset size) is eas-
ily seen to be fixed-parameter tractable as we can deter-
mine whether Pr(v = true) > 0 by taking the maximum
of Pr(v = true | U) over all 2k possible instantiations
of the k cutset variables, each of which requires process-
ing of a singly connected network. However, although fixed-
parameter tractable, it is unlikely that the problem admits a
polynomial kernel.

Theorem 7. POSITIVE-BN-INFERENCE(loop cutset size)
does not admit a polynomial kernel unless the Polynomial
Hierarchy collapses.

Proof. (Sketch.) We give a polynomial parameter trans-
formation from SAT(vars) and apply Theorem 2. The re-
duction is based on the reduction from 3SAT given by

Cooper (1990). However, we need to allow clauses with
an arbitrary number of literals since, as observed above,
3SAT(vars) has a polynomial kernel. Let F be a CNF for-
mula on n variables. We construct a BN (G, T ) such that for
a variable v we have Pr(v = true) > 0 if and only if F
is satisfiable. Cooper uses input nodes ui for representing
variables of F , clause nodes ci for representing the clauses
of F , and conjunction nodes di for representing the conjunc-
tion of the clauses. We proceed similarly, however, we can-
not represent a clause of large size with a single clause node
ci, as the required table Tci would be of exponential size.
Therefore we split clauses containing more than 3 literals
into several clause nodes. For instance, a clause node c1 with
parents u1, u2, u3 is split into clause nodes c1, c2 where c1
has parents u1, u2 and c2 has parents c1, u3. It remains to
observe that the set of input nodes E = {u1, . . . , un} is a
loop cutset of the constructed BN, hence we have indeed
a polynomial parameter transformation from SAT(vars)
to POSITIVE-BN-INFERENCE(loop cutset size). The re-
sult follows by Theorem 2.

Nonmonotonic Reasoning

Logic programming with negation under the stable model
semantics is a well-studied form of nonmonotonic reason-
ing (Gelfond and Lifschitz 1988; Marek and Truszczyński
1999). A (normal) logic program P is a finite set of rules r of
the form (h ← a1∧· · ·∧am∧¬b1∧· · ·∧¬bn) where h, ai, bi
are atoms, where h forms the head and the ai, bi from the
body of r. We write H(r) = h, B+(r) = {a1, . . . , am}, and
B−(r) = {b1, . . . , bn}. Let I be a finite set of atoms. The
GF reduct P I of a logic program P under I is the program
obtained from P by removing all rules r with B−(r)∩I �= ∅,
and removing from the body of each remaining rule r′ all
literals ¬b with b ∈ I . I is a stable model of P if I is a
minimal model of P I , i.e., if (i) for each rule r ∈ P I with
B+(r) ⊆ I we have H(r) ∈ I , and (ii) there is no proper
subset of I with this property. The undirected dependency
graph U(P ) of P is formed as follows. We take the atoms
of P as vertices and add an edge x − y between two atoms
x, y if there is a rule r ∈ P with H(r) = x and y ∈ B+(r),
and we add a path x − u − y if H(r) = x and y ∈ B−(r)
(u is a new vertex of degree 2). The feedback width of P is
the size of a smallest set V of atoms such that every cycle of
U(P ) runs through an atom in V .

A fundamental computational problems is Stable Model
Existence (SME), which asks whether a given nor-
mal logic program has a stable model. The problem is
well-known to be NP-complete (Marek and Truszczyński
1991). Gottlob, Scarcello, and Sideri (2002) showed that
SME(feedback width) is fixed-parameter tractable, for gen-
eralizations see (Fichte and Szeider 2011). We show that this
result cannot be strengthened with respect to a polynomial
kernel.

Theorem 8. SME(feedback width) does not admit a poly-
nomial kernel unless the Polynomial Hierarchy collapses.

Proof. (Sketch.) Niemelä (1999) describes a polynomial-
time transformation that maps a CNF formula F to a logic
program P such that F is satisfiable if and only if P
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has a stable model. From the details of the construction
it is easy to observe that the feedback width of P is at
most twice the number of variables in F , hence we have
a polynomial parameter transformation from SAT(vars)
to SME(feedback width). The result follows by Theo-
rem 2.

Conclusion

We have established super-polynomial kernel lower bounds
for a wide range of important AI problems, providing firm
limitations for the power of polynomial-time preprocessing
for these problems. We conclude from these results that in
contrast to many optimization problems (see Section 1), typ-
ical AI problems do not admit polynomial kernels. Our re-
sults suggest the consideration of alternative approaches. For
example, it might still be possible that some of the consid-
ered problems admit polynomially sized Turing kernels, i.e.,
a polynomial-time preprocessing to a Boolean combination
of a polynomial number of polynomial kernels. In the area
of optimization, parameterized problems are known that do
not admit polynomial kernels but admit polynomial Turing
kernels (Fernau et al. 2009). This suggests a theoretical and
empirical study of Turing kernels for the AI problems con-
sidered.
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