
Green Driver: AI in a Microcosm

Jim Apple, Paul Chang, Aran Clauson, Heidi Dixon, Hiba Fakhoury, Matt Ginsberg,
Erin Keenan, Alex Leighton, Kevin Scavezze and Bryan Smith

On Time Systems, Inc.
355 Goodpasture Island Road, Suite 200

Eugene, OR 97401

Abstract

The Green Driver app is a dynamic routing application for
GPS-enabled smartphones. Green Driver combines client
GPS data with real-time traffic light information provided
by cities to determine optimal routes in response to driver
route requests. Routes are optimized with respect to travel
time, with the intention of saving the driver both time and
fuel, and rerouting can occur if warranted. During a routing
session, client phones communicate with a centralized server
that both collects GPS data and processes route requests. All
relevant data are anonymized and saved to databases for anal-
ysis; statistics are calculated from the aggregate data and fed
back to the routing engine to improve future routing. Analy-
ses can also be performed to discern driver trends: where do
drivers tend to go, how long do they stay, when and where
does traffic congestion occur, and so on. The system uses a
number of techniques from the field of artificial intelligence.
We apply a variant of A* search for solving the stochastic
shortest path problem in order to find optimal driving routes
through a network of roads given light-status information. We
also use dynamic programming and hidden Markov models to
determine the progress of a driver through a network of roads
from GPS data and light-status data. The Green Driver sys-
tem is currently deployed for testing in Eugene, Oregon, and
is scheduled for large-scale deployment in Portland, Oregon,
in Spring 2011.

1 Overview
Green Driver is a routing app for GPS-enabled smartphones
that is designed to provide drivers with effective, efficient
routes based on the best available real-time information re-
garding traffic and other conditions.

Of course, we are hardly alone in this ambition. Previ-
ous (and, to some extent, current) attempts to provide such
services have been frustrated by the lack of good real-time
information itself; the development of intelligent transporta-
tion systems (ITS) generally has been limited by imma-
ture communications technology and expensive infrastruc-
ture for vehicle detection. The historical goal of ITS has
been to exploit information and communications technology
to better manage transportation systems, to improve driver
and vehicle safety, to optimize travel times and to save fuel.
The recent wide appearance of smartphone platforms and

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

free navigation apps has created an opportunity to manage
driver behavior in a cohesive, system-wide framework. By
tracking the GPS positions of mobile phones, we can sample
traffic density and movement patterns in real time without
the need for expensive infrastructure. We can then use this
collective data for the purposes of system-wide optimiza-
tion. A traffic-aware navigation app can then be provided
with the real time information needed to compute optimal
routes that minimize travel time and fuel usage.

Unfortunately, there is a chicken-and-egg problem here.
It is only widespread use of GPS apps on mobile phones
that allows the generation of the real-time traffic data that
the apps themselves need to be effective. As a result, while
many efforts have been made to obtain traffic data from cell
phones (Intellione, Mobile Millenium, Waze) or to develop
user-friendly navigation apps (Garmin, Google, Magellan,
TomTom), there has yet to be a fully successful implemen-
tation of a real time traffic-aware navigation app.

We believe that this problem can be overcome by pro-
viding potential users with value in another form. There is
an additional source of data that has a profound impact on
routing decisions and is available immediately without the
“crowdsourcing” needed to construct real-time traffic infor-
mation. That data involves traffic lights. The fundamen-
tal innovation in Green Driver is that the presentation of
routes that are traffic-light aware provides sufficient adop-
tion incentive to overcome the chicken-and-egg problem de-
scribed above. The routes are constructed by combining
client GPS data with real-time traffic light information pro-
vided by cities to respond to user route requests. Routes
are optimized with respect to travel time, with reroutes oc-
curring if conditions change enough for a reroute to save
the user significant time. During a routing session, client
phones necessarily communicate with a centralized server in
order to update their positions and receive new routes when
needed; that server also collects and anonymizes GPS data
from the users. Green Driver is unique in its use of city-
provided traffic light information in its routing methodology.

