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Abstract

Information about the spread of crop disease is vital in de-
veloping countries, and as a result the governments of such
countries devote scarce resources to gathering such data. Un-
fortunately, current surveys tend to be slow and expensive, and
hence also tend to gather insufficient quantities of data. In this
work we describe three general methods for improving the use
of survey resources by performing data collection with mobile
devices and by directing survey progress through the appli-
cation of AI techniques. First, we describe a spatial disease
density model based on Gaussian process ordinal regression,
which offers a better representation of the disease level dis-
tribution, as compared to the statistical approaches typically
applied. Second, we show how this model can be used to
dynamically route survey teams to obtain the most valuable
survey possible given a fixed budget. Third, we demonstrate
that the diagnosis of plant disease can be automated using
images taken by a camera phone, enabling data collection by
survey workers with only basic training. We have applied our
methods to the specific challenge of viral cassava disease mon-
itoring in Uganda, for which we have implemented a real-time
mobile survey system that will soon see practical use.

The economies of many developing countries are dom-
inated by an agricultural sector in which small-scale and
subsistence farmers are responsible for most production, uti-
lizing relatively low levels of agricultural technology. As
a result, disease among staple crops presents a serious risk,
with the potential for devastating consequences. It is there-
fore critical to monitor the spread of crop disease, allowing
targeted interventions and foreknowledge of famine risk. Cur-
rently, teams of trained agriculturalists are sent to visit areas
of cultivation across the country and make assessments of
crop health. A combination of factors conspire to make this
process expensive, untimely and inadequate, including the
scarcity of suitably trained staff, the logistical difficulty of
transport, and the time required to coordinate paper reports.

Although computers remain a rarity in much of the de-
veloping world, the near-ubiquity of mobile telephony has
brought low-cost and reliable wireless internet services to
broad regions that still lack electricity, running water and
paved roads. Among other benefits, the prevalence of mo-
bile computing devices at last offers a feasible alternative to
paper-based data gathering.
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This paper describes three innovations. First, we show how
accurate response surface models of disease incidence and
prevalence can be built using limited data, collected accord-
ing to existing survey techniques. One challenge arising from
the need to cohere with existing practices is that the levels of
disease severity across the spatial field must be expressed as
ordinal values, requiring the use of ordinal regression tech-
niques. Second, we show how these models can be used
in an active learning framework, determining in real time
where survey workers should gather their next samples. This
approach has workers gather data non-uniformly in order to
maximize the value of the information gathered, as measured
by a utility function elicited from domain experts. Because
workers follow fixed circuits, our active learning task is an on-
line optimization problem: each field must either be surveyed
immediately or passed by. Finally, we present computer vi-
sion techniques for using camera-enabled mobile devices to
make disease diagnoses directly, allowing reliance on survey
workers with lower levels of training, and hence reducing
survey costs. Specifically, given expert-annotated images of
single cassava leaves, we demonstrate classification based on
color and shape information.

We have applied these ideas to the domain of viral cassava
disease monitoring in Uganda. Cassava is the third largest
source of carbohydrates for human consumption worldwide,
providing more food calories per cultivated acre than any
other staple crop. It is an extremely robust plant which tol-
erates drought and low quality soil. The foremost cause
of yield loss for this crop is viral disease (Otim-Nape, Ali-
cai, and Thresh 2005), a major factor keeping East African
farmers trapped in poverty (The Economist, 2011). We have
developed a mobile survey system (see screenshot in Fig-
ure 3) which is currently being field trialled in partnership
with Uganda’s National Crops Resources Research Institute
(NACRRI), and expect this to be used in their upcoming
crop survey. Source code and survey data are available at
http://cropmonitoring.appspot.com.

