
Respecting Markov Equivalence in Computing
Posterior Probabilities of Causal Graphical Features

Eun Yong Kang
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095 USA

ekang@cs.ucla.edu

Ilya Shpitser
Department of Epidemiology

Harvard School of Public Health
Boston, MA 02115 USA

ishpitse@hsph.harvard.edu

Eleazar Eskin
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095 USA

eeskin@cs.ucla.edu

Abstract

There have been many efforts to identify causal graphical fea-
tures such as directed edges between random variables from
observational data. Recently, Tian et al. proposed a new dy-
namic programming algorithm which computes marginalized
posterior probabilities of directed edge features over all the
possible structures in O(n3n) time when the number of par-
ents per node is bounded by a constant, where n is the number
of variables of interest. However the main drawback of this
approach is that deciding a single appropriate threshold for
the existence of the directed edge feature is difficult due to
the scale difference of the posterior probabilities between the
directed edges forming v-structures and the directed edges
not forming v-structures. We claim that computing posterior
probabilities of both adjacencies and v-structures is necessary
and more effective for discovering causal graphical features,
since it allows us to find a single appropriate decision thresh-
old for the existence of the feature that we are testing. For
efficient computation, we provide a novel dynamic program-
ming algorithm which computes the posterior probabilities of

all of
n(n−1)

2
adjacency and n

(

n−1
2

)

v-structure features in

O(n33n) time.

Introduction

Background

In many scientific problems, identifying causal relationships
is an important part of the solution. The gold standard for
identifying causal relationships is a randomized experiment.
However in many real world situations, the randomized ex-
periment cannot be performed due to various reasons such
as ethical, practical or financial issues. Therefore identifying
causal relationships from observational data is an unavoid-
able and important step in understanding and solving many
scientific problems.

A popular tool to represent causal relationships is a graph-
ical model called a causal diagram (Pearl 1988), (Pearl
2000). A causal diagram is a directed acyclic graph (DAG),
which consists of nodes and directed edges. Nodes represent
variables of interest while directed edges between nodes rep-
resent directed causal influence between two end nodes of
those edges. A causal diagram is a data generating model,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with a bundle of directed arrows pointing to each node rep-
resenting the causal mechanism which determines values of
that node in terms of values of that node’s direct causes.

The ideal goal of inferring causal relationships from ob-
servational data is to identify the exact data generating
model. However inferring causal relationships has a funda-
mental limitation, if we only use observational data. That is,
the best we can infer with observational data is the Markov
equivalence class (Verma and Pearl 1990) of the data gener-
ating model.

The Markov equivalence class is the set of graphical mod-
els which all represent the same set of conditional indepen-
dence assertions among observable variables. All graphical
models in a Markov equivalence class share the same set of
adjacencies and v-structures. Here a v-structure represents a
node triple where two nodes are non-adjacent parents of an-
other node. If we find the correct Markov equivalence class
of the data generating model, then the Markov equivalence
class contains the true data generating model as its member.
The true generating model and other models in its Markov
equivalence class must agree on directions of certain edges,
while possibly disagreeing on others. Since all models in the
Markov equivalence class share v-structures, all edges tak-
ing part in v-structures must have the same direction in all
models in the class. Furthermore, certain other edges must
have the same direction in the entire class as well. These
edges have the property that reversing their direction would
entail the creation of a v-structure which is not present in the
class.

Previous Approaches and Their Limitations

Computing marginal posterior probabilities of graphical fea-
tures considering all the possible causal network structures
is computationally infeasible due to the exponential number
of possible network structures, unless the number of vari-
ables is small. Due to this problem, approximation methods
for computing marginal posterior probabilities of graphical
features such as directed or undirected edges have been pro-
posed. Madigan and York (1995) applied a Markov chain
Monte Carlo (MCMC) method in the space of all the net-
work structures. Friedman and Koller (2003) developed a
more efficient MCMC procedure which applies to the space
of all orderings of variables. The problem with these approx-
imation methods is that inference accuracy is not guaranteed

1175

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

in the finite runs of MCMC.