Green Driver is positioned at the convergence of many
trends. First the growing number of people carrying smart-
phones means that it is common for individuals to have one
or more apps running for long periods, including apps that
communicate over a data network. Second, many smart-
phone users seem comfortable allowing their apps to com-

Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

1311



municate personal information to centralized servers, espe-
cially if they have some assurance that this information will
not be shared without their permission. Third, software
development kits make it a fairly simple matter to design
and implement GPS-centric apps for many models of smart-
phones. Fourth, digital street maps of high quality are now
available in the public domain. Fifth, cities increasingly in-
clude remote monitoring and control of lights in their traffic
infrastructure. Sixth, global warming and over-reliance on
fossil fuels have led consumer to seek ways to reduce their
energy footprint and energy costs. Finally, most of us are
commuters to some extent, with a natural desire to lessen the
time spent on the road while still obeying traffic controls.

A general goal for smartphone apps is to provide a ser-
vice that is both simple to use and fills a need, perhaps even
a need that wasn’t recognized until the app’s introduction. If
the app is also fun to use, so much the better. With traffic-
routing apps there is also a safety concern: Users should
not have to take their eyes from the road to interact with the
app. Green Driver seeks to address these design goals, both
by handling spoken route requests from users and by pro-
viding audio turn-by-turn routing instructions. The graphi-
cal user interface renders a perspective-view map bordered
by simple-to-understand navigation widgets and also inform
drivers of relevant traffic controls, such as the speed limit
for the current road segment and the expected status (green
or red, expected delay if red) of upcoming traffic lights. We
also take proactive steps to encourage safer driving, such as:

1. Presentation of a route that is designed to hit green lights
only if the driver conforms to posted speed limits,

2. An on-screen speedometer that displays the current speed
and current speed limit, and no other numbers, and
changes color if the speed limit is exceeded, and

3. Differential presentation of information to encourage
safer driving. As an example, red lights are generally dis-
played with the number of seconds until the light turns
green. But green lights are only displayed that way if the
driver can “make” the green light without speeding. This
encourages drivers to arrive comfortably at green lights
instead of racing toward them, and a preliminary deploy-
ment of this to half of our users suggested that it did in-
deed have the desired effect.1

Our focus in this paper is on the specifically AI-related
problems that we have faced in developing the Green Driver
system. Not all of these problems are solved and in many
cases, we have used solutions that appear to work accept-
ably in practice but which can doubtless be improved con-
siderably with better understanding. We focus here on our
search engine for the routing problem and our method for
analyzing noisy GPS data with dynamic programming and
hidden Markov models. Green Driver includes many aspects
not discussed here, including (but hardly limited to) the UI
implementation, methods to ensure user privacy, geocoding
and the associated string matching issues, database design,

1At least initially. Drivers appeared to slow down when this
feature was introduced, but some time later, they habituated it and
their behavior returned to previous levels.

scalability, mining of GPS data for marketable traffic stud-
ies, and interaction with city traffic engineers to improve our
access to traffic light information.

2 Light-Controller Model
As the traffic signals themselves underlie the routing prob-
lem that we solve for our users, let us begin by describing
the lights and how we model them. Our goal here is not to
provide the wealth of detail that would typically appear in a
paper on traffic engineering, but to present the information
that will eventually bear on the routing problem itself.

Most traffic light controllers provide eight standard
phases. Each phase may control one or more movements
(vehicular, bicycle, pedestrian, transit), and the duration of
each phase is constrained by a set of timing parameters. The
phases are organized in a sequence called a cycle; the to-
tal time required to complete the cycle is called the cycle
length. Each phase in the cycle may be skipped if there is
no demand, have a fixed time, or have an extendable time
depending on demand. Demand is often measured by de-
tectors such as induction coil sensors. For major thorough-
fares with smaller crossing streets, it is often desirable to
allow platoons of vehicles to traverse several traffic lights in
succession without stopping. These traffic lights are said to
be coordinated, in that the phases of each light correspond-
ing to thoroughfare movement have a guaranteed green time
within each cycle, and the activation times of these green
times are offset to reflect the average travel time between
these lights. Coordinated lights have the same fixed cycle
length, typically on the order of 60-100 seconds.