Spatial density estimation
In a crop disease survey, each plant is assigned a disease level
yi ∈ {d1, ..., dD}, usually by visual inspection of the aerial
parts of the plant. A two-class survey might be done, where
d1 and d2 represent healthy and diseased plants respectively;
though often for cassava, disease levels are assigned cate-
gories from d1 (entirely healthy) to d5 (very severe disease,
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Figure 1: Incidence map of cassava brown streak disease in
Uganda, 2009 (NACCRI).

causing dieback), where intermediate categories are charac-
terised by the extent of disease on different parts of the plant.
Note that without further information we should deal with
these as ordinal categories, d1 < d2 < · · · < dD, and not
code them as numbers: we do not have a principled way of
mapping these categories to the real line, for example. Sur-
veyors deal with single fields of plants at a time, and report
two statistics, severity and incidence of disease. Incidence is
the proportion of infected plants P (yi > 1|x), where x ∈ R

2

is the location. Severity is the mean disease level of any
non-healthy plants found in the field. Figure 1 shows an ex-
ample of an incidence map for cassava brown streak disease
in Uganda, produced by NACRRI to summarize the findings
of its 2009 survey.

Models of crop disease are used for understanding the
spread or severity of an epidemic, predicting the future spread
of infection, and choosing disease management strategies.
Common to all of these problems is the notion of spatial
interpolation. Observations are made at a few sample sites,
and from these we infer the distribution across the entire
spatial field of interest. Standard approaches to this problem
(reviewed in (van Maanen and Xu 2003)) include the use
of differential equations, spatial autocorrelation, or kriging
(Gaussian process regression) (Nelson, Orum, and Jaime-
Garcia 1999). Under these schemes, summary statistics such
as incidence or severity are interpolated. Note that the ob-
servations contain more information than these models use;
under an incidence regression, we simplify the raw observa-
tion data to an aggregate across some area. Here we describe
a way to adapt the geospatial statistical approach in order to
directly model the quantity which is being surveyed: the dis-
tribution over disease levels, given observations of individual
plants.

Given a number of point observations, we would like to
predict disease characteristics across the map. The observed
data is of the form D = {xi, yi|i = 1, . . . , N} such that each
individual observation consists of a location within a spatial
region of interest S, with xi ∈ S ∈ R

2, and a disease level
yi ∈ {d1, ..., dD}. We take d1 to represent an entirely healthy
plant, and dD to represent a plant with the highest category of
disease damage. We would like to infer P (y∗|x∗,D), the ex-
pected distribution over disease levels at a location x∗ given
a set of labelled observations D. We use a Gaussian process

(GP) approach for this ordinal regression, using the formu-
lation of Chu and Ghahramani (2005). Ordinal regression is
more appropriate than classification, because the latter treats
all classes equally; in our case we know that d1 is closer to
d2 than d5, even though we lack a quantitative cost matrix.
We did not use ordinary (i.e., real-valued) regression for two
reasons. First, although we could represent the categories
with real numbers d1 = 1, d2 = 2 etc., we have no basis
for making an assumption about the relative similarities of
different classes (e.g., it may be that d1 and d2 are extremely
different, but d2 and d3 are relatively similar). Second, we
have limits on the domain (d1 ≤ yi ≤ dD), whereas most
regression models cannot be restricted to an interval.

The GP approach to ordinal regression can be summarised
as follows. A function f(xi) ∈ R is introduced as an in-
termediate quantity to relate xi and yi. This function is
taken to be a zero-mean Gaussian process with covariance
Cov (f(xi), f(xj)) specified by a Gaussian kernel

K(xi, xj) = exp−κ

2

(
(xi,1 − xj,1)

2
+ (xi,2 − xj,2)

2
)
(1)

with parameter κ > 0. To relate f(xi) and yi, we split
the real line up into D intervals given the thresholds b0 =
−∞, bD = ∞, bi|0<i<D ∈ R, then formulate a likelihood
P (yi|f(xi)), which is high when byi−1 < f(xi) < byi

and
low otherwise. Our goal is then to integrate out f to obtain
our estimate of y∗ at a novel location x∗,

P (y∗|x∗,D) =

ˆ
P
(
y∗|f (x∗) , θ̂

)
P
(
f (x∗) |D, θ̂

)
df (x∗)

where θ̂ is a set of optimal parameters learnt from the data.
Learning the parameters and calculating this distribution
exactly is intractable in general, but following Chu and
Ghahramani (2005), predictions can be obtained by applying
the Laplace approximation (Rasmussen and Williams 2006,
§3.4), yielding