Several methods have been developed to compute the ex-
act posterior probability of graphical features using dynamic
programming algorithms. Koivisto and Sood (2004) pro-
posed a DP algorithm to compute the marginal posterior
probability of a single undirected edge in O(n2n) time,
where n is the number of variables. Koivisto (2006) also
developed a DP algorithm for computing all n(n− 1) undi-
rected edges in O(n2n) time and space. In the above two
DP algorithms, the number of adjacent node is bounded by
a constant. These methods compute the posterior probability
by marginalizing over all the possible orderings of variables
in the graphical models. These DP approaches and order
MCMC approaches require a special prior for the graphical
structure when summing over all the possible orders of the
variables. The drawback of these structure priors is that due
to averaging DAGs over variable ordering space instead of
over all possible structures, this structure prior results in bi-
ased posterior probability of features and leads to incorrect
inferences (Ellis and Wong 2008). To fix this bias problem,
new MCMC algorithms were proposed recently (Eaton and
Murphy 2007), (Ellis and Wong 2008). But these sampling-
based algorithms still cannot compute the exact posterior
probability.

Tian and He (2009) proposed a new dynamic program-
ming algorithm which computes marginalized posterior
probabilities of directed edges over all the possible struc-
tures in O(n3n) total time when the number of parents per
node is bounded by a constant. This algorithm requires
longer running time than Koivisto’s approach (2006) but it
can compute exact or unbiased posterior probabilities since
it marginalizes over all the possible structures instead of all
the possible orders of variables.

However there is a problem with the approach of predict-
ing only directed edges for the two following reasons. First,
if we predict a directed edge for two fixed nodes a and b,
there are only three possible predictions: a → b, a ← b, or
a b, where a b means no edge between a and b. If the pres-
ence of an edge is predicted, then there are two possibilities.
If the edge is constrained to always point in the same direc-
tion in every model in the Markov equivalence class, then,
in the limit, its posterior should approach 1. On the other
hand, if an edge can point in different directions in different
models in the Markov equivalence class, then, in the limit,
the posterior probability of a particular orientation should
approach the fraction of the models in the class which agree
on this orientation. For example, in the class showed in Fig-
ure 1, in the limit, P (c → d) = 1

3 while, P (c ← d) = 2
3 .

Since the scale of posterior probabilities of these two kinds
of edge features is different, this makes it difficult to decide
a single appropriate posterior threshold. However one can
say that scale difference problem in the posterior computa-
tion can be addressed by direct scale adjustment. But di-
rect scale adjustment is not possible, since we do not know
in advance which edges are compelled to point in the same
direction across the equivalence class, and which are not.
Second, we usually have only limited samples available in
real world situations. This can lead to inaccurate posterior
probability computation. This small sample error can make

Figure 1: Three graphical models from a Markov equivalent
class

the scale difference problem worse when considering only
directed edges for posterior computation, which leads to de-
termining an inappropriate decision threshold.

Proposed Approach

The scale difference of the posterior probabilities of directed
edge features between different kinds of edges makes it dif-
ficult to determine a single appropriate threshold. Therefore
to correctly recover the model, inferring only directed edge
features is not sufficient.

The following well-known theorem (Verma and Pearl
1990) will guide us in the choice of features.

Theorem 1 Any two Markov-equivalent graphs have the
same set of adjacencies and the same set of v-structures,
where a v-structure is a node triple 〈A, B, C〉, where A, C
are non-adjacent parents of B.

Theorem 1 gives us a simple set of features to test in order
to completely determine the Markov equivalence class of the
data generating model: adjacencies and v-structures. If the
posterior probabilities of adjacency features and v-structure
features are computed by marginalizing over all possible
DAGs, the scale of the posterior probabilities of these two
graphical features is the same unlike the posterior probabili-
ties of the directed edge features. Therefore we propose that
posteriors of both adjacency and v-structure features must
be computed, if one wants to recover the Markov equiva-
lence class of true data generating model by computing pos-
teriors of the graphical features. For a graph of size n, our

feature vector consists of
n(n−1)

2 binary features for adja-

cencies and n
(

n−1
2

)

binary features for v-structures. For the
efficient posterior computation, we provide a novel dynamic
programming algorithm which computes the posterior prob-

abilities of all of
n(n−1)

2 adjacency and n
(

n−1
2

)

v-structure

features in O(n33n) time.

Posterior Computation of Graphical Features

To learn the causal structure, we must compute the posteri-
ors of causal graphical features such as directed edges. The
posterior probability of a graphical feature can be computed
by averaging over all the possible DAG structures.