“Coordinated” is not the same as what are convention-
ally called “timed”. For a timed light (e.g., what is typically
found in a busy downtown area), the signal timing is fixed
and the phase of the light can be predicted absolutely given
the state of a shared clock. For coordinated lights, the light
state is known only for particular windows within the over-
all cycle; the windows are selected to support the notional
platoon of vehicles moving along the major road. Outside
of this window, the light may be red or green, depending on
the presence (or absence, respectively) of vehicles on side
streets competing with those on the major thoroughfare.

The traffic light controller model that we have developed
is essentially an extension of the standard light controller
model (Koonce et al. 2008). We predict the future state of
a light by applying standard controller rules with predefined
sets of timing parameters to live light status updates from
the city traffic light system. We extend this predictive ca-
pability to phases that do not have a fixed green time in the
cycle by building stochastic models to track the level of de-
mand, the green times for these phases, and the wait times
for the next green time. This light controller model is used to
compute the likelihood of a vehicle arriving during the green
time for any particular light, or a probability distribution of
wait times for the next green if the vehicle arrives when the
light is red. These delays are what is needed by the eventual
routing algorithm itself; note that the generated probability
distributions depend strongly on the arrival time of the ve-
hicle. As we will see in the next section, this renders basic
best-first search algorithms such as A* search nonoptimal.

1312



For illustration purposes, let us give a high-level descrip-
tion of one such stochastic model for a coordinated light in
which the cycle length is fixed and all times refer to number
of seconds after the start of the cycle. Given an arrival time
a, our goal is to computed pa(d), a probability distribution
on the delay time d given the arrival time a.

Assuming that the vehicle in question is on the major road
as opposed to a side street, we break the analysis into three
cases. First, if the vehicle is going to arrive during a period
when the light is guaranteed to be green, the delay is ob-
viously 0. Second, if the vehicle is going to arrive during
a period when the light may be green or red after the end
of the current cycle, we use average historic information for
this light to evaluate the projected delay as a function of the
arrival time in the cycle. Finally, if the vehicle is going to
arrive during a period when the light may be green or red
during the current cycle, we continue to use average historic
information as our predictor but must now condition on the
current state of the light as well. (For example, a light that is
currently green outside of the guaranteed green time is guar-
anteed not to change to red if there will not be enough time
for it to change back to green before it is required to do so
by the underlying coordination mechanism.)

We have constructed other stochastic models for uncoor-
dinated lights, or for movements that depend on more than
one phase, such as protected-permissive left turns.

3 Stochastic Shortest Path Problem
The stochastic nature of traffic lights (and of traffic itself)
cause the route planning problem to be stochastic as well.
This “stochastic shortest path problem” (SSP), and has been
studied by numerous authors (Bander and White 2002; Bert-
sekas and Tsitsiklis 1991; Boyan and Mitzenmacher 2001;
Hall 1986; Wellman et al. 1995).

Green Driver involves a slightly modified version of the
SSP, since there may be movement restrictions present at
some times but not at others (e.g., no left turn at a particular
intersection during rush hour). The goal of the calculation
remains the same, however: Given an origin and destination,
compute a route that minimizes expected travel time.

A* is nonoptimal for SSP, principally because travel time
distributions along segments depend on the arrival time at
the beginning of the segment (Bander and White 2002;
Boyan and Mitzenmacher 2001). While a robust dynamic
programming algorithm has been developed to solve SSP,
and many optimized variants have been developed over the
past several years, we believe these algorithms remain too
slow for widespread deployment in systems such as Green
Driver.2 The dynamic programming approach is essentially
a Dykstra-like algorithm, relying on a flood fill method and
losing the heuristic savings provided by A*. Green Driver
will need to serve many thousands of simultaneous users in
a city of even modest size, updating their routes approxi-
mately once a second (this being the frequency with which

2These other algorithms also typically assume that arc costs
are distributed lognormally, an assumption that is invalid in our
domain, where multimodal distributions arise from “missing” any
particular light.

signal data is generally updated, or the time needed for a
vehicle to move a significant distance). It is therefore neces-
sary to respond to a routing query in a handful of millisec-
onds, and we have not been able to achieve these levels of
performance without using A* or something like it.

