

Learning to Surface Deep Web Content

Zhaohui Wu, Lu Jiang, Qinghua Zheng, Jun Liu

MOE KLINNS Lab and SKLMS Lab
No.28, Xianning West Road, Xi'an 710049, P.R.China

 laowuz@gmail.com, roadjiang@yahoo.com, qhzheng@mail.xjtu.edu.cn, liukeen@mail.xjtu.edu.cn

Abstract
We propose a novel deep web crawling framework based on
reinforcement learning. The crawler is regarded as an agent
and deep web database as the environment. The agent
perceives its current state and submits a selected action
(query) to the environment according to Q-value. Based on
the framework we develop an adaptive crawling method.
Experimental results show that it outperforms the state of art
methods in crawling capability and breaks through the
assumption of full-text search implied by existing methods.

Introduction
Studies (Lawrence 1998) show deep web content is
particularly important. Deep web surfacing or crawling
enables leveraging existing search engine infrastructure
hence adopted by most of crawlers, such as HiWE
(Raghavan 2001), Hidden Web crawler (Ntoulas 2005),

(Madhavan 2008). A
critical challenge is how a crawler can automatically
generate promising queries to carry out efficient crawling
(Madhavan 2008), (Ntoulas 2005), (Barbosa 2005).
Existing methods relied on an assumption that full-text
search is provided by deep web databases, leading to that
estimation techniques for full-text databases e.g. Zipf Law
can hardly be applied to non full-text databases. We
present a formal framework based on reinforcement
learning for deep web crawling. A crawler is regarded as
an agent and deep web database as the environment. The
agent perceives its current state and submits an action
(query) to the environment based on long-term reward. The
environment responds by giving the agent some
reward (new records) and changing it into the next state.

Framework and Algorithm
The process of deep web crawling is defined as a discrete
Decision Process consisting of a set of states , a
set of actions and transition probabilities distribution .
A crawling process follows a specific issue policy

. represents the acquired portion of the
deep web database records at the step . (for
short) denotes a query to the database with keyword ,
causing a transition from to some successor state

with probability . is the collection of all
records residing in deep web database.
denotes the collection of records responded by execution of

 at . , . The portion of new
records retrieved by executing at is .

. (1)

Reward function is the reward received at the
transition from state to state by executing action .

. (2)
Actions cause a cost ,
where is the cost of issuing an action and is
proportional to the average time of handling a response
record. The expectation conditioned on the current state
and the policy is called state-value function of
state , computed from

 (3)

in which is the step length and is the discount factor.
is an optimal policy defined as (,

). We write . We can rewrite Q-function as:

 (4)

The formal definition of deep web crawling is defined as:
Problem 1 Find such policy under
the constraint () that
maximizes the accumulative reward value.

Let (for short) denote number
of documents containing keyword in acquired record
set . Suppose at , training set is a set
of executed actions, . Similarly, candidate set is
a set of available action candidates for submission. Each
action in either or is encoded in the same vector
space. For an action in , its reward can be estimated as:

 (5)

where is a kernel function used to evaluate the
distance between the given two actions. Three types of
features (linguistic, statistical and HTML features) are
incorporated to establish the feature space. We calculate
each action s reward and Q-value as follows:

1967

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

Theorem 1 At state , the reward of each action in
can be calculated from

 (6)

Theorem 2 At state when the Q-value of an action
 (,) can be estimated as:

 (7)

The adaptive RL crawling algorithm takes the current
state and last executed action as input and outputs the next
optimal action. It first calculates the reward of the last
executed action and then updates the action set through
Step 2 ~ 7, causing the agent to transit from current state
to successor state . The training and candidate set are
updated in accord with the new action set in Step 9. Step
10 ~ 13 estimates the reward and Q-value for each action
in candidate set. The action that maximizes Q-value will be
returned as the next optimal action.

Algorithm 1: Adaptive RL crawling algorithm
Input: ,
Output:
1: calculate s reward following Eq. (6);
2: for each document
3: for each keyword in do
4: if action then ;
5 else then update TF and DF of action ;
6: end for
7: end for
8: change the current state to ;
9: ; ;
10: for each
11: update its reward using Eq. (5) and (6);
12: calculate its Q-value using Eq. (7);
13: end for
14: return ;

 Experiments
To compare our RL method with existing methods, we
choose the following three methods as the baseline:
 Random: the reward of an action is assigned to a
random float i.e. .
 Generic Frequency: the reward of an action is
evaluated by the generic DF of the action at current state,
i.e. .
 Zipf: The size of response record set of each action is
estimated by Zipf- (Mandelbrot 1982):

 ,where , and are parameters
and is the DF rank of the action.

It is interesting to note that RL is more general
compared with the baseline methods. If future reward of an
action is ignored i.e. and the reward of an action is
determined by a presumed distribution, the RL degenerates
to Zipf, i.e. . Further if the acquired

portion of an action is ignored too i.e. , the
RL degenerates to the GF, i.e. .

To make results more intelligible, we roughly use
harvest (number of actual retrieved records) and number of
queries to evaluate the crawling. The experimental results
of comparing our method with the baseline are displayed in
Fig. 3, in which the y-axis denotes the number of acquired
records and the x-axis represents the query number. In
experiments step length was set to 1. The result shows that
RL method is more efficient than the baseline methods on
the experimental websites.

(a) Experiment on Baidu Baike

(b) Experiment on AbeBooks

Figure 3: Performance Comparisons with baseline methods

Acknowledgement
Research was supported by National High-Tech R&D
Program of China under Grant No.2008AA01Z131, NSF
of China under Grant Nos. 60825202, 60803079,
60633020, Key-Tech R&D Program of China under Grant
Nos.2008BAH26B02, 2009BAH51B00, Cheung Kong

References
Barbosa, L., and Freire, J. Siphoning Hidden-Web Data through
Keyword-Based Interfaces. 2004. In SBBD, 309-321.
Lawrence, S., and Giles, C. L. 1998. Searching the World Wide
Web. Science 280:98 100.
Madhavan, J.; Ko, D.; Kot, L.; Ganapathy, V.; Rasmussen, A.;

-Web Crawl. In VLDB,
1241-1252.
Mandelbrot, B. B. 1982. The Fractal Geometry of Nature. W. H.
Freeman and Company.
Ntoulas, A.; Zerfos, P.; and Cho, J. Downloading Textual Hidden
Web Content through Keyword Queries. 2005. In JCDL, 100-109.
Raghavan, S., and Garcia-Molina H. Crawling the Hidden Web.
2001. In VLDB, 129-138.
Wu, P.; Wen, JR.; Liu, H.; and Ma, WY. Query Selection
Techniques for Efficient Crawling of Structured Web Source.
2006. In ICDE, 47-56.

1968