The posterior probability of a certain DAG G given ob-
servational data D can be represented as follows:

P (G|D) ∝ L(G)π(G), (1)

where L(G) is the likelihood score of the structure given
the observation, and π(G) is the prior of this DAG struc-
ture. The likelihood score computation can be performed

1176

based on the underlying model representing the causal rela-
tionships. We will talk more about the model that we used
for our experiments in the experiment section.

In this paper, we take widely accepted assumptions
including parameter independence, parameter modularity
(Geiger and Heckerman 1994), and prior modularity which
simplifies our learning task. Parameter independence means
that each parameter in our network model is independent.
Parameter modularity means that if a node has the same set
of parents in two distinct network structures, the probability
distribution for the parameters associated with this node is
identical in both networks. Prior modularity means that the
structural prior can be factorized into the product of the local
structure priors. Now if we assume global and local param-
eter independence, parameter modularity, and prior modu-
larity, L(G) and π(G) can be factorized into the product of
local marginal likelihoods and local structural prior scores
respectively.

P (G|D) ∝

n
∏

i=1

L(Vi|PaVi
)πi(Pai), (2)

where n is the number of variables, Vi is the ith node, PaVi

is the parent set of node Vi, and πi(Pai) is the structure prior
for the local structure which consists of node i and its par-
ent set Pai. This factorization implies that conditional in-
dependencies in the distribution of observable variables are
mirrored by a graphical notion of “path blocking” known as
d-separation (Pearl 1988), in a sense that any time two vari-
able sets X, Y are d-separated by Z in a graph G induced by
the underlying causal model , then X is conditionally inde-
pendent from Y given Z in the distribution of variables in
underlying causal model.

In stable (Pearl and Verma 1991) or faithful (Spirtes,
Glymour, and Scheines 1993) models, the converse is also
true: conditional independence implies d-separation. Infor-
mally, in faithful models all probabilistic structure embodied
by conditional independencies is precisely characterized by
graphical structure, there are no extraneous independencies
due to “numerical coincidences” in the observable joint dis-
tribution. Faithfulness is typically assumed by causal dis-
covery algorithms since it allows us to make conclusions
about the graph based on the outcome of conditional inde-
pendence tests. In addition, we assume that unobserved vari-
ables which are involved in the data generating process are
jointly independent. Finally, since we are interested in learn-
ing causal, not just statistical models, we make the causal
Markov assumption; that is, each variable Vi in our model
is independent of all its non-effects given its direct causes
(Pearl and Verma 1991).

Now the posterior probability for a feature f of interest
can be computed by averaging over all the possible DAG
structures which can be expressed as:

P (f |D)=
P (f, D)

P (D)
=

∑

Gj∈G
f+

∏n

i∈Gj
L(Vi|PaVi

)πi(Pai)
∑

Gj∈G

∏n

i∈Gj
L(Vi|PaVi

)πi(Pai)

(3)
where Gf+ is the set of DAG structures where f occurs,

G is the set of all the possible DAG structures, from i to n is
nodes in Gj , and πi(Pai) is a prior over local structures. If

we introduce an indicator function to equation (3), P (f, D)
can be expressed as follows:

P (f, D) =
∑

Gj∈G

n
∏

i∈Gj

fi(Pai)L(Vi|PaVi
)πi(Pai), (4)

where fi(Pai) is an indicator function with the value of
1 or 0. The function fi(Pai) can have the value 1, if
the Gj has the feature f of interest (directed edge, ad-
jacency or v-structure), or 0 otherwise. For the directed
edge feature j → i, if j ∈ Pai then fi(Pai) will
equal 1. For the v-structure feature a → i ← b, if
a ∈ Pai, b ∈ Pai, a /∈ Pab, and b /∈ Paa then
fi(Pai) will have 1. We can compute (3), if we know
P (f, D) =

∑

Gj∈G

∏n

i∈Gj
fi(Pai)L(Vi|PaVi

)πi(Pai),

since P (f, D) computation with f = 1 will gives us
P (D). Since the number of possible DAGs is super-

exponential O(n!2
n(n−1)

2), the brute-force approach of pos-
terior computation of all the possible graphical features

takes O(n(n − 1)n!2
n(n−1)

2) for all n(n − 1) directed

edge features and O(n
(

n−1
2

)

n!2
n(n−1)

2) for all n
(

n−1
2

)

v-
structure features, where n is the number of nodes in
DAG. In the following sections, we will explain how
to compute

∑

Gj∈G

∏n
i∈Gj

fi(Pai)L(Vi|PaVi
)πi(Pai) by

dynamic programming more efficiently. For simplicity, we
let Bi(Pai) = fi(Pai)L(Vi|PaVi

)πi(Pai).