From a theoretical perspective, the view we take is that
the “value” of a path to a particular en route point is not
just a time (e.g., a deterministic value, or the average value
in the stochastic case). Instead, the value is taken to be the
probability distribution of arriving at the location at a given
time, given some particular path from the origin point. From
pin(t) giving the probability distribution of arriving at an in-
tersection at time t, we compute the probability distribution
for leaving the intersection as

pout(t) =

∫
pin(x)px(t− x)dx, (1)

where px is the light delay function described in the previous
section. The distribution pout is then similarly convolved
with the distribution corresponding to traversing a particular
street segment, and the algorithm proceeds.

While what we have described is sound in theory, compro-
mises must be made in practice. First, it is not possible to
achieve satisfactory computational performance if we fully
convolve the various distributions as in (1). Instead, each
distribution is approximated using a handful of points, the
approximations are “integrated” as sums, and a new approx-
imation is then constructed from the result.

Incorporation of a heuristic into A* is more important. If
g(n) is the cost of reaching some intermediate node n and
there is an optimistic heuristic function h that estimates the
cost of reaching the goal from n, then the search is termi-
nated by pruning any node for which g(n)+h(n) exceeds a
known upper bound on the total route cost.

If g and h are distributions, we can prune if the expected
cost g + h exceeds the expected cost of some known path
from origin to goal. We also need the heuristic h to be uni-
formly optimistic in that the associated distribution is uni-
formly to the left of the actual cost function c. In other
words, we need

∫ x

0
h(t)dt ≥ ∫ x

0
c(t)dt for all x.

Finding a heuristic that provably satisfies this requirement
appears not to be practical. Instead, we assume – wrongly –
that the expected value g + h = g + h and use a heuristic h
that is optimistic in expected value only. We are aware that
this approach is theoretically unacceptable but know of no
practical alternative.

A real-world example in which stochastic A* results in a
suboptimal route appears in Figure 1. The top figure shows
the shortest-distance route between points A and E (move-
ment is from right to left in the figure), including a slight
left turn at B. This is at odds with the route computed by
A*, shown in the bottom figure and ignoring the left turn
at B. The problem arises because our implementation of A*
cannot recognize the fact that the time distributions at the
current search node depend conditionally upon the distribu-
tions nearer to the root of the search tree.

Examples such as this one notwithstanding, however, A*
produces routes that we have found to generally be very rea-

1313



Figure 1: Optimal (top) and suboptimal (bottom) routes, re-
flecting problems with A*

sonable in the real world; gas mileage for our users appears
to increase by some 5%.

Before moving on, let us describe the heuristic h. Eu-
clidean distance does not suffice, since it ignores routing
considerations, speed limits, and traffic lights. The num-
ber of locations in any particular city is also large enough to
preclude the possibility of computing h in advance.

What we do is divide any particular city into small rect-
angular areas (blocks, as it were, but larger). For any pair
(x, y) of blocks, we precompute the minimum time needed
to get from block x to block y, assuming that the drivers
move at the speed limit and making optimistic (but realistic)
assumptions regarding the lights they encounter. Now given
a departure point d in cell cd and an arrival point a in ca, the
time to travel from d to a is at least the time to get from cd
to ca plus the time needed to get from d to the boundary of
cd and from the boundary of ca to the arrival point a.

4 Analysis of GPS Data
A smartphone running Green Driver transmits a stream of
GPS data as it moves through a road network. In addition to
position, a GPS datum can include speed, compass heading,
timestamp, expected positional error, and so on. All rele-
vant data are anonymized and saved for analysis; statistics
are generated from the aggregate data and returned to the
routing engine to improve future routing. Driver trends can
be discerned via similar analyses: Where do drivers tend to
go, how long do they stay, when and where does traffic con-
gestion occur, and so on. Near real-time analysis of each
GPS stream is needed if drivers are to be routed away from
emergent traffic problems.

