Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

Decentralised Control of Micro-Storage in the Smart Grid

Thomas D. Voice and Perukrishnen Vytelingum and Sarvapali D. Ramchurn
Alex Rogers and Nicholas R. Jennings
School of Electronics and Computer Science
University of Southampton
{tdv,pv,sdracrnrj} @ecs.soton.ac.uk

Abstract

In this paper, we propose a novel decentralised control mech-
anism to manage micro-storage in the smart grid. Our ap-
proach uses an adaptive pricing scheme that energy suppli-
ers apply to home smart agents controlling micro-storage de-
vices. In particular, we prove that the interaction between a
supplier using our pricing scheme and the actions of selfish
micro-storage agents forms a globally stable feedback loop
that converges to an efficient equilibrium. We further propose
a market strategy that allows the supplier to reduce wholesale
purchasing costs without increasing the uncertainty and vari-
ance for its aggregate consumer demand. Moreover, we em-
pirically evaluate our mechanism (based on the UK grid data)
and show that it yields savings of up to 16% in energy cost
for consumers using storage devices with average capacity 10
kWh. Furthermore, we show that it is robust against extreme
system changes.

1 Introduction

The need for sustainable future energy provision has driven
a large research effort into the development of several in-
telligent electricity network technologies, collectively called
the smart grid (US Department Of Energy 2003; Galvin
and Yeager 2008; UK Department of Energy and Climate
Change 2009). A major component of this future vision is
that of energy storage. In particular, there is potential seen
in the widespread adoption of small scale consumer stor-
age devices (i.e., micro-storage), which would allow con-
sumers to store electricity when demand is low, in order for
it to be used during peak loads (Bathurst and Strbac 2003;
Ramchurn et al. 2011a; Vytelingum et al. 2010). This tech-
nology has the added advantage that it requires no signifi-
cant change in how home appliances are used, and thus al-
lows consumers to respond to pricing signals with no im-
pact on their own personal comfort. The intention is to
lower peak demand, reducing the need to use expensive, car-
bon intensive “peaking plant” generators and, thus, lowering
both carbon emissions and consumer energy costs. This sce-
nario looks increasingly likely given the advent of consumer
batteries, either stand-alone or for use in electric vehicles
(EVs), able to hold enough energy to satisfy the needs of
a home (den Bossche et al. 2006), (Gerding et al. 2011).
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Moreover, the widespread deployment of EVs is likely to
improve economies of scale and could potentially act as a
source of cheaper (less efficient) used batteries in the long
run. The downside to this trend is that a large number of
batteries of various capacities, charge rates, and efficiencies
are likely to be used and charged on the grid, potentially at
the same time. This may result in unpredictable and peaky
demand, which could increase carbon emissions, destabilise
the grid, and even cause blackouts.

To avoid these pitfalls, it is crucial that widespread micro-
storage be controlled so as to make aggregate demand more
stable and predictable. Taking a centralised approach, how-
ever, would be impractical as it could involve coordinating
millions of devices, each with its own individual constraints
and consumer preferences. Hence, we turn to the multi-
agent systems paradigm, which is a natural fit for managing
such large systems in a decentralised fashion. Recent work
on applying agents in the smart grid include (Ramchurn et
al. 2011b; Kok and Venekamp 2010) where the intention is
to locally automate energy management tasks in the home
via a smart meter. Smart meters are intended to allow sup-
pliers to access detailed energy consumption data and, more
importantly, provide network information, such as real-time
pricing (RTP) signals, to consumers in an attempt to bet-
ter control or reduce demand when electricity is expensive
or carbon intensive on the grid (Hammerstrom et al. 2008;
Smith 2010). Accordingly, we envisage that micro-storage
will be controlled by autonomous software agents that will
react to RTP signals to minimise their owner’s costs (i.e.,
they are self-interested). In this vein, we note our recent
work (Vytelingum et al. 2010) in which we showed that,
when acting purely selfishly, large numbers of micro-storage
agents can cause instability in the aggregate demand pro-
file. This is undesirable, as failing to accurately predict
consumers needs can be very costly for energy suppliers.
In (Vytelingum et al. 2010) we proposed a stable adaptive
learning mechanism for micro-storage agents, however, we
only considered agents purchasing energy and had no mech-
anism to ensure participation. In this paper, we take a com-
plimentary approach, exploiting the role an energy supplier
can play as an intermediary between consumer and mar-
ket. The stronger buying power of an energy supplier al-
lows us to use a more detailed and complex model of the
wholesale market, and the potential complexity of interac-



tion between supplier and consumer allows us to consider
suppliers purchasing energy from consumers and providing
explicit incentives for cooperative behaviour. The develop-
ment of realistic models and efficient micro-storage manage-
ment mechanisms for suppliers and consumers is essential if
the technology is to be widely adopted. This is the challenge
we address in this paper.