P (y∗|x∗,D) ≈ Θ

(
by−μ√
σ2+σ2

x

)
−Θ

(
by−1−μ√
σ2+σ2

x

)
, (2)

Θ(z) =
´ z
−∞ (2π)

1
2 exp

(− 1
2x

2
)
dx,

μ = k(x)�Σ−1fMAP,

σ2
x = K(x, x)− k�

(
Σ+ Λ−1

MAP

)−1
k(x),

where Σ is an N × N covariance matrix with its
ijth element defined as in Eq. (1), k(x) is a vector
[K(x, x1), . . . ,K(x, xD)]�, the quantity fMAP is the value
of f = {f(xi)|i = 1, . . . , N} which maximises P (f |D),
found with a suitable numerical optimisation method, and
ΛMAP is a diagonal matrix of second derivatives of the
log likelihood, with the ith diagonal element given by
∂(− lnP (yi|fMAP(xi)))

∂2fMAP(xi)
.

The posterior distribution of disease levels over space can
be updated whenever new observations are received. Figure
2 shows an example of inference in this model. Given ob-
servations of the disease levels of individual plants, we are
able to infer distributions of disease levels at any location.
Figure 3 illustrates the variance on these estimates; note low
variance where observations have been made, as expected.
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Figure 2: Example ordinal regression of disease levels across
a spatial field given sample observations. The panel on the
left shows example disease level observations (numbers with
dark backgrounds), and contour lines indicate the mean pre-
dicted disease level. The three insets show the predicted
distribution of disease levels at locations A, B and C respec-
tively.

Adaptive selection of survey sites
Besides summarizing the findings of a survey, our models
can be used to guide surveyors to collect more valuable data,
holding fixed their budgeted number of samples. Based on
our interviews with surveyors from NACRRI, we assume
that survey teams follow a network of roads to conduct their
surveys, and to take measurements from farms near the road.
In rural parts of the developing world, the road network is
extremely sparse. This makes it reasonable to assume that
survey teams will follow a set route, corresponding to a one
dimensional manifold R within the spatial field. NACRRI’s
current survey methodology is to sample uniformly along R.
With a survey budget allowing k stops, we are interested in
finding a set of points along R that maximises the expected
utility of the survey. (For now, we simply presume the exis-
tence of some utility function; we provide such a function
for our cassava domain in the Experimental Evaluation sec-
tion below.) Because we propose the collection of data with
mobile devices, we can calculate in real time the best place
for a survey team to go next, every time a new observation is
made.

The simplest survey scheme would be for the surveyors
to complete a single tour, returning to their headquarters
afterwards. However, it can still be practical for a survey team
to complete their tour more than once. In such a scenario,
the first circuit can be used to explore disease levels across
the region, and subsequent circuits can use the remaining
budget to focus on the areas of greatest interest. We assume
that each survey follows a tour that can be repeated t times
(t ≥ 0; in practice, we expect t ≤ 3), that there is a limit of
N samples which can be taken in total by any survey team,

0.08

0.16

0.16

0.24

0.24

0.32

0.32
Figure 3: Variance of the predictions across the spatial field
from Figure 2; crosses indicate the location of observations
(left). Screenshot of our mobile data collection system (right).
For each plant being surveyed, the system collects an expert
diagnosis, leaf image, and GPS coordinates.

and that pi% of the budget must be used on the ith circuit.

Our goal is to use our model to determine the locations
that a survey team should visit, in a way that outperforms the
simple uniform sampling strategy currently used by NACRRI.
Such an “active learning” problem is straightforward when
there is no constraint on the order in which observations can
be obtained. In our setting, however, we face the constraint
that the tour can be repeated at most t times, and hence
will often prefer to sample a nearby point before sampling
a distant point, even if the latter is expected to be more
informative. The intuition behind our algorithm is to leverage
a traditional, unconstrained active learning framework to
identify a distribution of k-tuples of points that are expected
to yield high-value observations (where on the ith tour, k
is initialized to �piN	), and then to select the nearest point
(formally, the first order statistic) from this distribution. Then
we obtain an observation at that point, update the model, and
repeat the process with k ← k − 1.