The GPS analysis is made significantly more difficult be-
cause GPS chips in smartphones are generally less accurate
than those in dedicated GPS devices. In addition, the GPS
readings from smartphone GPS chips are often affected by
on-chip processing similar to that found in Kalman filter-
ing (see, for example, the excellent Wikipedia article on
this topic). In this context, filtering means determining the

Figure 2: Positional errors in GPS signals for a westbound
vehicle turning north

current position, speed, and heading by combining recent
GPS readings and a correction step based on the current
reading. Filtering improves positional accuracy when future
GPS readings are predictable, such as when a car is trav-
eling at a constant speed on a constant heading. But if a
car changes speed quickly or turns a sharp corner, filtering
will have an adverse effect on positional accuracy as filtered
GPS readings “over-predict” the current position based on
previous readings. The sequence of filtered GPS readings
for a car making a rolling 90-degree turn at an intersec-
tion will often form a jug-handle shape caused by the filter-
ing mechanism wrongly predicting continued straight-ahead
and constant-speed travel. (See Figure 2 for a representative
example.)

Inaccuracies in map data add to this complexity. If the
polylines defining road segments have errors, the allowed
transitions in the map can differ from reality. This can hap-
pen if the map is old or omits significant recent roadwork, or
if some features encountered during travel (driveways, park-
ing lots, etc.) do not appear on the map at all.

Finally, drivers themselves are not entirely predictable. A
GPS stream might include data generated by a smartphone
in a car performing illegal or otherwise surprising maneu-
vers, such as speeding excessively, making a U-turn, driving
in reverse, stopping briefly to pick up or drop off passengers,
and so on. In spite of all these difficulties, we need to accu-
rately locate our users if we are to generate real-time traffic
information based on their reported positions, and we need
to be able to analyze their paths if we are to provide realistic
analyses of their origins, destinations and routes.
Route Discovery with Dynamic Programming: When an-
alyzing a driver’s signals, the first thing we do is what

1314



we call route discovery: Given an atlas (locations of road
segments, allowed transitions at intersections, speed limits,
etc.), and given a sequence of GPS readings produced by
a single device, we need to find the legally drivable route
through the map that best matches the data provided.

Two considerations simplify this problem. First, because
the time between successive GPS readings is usually smaller
than the time needed to traverse a single road segment, we
can assume that our desired route is “drivable” in that con-
secutive GPS readings will be generated either on a single
segment or on adjoining segments. Second, GPS readings
are error-prone, but they are generally close enough to allow
us to eliminate most road segments from consideration when
mapping GPS readings to segments.

We solve this problem using dynamic programming (DP)
to find the lowest-scoring path through the road network for
a given sequence of GPS readings. If we call the directed
segments “states” and the GPS readings “observations”, and
if we observe that state transitions are limited by our driv-
ability assumption, then the number b of transitions from
a given state is approximately four (one for each possible
compass direction from the current position, including re-
maining on the current segment). Given N states and T
observations, the time needed for a dynamic programming
approach to find the best scoring path will be O(bNT ) (Cor-
men et al. 2001).

A direct dynamic programming approach remains im-
practical, however. As an example, the road network for
Lane County, Oregon, has roughly 57,000 directed seg-
ments, and a smartphone in a car can easily generate a thou-
sand GPS readings during travel, so that 4 × 57, 000 ×
1000 = 228, 000, 000 score updates will need to be com-
puted for a single route. We simplify the calculation via the
“close enough” assumption, ignoring state transitions where
the successor state is more than a specified bound from the
position reported by the GPS. This eliminates most paths
from consideration, and usually gives good results, although
a single or small number of inaccurate GPS readings will oc-
casionally produce a non-optimal path or fail to find a path
satisfying the bound at each time.

The details of the per-observation score used for dynamic
programming will not be presented here, but it is basically a
distance measure: nearness between GPS reading and road
segment contributes to the score, and so does a term compar-
ing how far a car would actually travel between consecutive
GPS readings (using speed as reported by the GPS device)
and how far it would have to travel along road segments if a
given state transition occurred at that time.
Route Scoring with Hidden Markov Models: The second
phase of analysis is what we call scoring. We take the GPS
stream and legally drivable route from the dynamic program
as input, score the GPS readings and route versus a model,
improve the associations of the GPS readings with road seg-
ments and intersections on the route, and annotate the route
in whatever ways seem helpful. This is important because
we need to know much more than the overall route that
the vehicle took as the readings were produced; we want
to know exactly where it was at each datum, how quickly it
was moving, and so on.

