
Saving Redundant Messages in BnB-ADOPT ∗

Patricia Gutierrez and Pedro Meseguer
IIIA, Institut d’Investigació en Intel.ligència Artificial
CSIC, Consejo Superior de Investigaciones Cientı́ficas

Campus UAB, 08193 Bellaterra, Spain.
patricia|pedro@iiia.csic.es

Abstract

We have found that some messages of BnB-ADOPT are
redundant. Removing most of those redundant mes-
sages we obtain BnB-ADOPT+, which achieves the
optimal solution and terminates. In practice, BnB-
ADOPT+ causes substantial reductions on communi-
cation costs with respect to the original algorithm.

BnB-ADOPT (Yeoh, Felner, and Koenig 2008) is a
reference algorithm for distributed constraint optimization
(DCOP), defined as follows. There is a finite number of
agents, each holding one variable that can take values from a
finite and discrete domain, related by binary cost functions.
The cost of a variable assigning a value is the sum of cost
functions evaluated on that assignment. The goal is to find a
complete assignment of minimum cost by message passing
(for details on DCOP definition see (Modi et al. 2005)).

BnB-ADOPT is a depth-first version of ADOPT (Modi
et al. 2005), showing a better performance. As ADOPT,
it arranges agents in a DFS tree. BnB-ADOPT mes-
sages are VALUE(i, j, val, th), –i informs child or pseu-
dochild j that it has taken value val with threshold th–,
COST(k, j, context, lb, ub) –k informs parent j that with
context its bound are lb and ub–, and TERMINATE(i, j). –i
informs child j that i terminates–. A BnB-ADOPT agent ex-
ecutes the following loop: it reads and processes all incom-
ing messages, and takes value. Then, it sends the following
messages: a VALUE per child, a VALUE per pseudochild
and a COST to its parent. BnB-ADOPT contexts can be
updated by VALUEs or COSTs, while in ADOPT contexts
are updated by VALUEs only. This is due to timestamps
that go with individual values allowing to determine which
is more recent (timestamps are called counters referred as
ID in (Yeoh, Felner, and Koenig 2008)). Here, we assume
that the reader has some familiarity with BnB-ADOPT code.

We show that some BnB-ADOPT messages are redun-
dant. Removing most of those redundant messages we ob-
tain BnB-ADOPT+, keeping optimality and termination.
BnB-ADOPT+ causes substantial reductions on communi-
cation costs, dividing by a factor from 2 to 6 the number of
messages (experimental testing on several benchmarks).

∗Partially supported by Spanish proj. TIN2009-13591-C02-02.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Redundant Messages

In the following i, j and k are agents executing BnB-
ADOPT. Agent i, holding variable xi, takes value v when
the assignment xi ← v is made and i informs of it to its
neighbors. The state of i is defined by (1) its value, (2)
its context (values of agents located before i in its branch,
timestamps are not part of the context), and (3) for each pos-
sible value v and each j ∈ children(i), the lower and upper
bounds lb(v, j)/ub(v, j). A message msg sent from i to j
is redundant if at some future time t, the collective effect of
other messages arriving j between msg and t would cause
the same effect, so msg could have been avoided.

Lemma 1 If i takes value v1 with timestamp t1, and the next
value it takes is v2 (possibly equal to v1) with timestamp t2,
there is no message with timestamp t for i st. t1 < t < t2.

Proof. No VALUE is sent from i with timestamp bewteen
t1 and t2: v1 and v2 are consecutive. COSTs build their
contexts from VALUEs: no VALUE includes a timestamp
between t1 and t2, so no COST will contain it for i. 2

Theorem 1 If i sends to j two consecutive VALUEs with the
same val, the second message is redundant.

Proof. Let V1 and V2 be two consecutive VALUEs sent
from i to j with the same value val with timestaps t1 and
t2, t1 < t2. When V1 reaches j, it may happen:

1. V1 does not update contextj [i]. When V2 arrives: (a) V2

does not update contextj [i]. Future messages will be pro-
cessed as if V2 would have not been received, so V2 is re-
dundant. (b) V2 updates contextj [i] which has timestamp
t. Either (i) t2 > t > t1 or (ii) t2 > t = t1; (i) is impos-
sible because Lemma 1; (ii) since t = t1 the value in V2

is already in contextj [i]. Every future message accepted
with timestamp t2 of contextj [i] would also be accepted
if timestamp were t1. Since Lemma 1, V2 is redundant.

2. V1 updates contextj [i] ← val, timestamp t1. When V2

arrives: (a) V2 does not update contextj [i]: as case (1.a).
(b) V2 updates contextj [i]: since V1 updated contextj
and Lemma 1, the timestamp of contextj [i] must be t1.
Updating with V2 does not change contextj [i] but its
timestamp is put to t2. Since there are no messages with
timestamp between t1 and t2 (Lemma 1), any future mes-
sage that could update contextj with t2 would also update
it with t1. So V2 is redundant. 2

1259

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



(a) Random DCOPs

p1 #Messages #NCCC #Cycles

1,393,339 11,002,964 53,065

0.4 657,714 10,827,544 53,074

68,116,304 508,186,224 1,987,584

0.6 24,809,153 499,214,418 1,987,915

184,735,389 1,366,404,208 4,740,277

0.7 59,900,198 1,339,303,291 4,740,040

293,922,594 2,153,776,854 6,873,799

0.8 86,233,163 2,112,858,127 6,873,805

(b) Meeting Scheduling

#Messages #NCCC #Cycles

96,493 697,774 4,427

A 35,767 690,786 4,427

182,652 879,417 7,150

B 69,453 801,384 7,150

34,374 167,058 1,278

C 13,862 157,995 1,278

47,729 155,833 1,733

D 20,386 141,816 1,733

(c) Sensor Network

#Messages #NCCC #Cycles

7,040 15,097 226

A 1,074 14,514 226

10,258 23,597 320

B 1,859 22,659 320

19,563 118,795 981

C 6,236 116,434 981

56,398 169,748 1,660

D 17,484 167,658 1,660

Table 1: Experimental results of BnB-ADOPT (first row) compared to BnB-ADOPT+ (second row)

Theorem 2 If k sends to j two consecutive COSTs with the
same content (context, lower/upper bound) and k has not
detected a context change, the second message is redundant.