In more detail, we use agent-based optimisation and con-
trol theoretic approaches to design a novel method for an en-
ergy supplier to profitably manage widespread home micro-
storage in a decentralised fashion, without having full infor-
mation on the number or capabilities of the storage devices
present. Our approach involves using pricing signals that
are broadcast to consumers in advance of each daily period,
and allowing micro-storage agents to buy and sell electric-
ity at the same price at any given time interval. We argue
this makes agent behaviour more predictable as it removes
the need for agents to speculate on prices or their owners’
load profiles. We also introduce a novel method of charg-
ing consumers for changing their storage profile from day
to day. This incentivises micro-storage agents to adapt to
prices slowly, thus improving system stability. Using these
key insights, we make the following novel contributions:

1. We propose a novel general adaptive pricing scheme that
can be used by suppliers to manage aggregate consumer
demand profiles in a decentralised fashion. We prove
that the interaction between a supplier using our scheme
and the actions of individual selfish micro-storage agents
forms a stable feedback loop, under which the aggregate
demand profile converges to a unique equilibrium.

2. We provide a specific example of our pricing scheme,
with pricing functions that are designed to recover sup-
plier costs. In simulated experiments of realistic scenar-
ios, we empirically show that this pricing scheme sta-
bilises the aggregate micro-storage profile, is robust to
shocks (sudden increases or reduction in micro-storage),
and provides sufficient consumer revenue to guarantee a
profit.

3. We propose a market strategy that allows the supplier to
reduce wholesale purchasing costs without increasing un-
certainty and variance for its aggregate consumer demand.
In simulated experiments, this strategy is shown to reduce
suppliers costs over time, while still benefiting the con-
sumer. In particular, using data taken from the UK grid,
our approach is show to yield savings of up to 16% in
energy cost for consumers using storage devices with av-
erage capacity 10 kWh. Moreover, we show that our al-
gorithm is robust against extreme system changes. When
taken together our results constitute the first key bench-
marks for energy supply management for home micro-
storage in the smart grid.

The rest of this paper is structured as follows. In Section 2
we discuss our model of the smart grid agents, supplier, and
electricity markets. We then present our novel algorithm in
Section 3. Section 4 presents our theoretical results, and
gives conditions for the stability of our mechanism. Build-
ing on this, in Section 5 we empirically test our algorithm’s
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performance using a simulation of the UK electricity mar-
ket. Finally, Section 6 concludes.

2 Agents and Supplier Models

In our model, we consider fixed time intervals consisting of
single days, each separated into 7' = 48 settlement periods
of half an hour. The time of the start of the day is taken to be
the beginning of the off-peak hours at night, when electricity
is cheapest, so consumers will aim to use all stored energy
by time 7. We now describe our model of home micro-
storage control agents.

Home Storage Control Agents

We consider a set of consumers .A which we define as self-
ish agents that always minimise their individual costs. Each
agent ¢ € A has a load profile [¢ Vi € T = {1,...,T},
such that [{ is the amount of electricity used by the owner of
agent a during time interval 7. The aggregate load profile of
the system is given by I; = > , . We consider this ag-
gregate load profile to be fixed. Although there are seasonal
variations in demand in practice, there is a high degree of
consistency from day to day. In practice, there is some vari-
ation between weekday and weekend profiles. With that in
mind, an energy supplier could operate a concurrent imple-
mentation of our pricing scheme for each day of the week,
with the daily learning in our algorithm actually occurring
between days that are a week apart. Each agent a € A may
also have some storage available to it, with capacity e®, effi-
ciency a® and running costs ¢, such that if ¢ amount of en-
ergy is stored, then a®q may be discharged and the storage
cost is c®q. Here, the cost ¢ may represent a fixed capital
investment divided over the charging cycle lifetime of the
storage device.