More formally, Algorithm 1 gives the details of our sam-
pling strategy. At each point it greedily selects the point along
the current route with the largest expected utility, and then re-
peatedly samples from the model at that point to “hallucinate”
different potential observations that could be obtained. We
update the model based on these hallucinated observations,
and then look for the next most utility-increasing point. The
function ExpectedUtilityGain(r, uy, P (y|x,D∗)) quanti-
fies the amount by which the utility uy of the current density
model P (y|x,D∗) would be expected to increase if observa-
tions were provided at location r. If the utility is neutral with
respect to disease levels, this is the standard active learning
setting where we choose the point with the highest uncertainty
in the current model. If the utility is weighted according to
the true disease level (see next section for an example), then
we can weight the uncertainty to account for this, according
to the current disease level estimates. This procedure results
in a set of k points along the current route (represented as
the distances along the route from the last stopping location).
We can repeat this many times and take the mean of the first
order statistic of these sets. We take this mean as our next
survey location.
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Algorithm 1: Survey route optimisation.
Input: S ∈ R

2, spatial field of interest.
R, the remaining route, a 1D manifold in S.
D = {x(i) ∈ S, y(i)|i = 1, . . . , N}, previous samples.
k, the number of stops remaining.
Output: dnext, distance to travel along R before the next stop.
S ←− ∅
# Sample many sets of stopping points
for i = 1 : Nsamples do

A ←− ∅
D∗ ←− D
for j = 1 : k do

x ←− argmaxr∈R
ExpectedUtilGain(r, uy, P (y|x,D∗))

Append DistanceAlongRoute(x,R) to A
Sample observations from P (y|x,D∗)
Append sampled observations to D∗

end
Append A(1) to S

end
dnext =

1
Nsamples

∑
i Si

Figure 4: Examples of healthy leaves (left) and those infected
with cassava mosaic disease (right).

Image-based diagnosis of crop disease
One reason that crop disease surveys in the developing world
tend to be under-resourced is a scarcity of expert surveyors.
Reliable automatic methods for performing surveys therefore
offer the possibility of extending the scope of disease surveil-
lance. The ubiquity of camera phones in even the most rural
parts of many developing countries introduces the possibility
of survey by non-expert workers, who submit images of crops
that are then automatically classified.

We consider two types of features from these images, fol-
lowing the approach taken in previous work on visual cassava
disease diagnosis (Aduwo, Mwebaze, and Quinn 2010). The
first is normalised histograms of hue (within the yellow/green
range) using 50 histogram bins. The second is local image
gradient information, represented using Scale Invariant Fea-
ture Transform (SIFT) descriptors (Lowe 2004). Whereas
SIFT features are often used in object detection, we used
them here to create a texture model of each image. Specifi-
cally, we calculate SIFT descriptors across each image (each
descriptor being a 128-dimensional vector), summarizing
each with a mean vector μi and a covariance Σi.

To classify images, we use simple k-nearest-neighbor clas-
sification, using Kullback-Leibler divergence as a measure of
distance between images for each of the features. For the hue
histogram features, this is simply the weighted log difference

of the histogram bins,

DKL(h1, h2) =
∑
i

h1,i log
h1,i

h2,i
.

To conveniently calculate a distance between images given
first and second moments of the SIFT descriptors in those
images, we assume they follow a multivariate Gaussian dis-
tribution. KL divergence with Gaussian densities is

DKL(μ1,Σ1, μ2,Σ2) =
1

2
trace

{
Σ1Σ

−1
2 +Σ2Σ

−1
1 −2I+

(
Σ−1

1 +Σ−1
2

)
(μ1 − μ2) (μ1 − μ2)

�
}
.

We use a combination of the two features for classification,
implemented by rank-weighting under the two distance mea-
sures to get a single set of k neighbours.

Experimental Evaluation
We expect that our system will ultimately be used in an
upcoming crop survey by NACRRI. In the absence of the real
data that we will obtain through such a survey, we conducted
computational experiments with artificial data to demonstrate
the promise of our approach.