Previously Proposed Method

Posterior Computation of Directed Edge Features
by Exploiting Root Nodes and Sink Nodes In this
section, we describe how to compute P (f, D) =
∑

Gj∈G

∏n

i∈Gj
Bi(Pai) for all directed edge features using

DP algorithm which was introduced in (Tian and He 2009).
For the summation of

∏n

i∈Gj
Bi(Pai) over all possible G by

dynamic programming, we use the set inclusion-exclusion
principle for computing unions of the overlapping sets. We
first split DAGs into sets whose DAG elements have com-
mon root nodes or sink nodes. Then P (f, D) can be com-
puted by union of those sets. Now we describe the computa-
tion of P (f, D) by exploiting sets with common root nodes.
Let V be the set of all variables of interest and let ζ+(S)
be the set of DAGs over V such that all variables in V − S
are root nodes. Then for any S ⊆ V , we define RR(S) as
follows:

RR(S) =
∑

G∈ζ+(S)

n
∏

i∈S

Bi(Pai). (5)

If we apply the set inclusion-exclusion principle to RR(V),
then we can derive a recursive formula for the dynamic pro-
gramming in terms of RR(V) as follows:

First, we define the Ai(S) as follows:

Ai(S) =
∑

Pai⊆S

Bi(Pai)=
∑

Pai⊆S

fi(Pai)L(Vi|PaVi
)πi(Pai). (6)

Then Equation (5) can be rewritten as follows:

RR(S) =

|S|
∑

k=1

(−1)k+1
∑

T⊆S,|T |=k

RR(S − T)
∏

j∈T

Aj(V − S).

(7)

1177

Now if we see Eq. (7)1, then RR(V) can be recur-
sively computed by dynamic programming with base case
RR(∅) = 1 and RR(j) = Aj(V − j). For each Aj(S),
with the assumption of fixed number of maximum parents
k, we can compute it using the truncated Möbius transform
algorithm in time O(k2n) (Koivisto and Sood 2004). Since

RR(S) for all S ⊆ V can be computed in
∑n

k=0

(

n
k

)

2k =
3n, RR(V) = P (fu→v, D) can be computed in O(3n) time
for the fixed maximum number of parents. Therefore all
n(n−1) directed edge features can be computed in O(n23n)
time.

Now we describe how to compute P (f, D) by computing
union of DAG sets with common sink nodes. For all S ⊂ V ,
let ζ(S) denote the set of all possible DAGs over S. Then
for any S ⊆ V , we define H(S) as follows:

H(S) =
∑

G∈ζ(S)

∏

i∈S

Bi(Pai). (8)

If we apply the set inclusion-exclusion principle to H(S),
then we can derive a recursive formula for the dynamic pro-
gramming in terms of H(S) as follows:

H(S) =

|S|
∑

k=1

(−1)k+1
∑

T⊆S,|T |=k

H(S−T)
∏

j∈T

Aj(S−T). (9)

Equation (9) 1 can be efficiently computed by dynamic
programming. Each H(S) can be computed in time
∑|S|

k=1

(

|S|
k

)

k = |S|2|S|−1. All H(S) for S ⊆ V can be

computed in time
∑n

k=1

(

n
k

)

k2k−1 = n3n−1. In the next

section, we will explain how to combine H(S) and RR(S)
to compute posteriors of all directed edge features which is
a factor of n faster than DP algorithm using only RR(S).

Combining H(S) and RR(S) to Compute Posteriors of
All Directed Edge Features To compute the posteriors of
all features efficiently, we extract the terms which are feature
specific from the posterior computation. After we identify
the terms which are common for all posterior computations,
we can precompute those terms, then reuse them for all pos-
terior computation. Let V be all the nodes in the DAG. For
a fixed node v, summation over all DAGs can be decom-
posed into the set of nodes which are ancestors(U) of v, non-
ancestors V−U−{v} and feature specific components. Now
the computation of posterior amounts to the summation over
DAGs over U , which corresponds to H(U) and the summa-
tion over DAGs over V − U − {v} with U ∪ {v} as root
nodes, which corresponds to RR(V −{v}−U) and feature
specific components which corresponds to Av(U).