In order to minimise costs, a can attempt to strategise over
its storage profile. A storage profile is a vector of values
that represent the amount of energy charged and discharged
during individual time intervals. We use b;-” > 0,007 >
0 Vi € T to denote the storage profile of agent a € A,
where, for each ¢ € Z, b‘;* and b~ represent the precise
amount of energy charged and discharged during i, respec-
tively. The device cannot charge and discharge at the same
time, and must always have between 0 and e® stored. Thus,
a storage profile is feasible if and only if, for all ¢ € Z,
(9T /b%) + (b~ /b2) < 1, where b% and b® are the max-
imum charge and discharge volumes for one time interval,
and 0 < 370, a’bit — b9 < a“%e”, with equality on
the left relation at « = 7. We let B represent the set of
valid storage profiles for a, and set B = X,ec48%. Here x
denotes the Cartesian product of vector spaces. Since the in-
equalities that define BB are linear and not strict, and it must
be closed and convex. For any b € B, for all i € 7 we let
b¢ = bt — by~ foreacha € A, and weletb; = Y, , b

The Supplier

We consider a single supplier providing energy for its con-
sumers. To this end, as in most electricity markets (e.g., UK
or US), the supplier buys electricity from generators either



Baseload 23:00 - 23:00 p°® ~ 47.3
Peak 07:00 - 19:00 p° ~ 54.01
Extended peak 07:00 - 23:00 p° ~ 51.69
Off peak 23:00 - 07:00 & 19:00 - 23:00 p° ~ 40.58

4 Hrs block 6 blocks per day from 23:00 to 23:00 p° € [22,103]
2 Hrs block 12 blocks per day from 23:00 to 23:00 p° € [21,139]
Half hour block | 48 blocks per days from 00:00 to 24:00 | p° € [17,157]

Table 1: Forward market contracts span a specific period of time
and charge different prices. The range of prices shown were ob-
tained from APX-ENDEX for January 2010. As can be seen, prices
are generally higher for shorter time periods.

directly or through wholesale electricity markets. We fo-
cus on the two fundamental types of markets which are the
day-ahead forward market' (where prices are known on a
day-ahead basis and where most of the trades occur) and the
balancing market> (where prices are known a posteriori).

The forward market runs on a day-ahead basis whereby
the supplier can purchase amounts of energy ff € RT from
different types of electricity contracts, © = {o01,--- ,0/9}
defined over the next 24 hours (see Table 2) and valid only at
certain times during the day. The supplier purchases a quan-
tity fi = > ,co f Vi € T at price cf = Y oco [P Vi €
TZ. We also define F as the set of all feasible contract pur-
chases, f? Vi € Z,Vo € © (i.e., amounts that the supplier
is able to purchase) and p? = Cif / [ as the average contract
price. The balancing market then settles any differences in
committed supply and actual supply in real-time (these dif-
ferences occur when consumers or generators behave unex-
pectedly due to weather effects, outages, or other factors).
Thus, any excess purchased, (f; —d;)" (where d; = I;+b;),
is sold at the balancing sell price p**!' and excess electricity
used, (d; — f;)T, is purchased at the balancing buy price
p°™ . Note that the balancing buy and sell prices are typically
higher and lower respectively compared to forward market
prices and hence, it is crucial that the supplier ensures that
it can cater for most of its customers demand from forward
market contracts rather than leaving it to the balancing mar-
ket. We next elaborate on our proposed supplier strategy,
in particular how to set prices for customers in order to sta-
bilise storage (and, as a result, stabilise aggregate demand),
and minimise its costs on the electricity market.

3 Supplier Strategy

The supplier has complex objectives. On the one hand, it
needs to manage the behaviour of its customers using only
pricing signals, without fully knowing their storage capabil-
ities. On the other hand, it needs to get the best price it can
on the electricity market given the high penalties in the bal-

"We use real UK market data from APX-ENDEX energy ex-
change (http://www.apxendex.com) for the period from
January to March 2010. Note that our model can be extended to
consider contracts over longer terms, such as weeks, seasons or
years. However, this is beyond the scope of this work.