The goal in the scoring phase is to assign probabilities to
events as a car traverses the different elements of the route,
primarily road segments and intersections. For instance, if
GPS readings indicate that a car’s speed varies substantially
from the expected speed along a segment, then a low prob-
ability should be assigned to the car’s traversing that seg-
ment. A similarly low probability should be assigned to a
car’s stopping at an intersection that has no stop sign or traf-
fic light. In this context, scoring can also be used to show
anomalous driver behavior.

By improving the associations of GPS readings with route
elements, we are able to correct for small errors in the GPS
data, including those caused by filtering. This correction is
guided by standard traffic control rules, in that control de-
vices such as speed limit signs, traffic lights, and stop signs
cause drivers to behave in predictable ways. If, for exam-
ple, a sequence of GPS readings indicates that a car passed
through an intersection having a stop sign and then stopped
near the beginning of the next road segment, we will con-
clude that it is far more likely that the car stopped in accor-
dance with the stop sign and then continued moving.

By annotation, we mean labeling individual GPS readings
to indicate the car’s status as it traverses the route. In the pre-
vious example, we might annotate the relevant GPS readings
with “Stopped for stop sign at intersection.” The annotations
give the story of the car’s progress along its route.

We solve this problem by using a hidden Markov model
(HMM) (Rabiner 1989, or many others). Continuing to
think of individual GPS readings as observations, we dis-
cretize the route by dividing road segments into subseg-
ments of roughly equal transit time and grouping these with
intersections to form states. Our HMM defines allowed
state transitions based on state proximity in the road net-
work, with transition probabilities based on distance be-
tween states and expected segment speeds. An observation
probability, given a state, depends on the distance between
GPS-reported position and a representative point on the sub-
segment or intersection. All probabilities are assumed to be
normally distributed, with observation variance based on the
reported error in the current GPS reading. Our HMM also
encodes, at least approximately, the logic of traffic. For in-
stance, assume that the transition between subsegment states
A and B is feasible, but intersection state C is between them
with a traffic light; then the A→ B transition can only occur
when the light-status at C is green.

The states, state transitions and associated probability dis-
tributions, observation probability distributions, and logic of
traffic comprise our hidden Markov model. Using an HMM
forward pass on this model, we can efficiently compute the
observation probability at each time, given the model and
preceding observations, as well as the probability for the en-
tire sequence of observations versus the model. An HMM
backward pass can then be performed to find the sequence of
most probable states, given the observations and the model.
The observation probabilities are the scores mentioned ear-
lier, the most probable states are the improved associations,
and we can annotate the GPS stream based on the most prob-
able state for each reading and relevant traffic controls.

One might wonder why intersections are included in our

1315



set of HMM states, since subsegments would suffice to track
a car’s progress along a route. One can think of an intersec-
tion as a dwell state, that is, a state that can transit back to
itself with high probability, and where the ability to transit
away from this state might depend on observable conditions,
such as the status of the corresponding traffic light.

While the per-observation HMM scores have value in
identifying points where the car behaves in an unexpected
way, the overall HMM score for a sequence of observa-
tions also has value. For example, we have had difficulty
evaluating the offset between GPS timestamps from client
phones and timestamps associated with changes in light
status. (Phone timestamps are based on cell tower time,
which can be inaccurate, and light status information is time-
stamped at our server a few seconds after a change in status
has occurred.) The most effective method for identifying the
drift between these multiple timestamps is often to to try sev-
eral different offsets and compute an overall HMM score for
each. The best offset for the entire route is the one returning
the highest HMM score. This sort of accuracy is essential in
any post-route analysis of our users’ actions, since the anal-
ysis is impacted so profoundly by the states of traffic lights
that change multiple times each minute.
Post-Processing and Aggregation: Finally, there is a post-
processing step that uses output derived from the HMM to
improve our estimates for the position and speed of the car
at each point in time as it travels the route. These improved
estimates are then aggregated across routes and used to es-
timate segment speeds and delays at intersections for future
processing of route requests. In the future, we hope to im-
prove these estimates further by clustering routes by features
such as time-of-day, proximity to congested regions, and so
on.