Utility function
To quantitatively evaluate the quality of our models, we need
a utility function that scores how effectively a given model
captures a true underlying distribution. For our example of
cassava disease in Uganda, we interviewed the director of
NACRRI to elicit a utility function expressing the relative
importance of learning different kinds of information. His
responses indicated that: 1) it is better to make small errors
(e.g., predicting a disease level of 4 when the true level is
5) than big errors (e.g., predicting 2 when the true level is
5); 2) it is considerably more important to correctly assess
whether a region is diseased or not than to correctly deter-
mine the specific level of disease in a diseased region; 3)
being wrongly optimistic—under-predicting the incidence of
disease—is about twice as bad as being wrongly pessimistic.
We formalized these principles as follows. First, consider a
single point in space; let y denote its true disease level, and
let ŷ denote its predicted disease level. The utility function
is defined as follows, recalling that D denotes the number
of disease levels and where, based on our interview with the
NACRRI director, we set α = .5 and β = 2:

Error(y, ŷ) =
|y − ŷ|
D − 1

;

DiseasePenalty(y, ŷ) =

{
α y = 1 XOR ŷ = 1
0 otherwise;

OptimismFactor(y, ŷ) =

{
β y > ŷ
1 otherwise.

Our utility function is uy(ŷ) = −OptimismFactor(y, ŷ) ·
(Error(y, ŷ) + DiseasePenalty(y, ŷ)). The Error,
DiseasePenalty and OptimismFactor functions capture
our expert’s responses 1–3 respectively. Observe that Error
is a utility penalty for misclassification normalized to the
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range [0, 1], that α (intended to be a value from [0, 1]) ex-
presses an additional penalty in the same units, and that the
total penalty is multiplied by β (intended to be greater than
1) in the event that the prediction is optimistic.

We can determine the expected utility of predicting a distri-
bution over disease levels P̂ (y) given a true distribution over
disease levels P (y) by taking straightforward expectations,
where Dom(P ) denotes the domain of P :

uP (P̂ ) =
∑

y∈Dom(P )

P (y)
∑

ŷ∈Dom(P̂ )

P̂ (ŷ)uy(ŷ).

Finally, we can further extend our definition of expected
utility to true and predicted stochastic processes M and M̂
that predict different distributions at predefined points in a
spatial region. Let X denote a set of points of interest, let
Mx denote the true distribution over disease levels at point
x ∈ X , and let M̂x denote the predicted distribution at x.
Then the expected utility is

uM (M̂) =
1

|X|
∑
x∈X

uMx
(M̂x).

Spatial density estimation
To compare the effectiveness of our density estimation
method against the existing aggregation method used to cre-
ate the map in Figure 1, we simulated a number of ground
truth incidence distributions and sets of observations, and
evaluated the expected utility achieved by the two methods.
Simulation of disease levels was done by sampling a grid
of uniform random values across the spatial field, and then
convolving this matrix with a Gaussian smoothing kernel.
The effect of this convolution was to filter out high-frequency
components in the noise, leaving a smooth distribution, as
illustrated in Figure 6 (left). The resulting values were nor-
malised to the range [0, 1]. We simulated I(x) 500 times,
and from each simulation sampled 150 observations amongst
5 disease levels at uniformly random locations. With these
observations, we used both methods to estimate the incidence.
To evaluate the aggregative model, we split the spatial field
into n× n cells, and counted the proportion of diseased ob-
servations in each cell. (For comparison, the maps currently
made of disease in Uganda (as in Figure 1) aggregate at the
district level which is around around 80 regions across the
country.)

Figure 5 shows the relative utility, varying n, when the
two density estimation models are applied to the same set
of observations. We show the ratio of utility from the GP
inference to the utility from simple aggregation. Using a
bootstrap test we find that the mean utility for GP inference is
lower than the mean utility for the aggregate model for every
n at a significance level of p = 0.01. It is therefore clear that
it consistently and significantly outperforms the aggregative
density model on this utility function.

Adaptive selection of survey sites
We compared the quality of inferences made under our adap-
tive survey strategy to those made when survey stops were
made at regular intervals along each survey route. We did
this by randomly generating many survey routes and “ground

Figure 5: Comparison of GP ordinal regression density model
and simple aggregation, over 500 simulations with aggrega-
tions made on a n×n grid. A utilityratio of less than 1 means
that the GP model outperformed the aggregation model (since
our utilities are negative numbers). The error bars show stan-
dard deviations.