’We use real data obtained from the UK balancing market
(http://www.bmreports.com).
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ancing market associated with under or over supply. In this
section, we propose a novel mechanism for a supplier to sta-
bilise demand while maximising its revenue by optimising
its purchases in the forward market. Crucially, in Section 4,
we go on to prove that our mechanism is converges to a sta-
ble equilibrium.

Pricing Mechanism

We consider the situation where the electricity supplier sets
a price for energy p, for each 7 € Z. When micro-storage
agents react to such pricing signals, the aggregate behaviour
can be unstable, as their charging and discharging activi-
ties tend to concentrate in those time intervals with extremal
prices. This results in agents adopting “all or nothing” be-
haviour, where they either charge or discharge at maximum
rate or do nothing at all. In order to combat this volatility,
we propose the following. First, the supplier passes the real-
time prices at the beginning of the day (instead of communi-
cating them every half-hour as in (Hammerstrom et al. 2008)
or at the end of the day as in (Vytelingum et al. 2010)).
This allows agents to explicitly optimise their storage pro-
files without needing to speculate on future price changes.
Second, under our mechanism, agents are allowed to both
buy and sell electricity at the same price p; for each i € I.
Thus, discharging a quantity of stored electricity generates
the same profit to the consumer when sold to the supplier as
when used by the consumer, and so the optimal storage pro-
file is completely independent of load at time ¢. This avoids
agents having to speculate against their uncertain future load
profile, which can vary greatly from day to day and would
be hard for agents to reliably predict. Hence, if all agents
store optimally according to prices given, their aggregate be-
haviour becomes more predictable. Third, as the central part
of our control mechanism, we propose that, in order to sta-
bilise the system, agents be charged an additional fee based
on how greatly they change their storage profile. That is,
each agent a € A pays a daily fee of Y, 7 x (b — b?)Q,
where b® is the previous days storage profile and xk > 0 is a
parameter given by the supplier. As we show in Theorem 1,
if x is large enough, this introduces enough damping into the
system to guarantee stability.

Since the behaviour of the agent will be to maximise the
profit of its user, we can now predict that each a € A will
adopt the following optimal storage profile,

. =y 2

b = arg nin Zpib‘il + b + k(b —b) (1)

i€l

This characterisation of agent behaviour is sufficient for us

to model the control loop between supplier and consumer

agents and come up with a pricing strategy that allows aggre-

gate micro-storage management without requiring the sup-

plier to know fully the number or parameters of the storage
devices belonging to its consumers.

From day to day, we propose that the electricity supplier
updates its prices according to the current loads, follow-
ing some strictly increasing, differentiable pricing function
pi(+), with |pf(-)| < K for some K. At the end of each day
the new price profile for the next p"*" is set as p;(-) of the



previous days total demand:
new

Pi = pi(l; + b;). (2)

As we will see later in Section 4, Theorem 1 shows that if
k > KJA|/3, then (1) and (2) form a stable system. This
means the supplier only needs to know an upper bound on
the number of storage devices in operation in order to safely
apply this mechanism.

If the supplier has particular targets for the equilibrium
storage profile (e.g., it has information about its customers’
storage capacity that would allow it to perform arbitrage in
the market or reduce its carbon emissions), it can adjust its
price functions to directly steer the consumers. For exam-
ple, by making the price functions steeper, the supplier can
encourage storage use, and by making them less steep, the
supplier can motivate consumers to use storage less. Oth-
erwise, the supplier can choose price function to reflect its
market costs.

In our experiments (see Section 5) we sought to use pric-
ing functions that reduce forward market costs, and ensure
sufficient customer revenue to make a profit. We chose the
following price functions (which satisfy the criterion that the
price function is strictly increasing and differentiable), for
eachi € 7,

pl L+ (Y 20p) 2l e
f
pi(z) =4 pl — 2L (f; — ) Cfi2<a<f;
p;ell , L < fz/2

(3)
where we set Ap/ to be the maximum of p/ — pi" In this
case a suitable value for K would be:

4ApF 1
(557

b
(pif + pz‘uy

K = maxmax
ieT

f

7, +2Ap ))
With these choices, Proposition 1, in Section 4, shows that
under (1) — (3), when storage profiles converge, the supplier
is guaranteed a profit. We achieve this in part by ensuring
that for each ¢ € Z, it sets p;(f;) = pl-f, where p{ is the
average forward contract price for time interval ¢. This has
the added benefit that since the p;(-) functions are strictly in-
creasing, if the agents react to the price signals by changing
their storage allocation, they will do so in a way that would
be profitable to the supplier if they were charged according
to pf . Hence, if the aggregate demand deviates from f;,
the supplier can and will reduce costs by re-optimising their
forward contracts (as we show later in Section 5). We next
discuss how the supplier can optimise its contracts given re-
alistic uncertainty in its customers’ demand.

Market Strategy

Since the aggregate load profile gradually changes as per
our mechanism (as we show later, it eventually reaches an
equilibrium), we can expect that it will deviate from the for-
ward contract amounts on a daily basis and the supplier may
have to trade on the balancing market to cater for under/over
usage. Since the balancing market is more expensive than
the forward market, the supplier can reduce costs by re-
optimising its forward contracts daily. Note, if using the
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pricing functions (3), these must be re-computed every time
the forward market contracts are changed. In what follows,
we present an optimisation model that allows a supplier to
optimise its contracts against uncertain demand.

To decide on the contracts to acquire, the supplier simply
computes the optimal quantity for each contract® f¢,Vo €
©,Vi € 7 that minimises its costs. However, because the
consumers’ aggregate demand d; as well as balancing buy
and sell prices are not known a priori, the supplier needs to
compute the amounts for each contract that will minimise its
expected costs subject to uncertainties in prices and demand
(see Figures 1 and 2 respectively).

We address this problem by modelling the aggregate load
and prices using a standard ARMA (auto-regressive moving-
average) statistical model* that can deal with the seasonal
trends of loads and prices (Weron 2006). In so doing, we can
build a distribution of the following day’s balancing prices
and the aggregate load. The supplier’s problem is now to
minimise its cost based on distributions of the demand and
buy and sell prices. To deal with the optimisation under un-
certainty, we use Monte Carlo simulations, drawing a large
number of samples S from the distributions and expanding
the objective function to factor in the samples as follows:

Mglfneigz > (Of#l’?:lsy(di,s — ) Pl (s — fz‘)f)

seSiel
“)

> oco Ji for amounts f selected. The above

where f;

optimisation returns a profile of optimal quantity ff to pur-
chase from each contract at time ¢ which are, in turn, used to
formulate our pricing functions as in the previous section. It
is important to note that this method does not rely on detailed
information about the consumer storage devices present, but
instead adapts to changes in the aggregate demand profile
in order to reduce costs. We next present the key analytical
properties of our proposed mechanism.

4 Theoretical Results

In this section we give the theoretical results which support
our proposed algorithm. We begin by showing that (1) —
(2) is stable. Our proof uses a novel application of a Lya-
punov function (Slotine and Weiping 1991), where the func-
tion is chosen so that it is always less than or equal to total
agent costs with equality if agents do not change their stor-
age profile. As agents attempt to reduce costs, they cause
the Lyapunov function to decrease monotonically, and the
system converges to its minimising aggregate profile. This

3The supplier can purchase any set of contracts to cover any
quantity. For example, a baseload contract will have a lower price
(as it can be provided by cheap nuclear generation) than the average
daily balancing buy prices. Generally, contract prices tend to be
marginally lower that the average balancing prices over the same
period. However, forward contracts reduce market risk as forward
prices are known a priori and are thus desirable.

*We chose a standard model, as forecasting of load and prices
is beyond the scope of this paper, and not central to the supplier’s
adaptive mechanism (Weron 2006). More complex quantitative
models (e.g., GARCH or Jump-Diffusion models) can be used for
marginal improvements.
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method of proof allows the supplier to manage agent re-
sponses without having any information about the capabil-
ities of the micro-storage devices they control. All that is
required is an upper bound on the number of active micro-
storage devices in the system.

Theorem 1. Given a fixed set of forward contracts, the sys-
tem (1) — (2) is stable, in that the vector b converges to an
equilibrium, provided:

KN
K> —

- )
where N is the number of agents with active storage de-
vices and K is an upper bound on |p(-)| for all i € T over
the relevant range of demand quantities. In this case, the
aggregate storage profile at equilibrium is unique.