Proof. Let C1 and C2 be two consecutive COSTs sent from
k to j with the same content, and contextk has not changed
between sending them. Any message may arrive to j be-
tween C1 and C2. Upon reception, the more recent values
of C1 (and later of C2) are copied in contextj (by Prior-
ityMerge (Yeoh, Felner, and Koenig 2008)). Copying C2

more recent values in contextj is not essential. Let us as-
sume that these values are not copied. Then, some mes-
sages that would have been ignored between C1 and C2 will
now be accepted. Since there is no context change between
C1 and C2, these messages will necessarily include contexts
compatible with k context, so they will update timestamps
only, generating COSTs with the same bounds. At some
point, j will receive all the more recent values of C2 (neces-
sarily before any context change). After this, j will behave
as if it would have copied C2 more recent values. So if those
values are not copied, this will not cause any harm. Because
of that, our proof concentrates on bounds. When C1 arrives:

1. C1 is not compatible with contextj , its bounds are dis-
carded. When C2 arrives: (a) C2 is not compatible with
contextj , its bounds are discarded. So, C2 is redundant.
(b) C2 is compatible with contextj , its bounds are in-
cluded in j. Since C1 was not compatible, there is at least
one agent above j that changed its value, received by j
between C1 and C2. There are one or several VALUEs on
its/their way towards k or k descendants. Upon reception,
one or several COSTs will be generated. The last of them
will be sent from k to j with more updated bounds. C2

could have been avoided because a more updated COST
will arrive to j. C2 is redundant.

2. C1 is compatible with contextj , its bounds are included.
When C2 arrives: (a) C2 is not compatible with contextj ,
its bounds are discarded. So, C2 is redundant. (b) C2 is
compatible with contextj , it bounds are included but this
causes no change in j bounds, unless bounds are reinitial-
ized. In this case there is at least one agent above j that
changed its value, same as case (1.b). C2 is redundant. 2

BnB-ADOPT+

Temporary, we define BnB-ADOPT+ as BnB-ADOPT with
the following changes: (1) the second of two consecutive
VALUEs with the same i, j and val is not sent, (2) the sec-
ond of two consecutive COSTs with the same k, j, context,
lb and ub when k detects no context change is not sent.

Theorem 3 BnB-ADOPT+ terminates with the cost of a
cost-minimal solution.

Proof. By Theorems 1 and 2, messages not sent by BnB-
ADOPT+ are redundant so they can be eliminated. BnB-
ADOPT terminates with the cost of a cost-minimal solution
(Yeoh, Felner, and Koenig 2008), so BnB-ADOPT+ also. 2

But the new algorithm is not efficient because we have
ignored thresholds. Aiming at efficiency, we define BnB-
ADOPT+ as BnB-ADOPT with the following changes:

1. i remembers for each neighbor j the last message sent,

2. a COST from j to i includes a boolean ThReq, set to true
when j threshold is initialized to∞,

3. if j has to send i a COST equal to (ignoring timestamps)
the last COST sent, the new COST is sent iff (if and only
if) j has detected a context change between them,

4. if i has to send j a VALUE equal to (ignoring timestamps)
the last VALUE sent, the new VALUE is sent iff the last
COST that i received from j had ThReq = true; upon
reception, this VALUE will update j threshold.

We tested our algorithm on binary random DCOPs, meet-
ing scheduling and sensor network. Binary random DCOPs
have 10 variables with 10 values and connectivity: 0.4, 0.6,
0.7, 0.8. Costs are selected randomly from the set {0,...,
100}. Results appear in Table 1 (a), averaged over 50 in-
stances. For meeting scheduling and sensor network formu-
lations (Yin 2008), we tested 4 cases representing different
hierarchical and topologies scenarios. Results appear in Ta-
ble 1 (b) and (c), averaged over 30 instances. Experiments
on random instances show that our algorithm reduces the
number of messages by a factor from 2 to 3 when connectiv-
ity increases. For meeting scheduling, messages are reduced
by a factor of at least 2, and for sensor networks, by a factor
between 3 and 6. We have achieved important savings for
all problems tested. BnB-ADOPT+ was able of processing
only half of messages (or less) and reach the optimal solu-
tion maintaining the number of cycles practically constant.

References
Modi, P. J.; Shen, W.; Tambe, M.; and Yokoo, M. 2005. Adopt:
asynchronous distributed constraint optimization with quality guar-
antees. Artificial Intelligence (161):149–180.

Yeoh, W.; Felner, A.; and Koenig, S. 2008. Bnb-adopt: An asyn-
chronous branch-and-bound DCOP algorithm. Proc. of AAMAS-08
591–598.

Yin, Z. 2008. USC dcop repository. Meeting scheduling and sensor
net datasets.

1260