5 Conclusions and Future Work
Our technical focus in this paper has been on two specific
AI-related problems that arise in the development of Green
Driver: routing quickly in the presence of stochastic seg-
ment costs, and our use of hidden Markov models to analyze
the erratic data returned by smartphone GPS’s.

There is much to be done here; the techniques we use
work well enough as opposed to well in any absolute sense.
We know that our implementation of A* produces routes that
are suboptimal in at least some cases, but know of no com-
putationally viable alternatives. Our use of hidden Markov
models has significantly improved our analysis of the route
information provided by our users, but presumably there is
much to be done there as well.

Other AI-related problems will also bear on Green Driver.
Suppose that we have a great deal of historical data for a
particular segment that we know slows down considerably
during rush hour, but that we have only sparse data for an
adjacent segment (but not adjoining – i.e., 12th Street as op-
posed to 11th).

What can we conclude from this? Should we argue that
the two segments are fundamentally alike, and therefore
likely to exhibit similar historical patterns? Should we con-
clude that the fact we have little data for the second seg-

ment is itself meaningful, suggesting that drivers are avoid-
ing this route for a reason? Which segments can reasonably
be viewed as “similar”, and which cannot? There are many
machine-learning and classification issues here, and we have
only begun to consider them.

The situation becomes still more complex in the presence
of real-time traffic information. Clearly a traffic jam five
miles away is not an issue if it will have cleared by the
time we get there, but how are we to predict that? Our ini-
tial investigations into these issues suggest that straightfor-
ward statistical methods may perform comparably to or bet-
ter than more complex approaches based on modeling traffic
as fluid flow. But here, too, much is to be done, and the
work will become only more interesting as we collect and
understand ever more data provided by our users.

Looking further to the future, the problems become more
interesting still. At what point is it meaningful for us to try
to load balance road usage by our users? At some point, as
well, the lights should be responding to the drivers as much
as the other way around; sensors are close to traffic lights
only because there has historically been no other way to do
it. As we get accurate information from our users regarding
their positions and intended routes, there is no reason for us
not to inform traffic lights minutes in advance that vehicles
are coming. What sort of optimization algorithms are appro-
priate for such problems?

We look forward to tackling all of these problems in the
future. And given how little time we now spend waiting at
red lights, we should have plenty of time to do it.

References
Bander, J. L., and White, C. C. 2002. A heuristic search ap-
proach for a nonstationary stochastic shortest path problem
with terminal cost. Transportation Science 36(2):218–230.
Bertsekas, D., and Tsitsiklis, J. 1991. An analysis of
stochastic shortest path problem. Mathematics of Op. Rsch.
16(3):580–595.
Boyan, J., and Mitzenmacher, M. 2001. Improved results
for route planning in stochastic transportation networks. In
In Proc. of Symposium of Discrete Algorithms.
Cormen, T. H.; E.Leiserson, C.; Rivest, R. L.; and Stein,
C. 2001. Dynamic programming. In Introduction to Algo-
rithms. MIT Press. chapter 15, 323–369.
Hall, R. W. 1986. The fastest path through a network with
random time-dependent travel times. Transportation Sci-
ence 20(3):182–188.
Koonce, P.; Kittelson, M. W.; Rodegerdts, M. L.; and Oth-
ers. 2008. Traffic signal timing manual. Technical Report,
Federal Highway Administration, U.S. Department of Trans-
portation.
Rabiner, L. R. 1989. A tutorial on hidden markov models
and selected applications in speech recognition. In Proceed-
ings of the IEEE, 257–286.
Wellman, M. P.; Larson, K.; Ford, M.; and Wurman, P. R.
1995. Path planning under time-dependent uncertainty. In
In Proceedings of the Eleventh Conference on Uncertainty
in Artificial Intelligence, 532–539. Morgan Kaufmann.

1316