Proof. Let us define the Lyapunov function V' (+) to be,

l;i+b;
Z/ pilli +0:) + Y bt

i€l acA

Since the p;(-) are increasing, V' (-) is convex, with a convex
region of optimality over 3, and no other local minima. Fur-
thermore, as the p;(-) are strictly increasing, the aggregate
storage profile must be the same for all optimal profiles. For
any two storage profiles b, b', let us also define V/(+),

Ve () =Y pilli + b)) (L + bi) + > c*bft.
i€l acA

Now let us consider a particular day. Suppose the pre-
vious days storage profile is given by b € B and the new
storage profile is b + Ab. From (1) — (2) we can deduce that
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Ab is chosen so that b + Ab minimises W, (b + Ab) over B
where we define W (+) to be:

Wi(b+Ab) = Vi (b+Ab)+r Y Y (AbSH +—Api™)%
i€Z a€A

Now, if we use V to denote gradient, then, by definition,
V(b ) VV(b), and so, VW;,(b) = VV(b). So Wy,(b +
Ab) — Wy (b) < 0, with equality only if VIV (b)- (b’ —b) > 0
for all feasible b’ € B.

We calculate that:

1
V(b+Ab)—V(b):/ tAb- V'V (b+ tAb)dt
0

and

V(b + Ab) — Vi (b) /01 tADb - VV (b)dt

The difference between these two is:
1
/ IAD - (VV(b) — YV (b + tAb))dt
0
However, since the price functions p;(-) for i € Z are the

only non-linear component of V' (-), we have that the rate of
change of each coordinate of VV(+) is bounded by K. Thus,

V(b + Ab) — V(D) is less than or equal to:
1
V(b + Ab) — +/ K Z(Abi)th

0 i€T

K 2

= Vi(b+Ab) = Vi (b) + 5 > (Ab:)?,
e

N a+ a—\2
< Vi (b+ Ab) — S o (AbrT - Ab)
i€Z a€A
< Wi (b + Ab) — Wy (b) <0,

by choice of . Thus, for each day after the forward mar-
ket strategy is computed, V'(b) is non-increasing. Since it
has a global minimum, the size of these decreases must tend
to zero. However, from the above, this can only happen if
VV(b)-(b' —b) tends to a value greater than or equal to 0 for
all ¥’ € B. By the continuity of VV'(b), we must have that b
converges to the optimal region for V' (b) within B. |

Note, although N will be potentially very large, K should
be very small, and should be roughly O(1/|A|), since K
depends on how much prices vary when a single user varies
their storage profile. In our experiments we use x = | A|K/3
and calculate K as given in Section 3.

We can also show that the prices we give in (3) are suited
to recovering the costs of the energy supplier.

Proposition 1. Provided the total daily electricity bought
in the forward market is at most the total daily load then
if b is sufficiently close to the previous days storage profile,
then the supplier recovers their costs from consumers. More
precisely,

S pilli + ) + bi) > Cilli + b).

i€l



Proof. Foralli € T letd; = l; + b;. If d; < f; then, from
3,

pildi)d; > Cf — (f; — di)(p] + ApT),
and if dl Z fi,

pi(di)di > Cf + (di = f) (0™ +24p7).
Thus, if the total market costs are
Cf +p(di — fi) T+ P (di — fi)~
then the total revenue minus total costs is at least:

2% Ap! —d~ ApF — " (fi — di)* (o] — pielh),
€T

where d* is the sum of (d; — f;)* and d~ is the sum of
(fi — d;) ™. However, since the total sum of f; is at most the
total sum of [/;, and all storage devices have efficiency less
than or equal to 1, the amount discharged to cause a surplus
must be less than the amount charged. Therefore, we must
have d* < d~, and so the total revenue is at least as big as
the total costs to the supplier. O

This means that, once (1) — (3) has converged, the energy
supplier is guaranteed to make a profit each day.

S Experiments

In this section, we evaluate the performance of our decen-
tralised control mechanism. Specifically, we set up a simu-
lation based on 1000 consumers, each with a different bat-
tery,? using real load data from January to March 2010 (from
a set of anonymised UK consumers — see Figure 2), over 100
runs.® We used real market data over the same period with
an additional historical data of 3 months of the balancing
market prices (October 2009 to March 2010 — see Figure 1)
to calibrate our model of price distribution.