Figure 6: Heatmap showing simulated true disease incidence,
where lighter colours denote higher incidence (left); Sampled
trajectories of three survey groups, with survey sites at regular
distances (right); heatmap shows estimated probability of
disease given observations at survey locations.

truth” disease distributions, applying both survey strategies to
each problem instance, and then scoring the models obtained
by each strategy using our utility function.

To sample trajectories amongst a number of survey groups,
we uniformly sampled a set of 2D points, then finding the per-
mutation which minimised the total tour distance. A sample
of three survey trajectories is shown in Figure 6 (right).

We evaluated the resulting survey utility with both regular
survey locations and our adaptive survey location strategy.
Figure 7 shows examples of the placement of survey sites
along a single tour. When the utility function was modified
to be neutral with respect to disease level (α = 0, β = 1),
the effect of the optimisation was to space the sample sites
widely apart in areas of maximum uncertainty. When the
utility function was set to reward discovery of diseased areas,
survey locations were moved closer to areas of high disease
incidence. Figure 8 shows survey utility as a function of
budget. When the budget was low (very sparse sample sites),
optimising survey location made little difference due to lack
of information on which to base the adaptation. As the budget
increased, the utility achieved with optimisation increased
significantly compared to regular sampling.

Image-based diagnosis of crop disease
We collected a set of 469 images of healthy cassava plants
(53%) and those with cassava mosaic disease (47%). We cal-
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Figure 7: Stopping locations where the utility function is
unbiased towards disease incidence (left), linearly correlated
with underlying incidence (right). The background heatmap
indicates true underlying disease incidence. Where the utility
function rewards discovery of diseased regions (right), survey
points are more concentrated in the regions of high incidence.

Figure 8: Average utility of simulated survey results, for
regular and optimised sampling positions, as a function of
the sample budget. Error bars show standard deviations.
Beyond the smallest number of survey locations the mean
utility using optimisation is significantly better (at p = 0.05
for all numbers of survey locations at least 8).

culate classification performance using leave-one-out cross-
validation (LOO-CV). Classification with the combination
of both features for 6 ≤ k ≤ 12 achieved AUC in the range
0.959-0.961, and error rate 0.078-0.083.

In Figure 9, we put together all of the methods described
in this paper. Specifically, we compare the quality of the
models achieved using adaptive site selection and automatic
image classification to the quality of the models achieved us-
ing adaptive site selection and expert image labeling. When
both methods are given equal amounts of data (leftmost point
in Figure 9) we achieve somewhat worse performance with
automatic classification, due to classification error. However,
our motivation for proposing the automatic method was that
it would allow us to collect more data by freeing us from de-
pendence on scarce expert surveyors. As the amount of data
collected by the automatic method increases (moving right
along the x axis), we observe that its relative performance
improves, reaching the same level of performance as expert
labeling when 80% more data is collected, and exceeding it
beyond that point. Note that in these last experiments we only
use two disease levels, corresponding to the image training
data we have available.

Conclusions
We have demonstrated three computational techniques for
modeling and monitoring crop disease in developing coun-

Figure 9: Comparison of utility in “automatic” classification
mode (a random 8% of labels are incorrect) and “expert”
mode (all labels are correct). The x axis gives the proportion
of additional data available to the automatic method. The
mean utility of the automated system becomes equivalent to
that of the expert system when around 70-80% extra data is
available.

tries: first, a rich and flexible modeling approach that allows
spatial interpolation of ordinal response values; second, a
method for adaptively deciding which data to collect in or-
der to maximise survey utility; and third, an application of
computer vision that reduces the need for skilled experts.

Many interesting avenues of work remain open. One in-
triguing idea is to solicit ad-hoc data from agricultural exten-
sion workers, setting dynamic prices for surveys according
to the expected values of different locations. It would also
be useful to explicitly incorporate temporal dynamics by us-
ing the history of disease density from previous years, and
knowledge of the mechanisms of disease spread
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