We define Kv(U) which corresponds to RR(V −{v}−U)
for any v ∈ V and U ⊆ V − {v} as follows:

Kv(U) =
∑

T⊆V−{v}−U

(−1)|T |RR(V − {v} − U − T)
∏

j∈T

Aj(U).

(10)
Then the posteriors of u → v can be computed by sum-
mation over all the subset of V − {v} of three terms as we
mentioned above. We can express this as follows:

1 The proof of Eq. (7) and (9) can be found in (Tian and He
2009).

P (fu→v, D) =
∑

U⊆V−{v}

Av(U)H(U)Kv(U). (11)

In the Eq. (11), Av(U) is a feature specific term and H(U)
and Kv(U) are feature independent terms. To compute the
posteriors for all directed edge features, first we have to
compute the feature independent terms which include Bi,
Ai, RR, H , and Ki under the condition of f = 1. Since
for each directed edge feature, fi(Pai) will have different
values, we need to recompute Av(S), where S ⊆ V − {v}.
With the assumption of a fixed maximum indegree k, the
computation of feature independent terms takes O(n3n) in
time. And since each feature specific term Av(U) can be
computed in O(k2n) time for all U ∈ V − {v}, it take
O(kn22n) for all n(n − 1) directed edge features. There-
fore total computational complexity is O(n3n + kn22n) =
O(n3n) for all n(n− 1) directed edge features.

Novel Proposed Method

In this section, we describe a novel dynamic program-
ming algorithm which computes the posterior probabilities

of all
n(n−1)

2 adjacency and n
(

n−1
2

)

v-structure features in

O(n33n) time.

Novel DP Algorithm for Computing Posteriors of
All Adjacency Features

The adjacency feature includes both direction of directed
edge features. Therefore we can compute P (fu↔v, D)
by simply adding joint probabilities for both directions.
(P (fu↔v, D) = P (fu←v, D) + P (fu→v, D)) Since the
computational complexity for all adjacency features is same
as that of all directed edge features, we can compute all
n(n−1)

2 adjacency features in O(n3n) time.

Novel DP Algorithm for Computing Posteriors of
All V-Structure Features

Now we describe a novel DP algorithm to compute poste-

riors for all n
(

n−1
2

)

v-structure features. A directed edge
feature can be represented by one edge feature, while a v-
structure feature requires two non-adjacent parent nodes and
their common child. Therefore the computation of P (f, D)
needs to be modified accordingly.

Among three terms in the equation (11), since Kv(U)
term for v-structure feature computation is same as a di-
rected edge feature computation, we need to modify only
Av(U) and H(U) terms from the equation (11).

For the computation of posteriors of v-structure, in the
equation (6) of definition Av(U), only the indicator function
fv(Pav) needs to be modified from the equation (6). For
example, if the feature f represents the v-structure a→ v ←
b, since v-structure requires two parents a and b pointing
to node v, the indicator function fv(Pav) will have 1, if
a ∈ Pav, and b ∈ Pav, or, 0 otherwise.

Now H(U) needs to be modified for the posterior compu-
tation of v-structures. H(U) represents the summation over
the parents (U) of v. Let the v-structure feature we are test-
ing be a → v ← b. Since this v-structure requires that two

1178

parents a and b should not be adjacent, DAGs with edges be-
tween a and b should be excluded from the computation of
H(U). For (n−2) v-structures with fixed two parents a and
b, there are significant overlaps in the posterior computation.
If we compute the posterior probabilities of v-structures with
same two parents nodes at once, we can exploit these over-
laps to reduce the time and space complexity.

To this end, for all pairs of (a, b), and any S, where a ∈ V ,
b ∈ V and S ⊂ V , we define HV (S, a, b) as follows:

HV (S, a, b) =

|S|
∑

k=1

(−1)k+1
∑

T⊆S,|T |=k

HV (S − T, a, b)

∏

j∈T

ATj(S − T, a, b),

(12)

where ATj(S−T, a, b) is (1)Aj(S−T−{a, b}) when j = a
or j = b, (2) otherwise Aj(S − T). Equation (12) com-
putes the summation over all DAGs over S except the DAGs
which contain a→ b or a← b.

