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Introduction
The ability to discover the effects of actions and apply this
knowledge during goal-oriented action selection is a funda-
mental requirement of embodied intelligent agents. This re-
quirement is most clearly demonstrated when the agent, or
robot in our case, must continue to meet objectives in chang-
ing environmental contexts. For example, a humanoid robot
that encounters a slippery surface might use its arms to sta-
bilize and avoid a fall. In our ongoing work, we hope to
demonstrate the utility of learned control models for whole-
body mobile manipulation. In what follows we discuss pre-
liminary work on learning a forward model of the dynamics
of a balancing robot exploring simple arm movements. This
model is then used to construct whole-body control strate-
gies for regulating state variables using arm motion.

Approach
Model Learning
We assume the discrete-time dynamics of the system are
captured by the function

st+1 = f(st,at),

where st and at are the state and action vectors at time t.
Since we do not in general have access to f , our goal is
to learn an approximation, f̂ , which we represent using a
linear-Gaussian basis function model,

st+1 = f̂(st,at) + ε ≡Wψ(st,at) + ε,

where it is assumed that ε ∼ N (0,Σ) accounts for unmod-
eled disturbances. The term ψ(st,at) is a k-dimensional
feature vector derived from a set of k basis functions.

To completely specify the model, we must provide or
learn the weight matrix W and the ordered set of basis func-
tions Ψ used to compute the feature vector. Although there
is much recent work on the automatic discovery of basis
functions, e.g. (Mahadevan et al. 2006), in our prelimi-
nary experiments we elected to use a fixed set of basis func-
tions. The matrix W can be learned by applying standard
multiple-output linear regression techniques. However, de-
pending on the choice of Ψ and method for discovering W,
the model may be prone to overfitting. Since we do not want
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to make any strong assumptions about Ψ, we focus our at-
tention on algorithms that parsimoniously select basis func-
tions that explain much of the variation in the target variable
without overfitting.

To serve this purpose we employed the lasso algo-
rithm (Tibshirani 1996), which is a well-known l1 regular-
ization technique. In addition to penalizing large weights,
the use of the l1 norm creates a boundary in weight space
that tends to produce solutions with multiple zero-valued
weights, resulting in basis selection. Using an efficient im-
plementation of the lasso algorithm (Efron et al. 2002), one
can generate a set of models in the same order of computa-
tion as a single least squares fit. Intuitively, this set of can-
didate models is generated by systematically increasing the
degree to which large weights are penalized, thus produc-
ing models ranging from a single predictor to the full least
squares fit using all k features.

A model is selected automatically from the set
of candidates using the Bayesian information criterion
(BIC) (Schwarz 1978), BIC = −2 · loglik + p · log(N),
where N is the number of data points and p is the number
of model degrees of freedom. It can be shown that choos-
ing the model with minimum BIC is equivalent to choosing
the model with the largest approximate posterior probabil-
ity (Hastie, Tibshirani, and Friedman 2009). It should be
noted that the above combined approach to model learning
and selection has the benefit of being completely parameter
free.

Control
Learned dynamic models f̂(st,at) are used in constructing
controllers that descend the gradient of objective functions.
An objective function φ(st) is a convex function that maps
each state to a real number that describes the error in the
system with respect to a primitive task. To select actions we
derive a Jacobian matrix, Jt = ∂f̂(st,at)

∂at
, and use its inverse

to map directions of steepest descent of a given objective
function to directions in action space (Nakamura 1991),

∆at = −η J#
t

∂φ(st)
∂st

>
,

where J#
t is the pseudoinverse of Jt and η is a gain parame-

ter. The key point is that the robot can choose to descend the
gradient of φ(st) using any effectors for which it has learned
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Figure 1: (a) The uBot-5. (b) Learned arm controller perfor-
mance vs. tuned wheel controller on ramp.

a model f̂(st, ·), thus making this an attractive approach to
doing whole-body control.1

Preliminary Results
As a first experiment in learning whole-body control strate-
gies, we collected data from the uBot-5 (Figure 1a) in a
balancing configuration with its two wheels controlled by
a linear-quadratic regulator (LQR). During a 4 minute ex-
ploratory phase, the robot executed random actions in the
shoulder joints and data were collected at 25 Hz. The
changes in shoulder velocity affected a subset of the robot’s
state variables. For example, setting a positive velocity ref-
erence in the right shoulder would affect the position and
angular velocity of the right shoulder, body tilt, and left and
right wheels due to moments generated about the shoulder
and wheels, changes in the mass distribution of the robot,
and reactions of the unmodeled LQR controller.

By ignoring state variables that remain constant, the robot
is left with a 10-dimensional continuous state space and a 2-
dimensional continuous action space (one velocity reference
for each shoulder joint). The basis functions included all de-
gree 1 and 2 polynomials of the state and action variables,
resulting in 90 total basis functions. We focused on the sub-
models that predict the left and right wheel velocities. The
lasso algorithm and BIC selected 62 basis functions for the
left wheel model and 59 for the right wheel model.

To test the suitability of the learned models for control,
we used a simple quadratic error objective function which
penalized wheel velocities deviating from 0. The controller
was evaluated by placing the robot on a 10◦ inclined plane
and comparing its behavior with and without the learned
controller. In the latter case, the robot was placed at the top
of ramp in the balancing configuration and it slowly drifted
down the ramp due to gravitational acceleration eventually
achieving a constant down-ramp velocity. However, when
the learned controller is activated the robot quickly extends
its arms out to counteract the acceleration due to gravity.
The robot reaches a steady dynamic equilibrium after rolling
backward approximately 25 cm.2 Figure 1b shows the wheel

1Of course, this is not to say that all effectors will be equally
well suited for meeting particular objectives.

2See video at: http://www.cs.umass.edu/˜scottk/videos

velocities over time for the default and learned behaviors as
well as a modified wheel LQR tuned to keep position on the
ramp.

Related and Future Work
Many impressive examples of control model learning can be
found in the robotics literature, see e.g., (Schaal, Atkeson,
and Vijayakumar 2002). However, these examples typically
involve a robot learning a model for a particular task rather
than demonstrating the generalizability of models for whole-
body control. The locally-weighted projection regression al-
gorithm (Vijayakumar and Schaal 2000) has many of the
same benefits as the approach described here, but builds
models with local, rather than global support, thus removing
the need for basis functions. Making empirical comparisons
between these different approaches with respect to whole-
body control is a goal of future research.

We also intend to demonstrate the reuse of learned mod-
els across several tasks and investigate ways of bootstrap-
ping using previously learned models. To scale up to
high-dimensional action spaces, we anticipate the need to
intelligently generate data rather than relying on random
walks. Specifically, we are interested in how a develop-
mental exploratory approach may facilitate learning in high-
dimensional spaces while preserving basic safety guaran-
tees (Grupen and Huber 2005).
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