As discussed in Section 1, an important objective of the
pricing mechanism is to ensure stable aggregate consumer
behaviours. To this end, we analyse the stability of the sys-
tem over a number of days to ascertain the effectiveness of
the mechanism. From Figure 3, we can observe that the
root mean squared of the difference between the forward-
contracted demand and the aggregate consumer demand de-
creases from 31.5 (when there is no storage) and converges
to an equilibrium around 14.1. As it does so, the expected
wholesale cost of the system also converges to an equilib-
rium. Figure 3 also shows how the expected wholesale cost
gradually decreases (by 16% from 33.47p to 28.22p) and
converges after a number of trading days. The consumer
cost (ignoring the supplier’s profit and operational margin)
decreases by 9.28p (from 42.42p to 33.14p). Note that a
supplier typically inflates the retail price to include a profit
and an operational margin which the consumers pays on top

SFor each battery, its capacity is defined by a normal distribu-
tion A/ (10, 3), its efficiency by min(1.0, A/(0.8,0.2)), its charg-
ing capacity by N(0.8,0.4) and, finally, its discharging capacity
by N(0.8,0.4). These values were based on typical batteries.

Using a t-test, we validated our results with a = 0.05 to ensure
that they were significant.
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of the consumers’ cost (or retail revenue) we describe here.
Thus, given the 16% decrease in its wholesale cost and based
on its margin, the supplier can markup on the, now reduced,
consumer’s cost or can simply reduce the retail price to in-
centivise storage. Furthermore, we observe from Figure 4
that the volatility (measured as the normalised standard de-
viation of prices) of the expected wholesale cost is notice-
ably lower (decreasing from 6.6% to 5.3%). Lower volatil-
ity is be desirable for the supplier, especially with the high
volatility of prices in electricity markets.
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Finally, we analyse the stability of our mechanism when
faced with system shocks (i.e., a sudden and drastic change
in micro-storage demand response capability). Specifically,
we simulate 50% of the batteries failing (e.g., as a result
of a glitch in batteries or network outage) on Day 100 and
all repaired and reinstated on Day 200. Figure 5 shows the
effect of such shocks on the system by looking at how the
root mean squared difference between total daily demand
and forward-contracted demand changes. In particular, we
observe that from Day 100, there is a considerable differ-
ence between the contracted demand and the actual demand
(as a result of the micro-storage failure). However, the sys-
tem quickly re-adapts, converging to a new equilibrium. On
the other hand, when all the failed batteries are repaired on
Day 200, the agents with newly repaired batteries gradu-
ally build up their storage profile due to dampening by our
pricing mechanism, while the supplier re-optimises its for-
ward contracts subject to the increasing demand. The rate
of increase of the storage is sufficiently low that the supplier
can optimise its forward contracts and ensure the difference
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Figure 5: Root mean squared difference between contracted
and actual demand, with a shock on Day 100 when 50% of
the batteries fail and on Day 200 when they are repaired.

between the contracted demand and actual demand remains
small. The effective response of our mechanism to extreme
changes implies that our mechanism is indeed robust against
system changes.

6 Conclusion

In this paper we proposed a novel algorithm for the decen-
tralised control of widespread micro-storage in the smart
grid. We proved theoretical results that showed the stability
and profitability of the algorithm and then conducted exper-
imental simulations to verify those results. We empirically
showed that, in a realistic scenario our mechanism reduced
consumer costs by 16%, and further, we showed that it is
stable against dramatic short term changes in the system.

We see this as an important step to showing that the adop-
tion of widespread, supplier managed home energy micro-
storage is a practical, desirable technology to develop. Us-
ing the techniques described in this paper, we can envisage
energy suppliers utilising large numbers of affordable small
scale storage devices in order to manage aggregate load pro-
files, improve efficiency and reduce carbon output. Future
work should involve integrating these models and simula-
tions into further important elements of the future smart grid.
This could include modelling the interaction between micro-
storage and intermittent or unreliable renewable generation,
and analysing the impact of vehicle to grid schemes on ag-
gregate load profiles.
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