Then to apply our two modifications to equation (11),
H(U) needs to be replaced by HV (U, a, b) for the v-
structure a → v ← b. Now we can express P (f, D) for
v-structure feature a→ v ← b as follows:

P (fa→v←b, D) =
∑

U⊆V−{v}

Av(U)HV (U, a, b)Kv(U). (13)

where a and b are the two non-adjacent parents for v-
structure feature f that we are testing. Now we give the com-

plexity analysis of P (f, D) computation for all n
(

n−1
2

)

v-
structure features. To fully exploit the computation overlaps
in the all v-structure posterior computation, for fixed two
parents a and b, and all vi, where vi ∈ V , vi 6= a and vi 6= b,
a, b ∈ V , all (n − 2) posteriors (P (fa→vi←b, D)) for all vi

need to be computed at once. Once we compute HV (S, a, b)
for all S ⊂ V with fixed two parents a and b, we can reuse
those HV (S, a, b) for the computation of posteriors of all
v-structure with parents a and b. This precomputation takes
∑|V |

k=1

(

|V |
k

)

= 2|V | in space. For a single pair of (a, b),

where a, b ∈ U , and for all U ⊂ V , HV (U, a, b) can be

computed in O(n3n−1) time. Therefore, all
n(n−1)

2 pairs of

(a, b) can be computed in O(n33n−1) time. The computa-
tional complexity of Av(U) of v-structure is same as that of

the directed edge case. So for n
(

n−1
2

)

v-structure features,

Av(U) computation can be done in O(kn33n) time. Lastly
computation complexity for Kv(U) computation is same as
that of directed edge case, which is O(n3n) time. There-

fore we can compute P (f, D) for all n
(

n−1
2

)

v-structures in

O(n33n) time.

Experiments

In this section we empirically compare the effectiveness
of the three approaches (Inference with adjacencies + v-
structures, inference with only directed edges, and the max-
imum likelihood approach) for discovering causal graphical
features. In particular, we focus on determining which of the
three approaches allows us to choose an appropriate thresh-
old for the existence of features, which is the key step for the
discovery procedure. For this comparison, we have applied
these three approaches to a synthetic data set generated in
the following way.

The continuous-valued synthetic data sets were generated
under the assumption that the generative causal model con-
tains linear functions while unobserved variables are Gaus-
sian. The samples of each variable vi which has k parents
were thus generated using the following equation.

vi =

∑k

j=1
αjPaj(vi) + N(0, 1)

√

∑k

j=1
α2

j +2
∑

a<b
αaαbcov(Paa(vi), Pab(vi))+1

,

(14)
where Paj(vi) is the jth parent of vi, αj is the causal

coefficient of jth parent to the vi, and N(0, 1) is the
Gaussian noise with 0 mean and 1 standard deviation.
We assume that these unobserved Gaussian noise vari-
ables are independent of each other. After adding all
the effects from parents, we divide this variable by
√

∑

k

j=1
α2

j
+ 2

∑

a<b
αaαbcov(Paa(vi), Pab(vi)) + 1 to normal-

ize the variance of each variable. This synthetic data set does
not contain any missing values. For this continuous-valued
synthetic data set, we model it as linear model with Gaus-
sian noise and each parameter (αj) is estimated by maxi-
mum likelihood fashion. We give the following as the struc-
tural prior for our model.

π(G) =
1

Ndf
, (15)

where N is the number of samples and df is the degree of
freedom of given model G. The above structural prior has
Markov equivalent and modularity property which meets our
assumption, since our algorithm computes posterior proba-
bilities by summing over all possible DAG structures, and
Eq. (15) only depends on the number of samples and the
degree of freedom, which amounts to the number of edges
in G.

Now we want to compare three different prediction ap-
proaches for the task of identifying graphical features. As
we mentioned above, our hypothesis is that just predicting
directed edge features under limited sample makes it diffi-
cult to determine a single appropriate threshold for existence
of graphical features. To verify this hypothesis, we evaluated
these approaches using data sets with various sample sizes.
We randomly generated 100 causal diagrams with 5 vari-
ables. For each causal graphical model, we simulated sam-
ples under linear model with Gaussian noise as we explained
above. Three different data sets were generated, containing
50, 100, and 200 samples.

We computed the posterior probabilities for all possi-
ble graphical features by three different approaches. For
the directed edge approach, posterior probabilities for all
n(n − 1) directed edge features were computed. For adja-
cency + v-structure approach, posterior probabilities for all
n(n−1)

2 adjacency features and all n
(

n−1
2

)

v-structure fea-
tures were computed. For the ML-approach, we chose one
model which had highest likelihood score among all the pos-
sible models. If the feature exists in the maximum likelihood
model, its posterior is 1, otherwise 0.

Figure (2) shows the posterior probability distribution of
positive features (features which exist in the data generat-
ing model) and negative features (features which don’t exist

1179

(a) (b) (c)

Figure 2: (a) Directed edge approach (b) Adjacency + v-structure approach (c) Maximum likelihood approach

in the data generating model) with three approaches when
200 samples are generated. Due to space limitation, we only
show the 200 sample case, but we observed similar results
in the 50 and 100 sample cases. Figure (2) (a) represents the
posterior distribution when applying the directed edge only
approach. As can be seen in the upper and lower plots of
Fig. 1 (a), there is no clean separation for posterior proba-
bilities of edge features, which makes it difficult to choose
a threshold. Figure (2) (b) represents posterior distribution,
when adjacency + v-structure approach applied. As Figure
(2) (b) shows, the posterior of positive features are mostly
greater than 0.9 and the posterior of negative features are
mostly less than 0.5. We can clearly see that adjacency +
v-structure approach has better distinguishing power than
other approaches.

Conclusion

In this paper we propose a more effective way of identifying
the Markov equivalence class of the data generating model
from observational data by computing posteriors of graphi-
cal features. The previous approach of computing posteriors
of only directed edge features has the problem of deciding
a single appropriate threshold due to the scale difference
between directed edges forming v-structures and directed
edges not forming v-structures. We claim that computing
posteriors of both adjacencies and v-structures is necessary
and more effective for discovering graphical features, since
it allows us to find a single appropriate decision threshold for
the existence of the features that we are testing. Empirical
validation supports that adjacency + v-structure approach is
more effective than traditional directed edge only approach.
For the efficient computation, we provide a novel dynamic

programming algorithm which computes all
n(n−1)

2 adja-

cency and all n
(

n−1
2

)

v-structure features in O(n33n) time
based on DP suggested in (Tian and He 2009).

Acknowledgments

The authors would like to thank Buhm Han and the anony-
mous reviewers for helpful advice. E.Y.K and E.E. are
supported by National Science Foundation grants 0513612,
0731455, 0729049 and 0916676, and NIH grants K25-

HL080079, U01-DA024417 and N01-ES-45530.

References

Eaton, D., and Murphy, K. 2007. Bayesian structure learn-
ing using dynamic programming and MCMC. In Uncer-
tainty in Artificial Intelligence (UAI).

Ellis, B., and Wong, W. H. 2008. Learning causal Bayesian
network structures from experimental data. Journal of the
American Statistical Association 103:778–789.

Friedman, N., and Koller, D. 2003. Being Bayesian about
network structure. In Machine Learning, 95–125.

Geiger, D., and Heckerman, D. 1994. Learning Gaus-
sian networks. Technical Report MSR-TR-94-10, Redmond,
WA.

Koivisto, M., and Sood, K. 2004. Exact Bayesian struc-
ture discovery in Bayesian networks. In Journal of Machine
Learning Research, 594–573.

Koivisto, M. 2006. Advances in exact Bayesian structure
discovery in Bayesian networks. In Uncertainty in Artificial
Intelligence (UAI).

Madigan, D., and York, J. 1995. Bayesian graphical models
for discrete data. In International Statistical Review, 215–
232.

Pearl, J., and Verma, T. S. 1991. A theory of inferred
causation. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Second International Con-
ference, 441–452.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan and Kaufmann, San Mateo.

Pearl, J. 2000. Causality: Models, Reasoning, and Infer-
ence. Cambridge University Press.

Spirtes, P.; Glymour, C.; and Scheines, R. 1993. Causation,
Prediction, and Search. Springer Verlag, New York.

Tian, J., and He, R. 2009. Computing posterior probabilities
of structural features in Bayesian networks. In Uncertainty
in Artificial Intelligence (UAI).

Verma, T. S., and Pearl, J. 1990. Equivalence and synthesis
of causal models. Technical Report R-150, Department of
Computer Science, University of California, Los Angeles.

1180

