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Abstract

Knowledge transfer has been suggested as a useful approach
for solving large Markov Decision Processes. The main idea
is to compute a decision-making policy in one environment
and use it in a different environment, provided the two are
”close enough”. In this paper, we use bisimulation-style met-
rics (Ferns et al., 2004) to guide knowledge transfer. We pro-
pose algorithms that decide what actions to transfer from the
policy computed on a small MDP task to a large task, given
the bisimulation distance between states in the two tasks. We
demonstrate the inherent ”pessimism” of bisimulation met-
rics and present variants of this metric aimed to overcome
this pessimism, leading to improved action transfer. We also
show that using this approach for transferring temporally ex-
tended actions (Sutton et al., 1999) is more successful than
using it exclusively with primitive actions. We present theo-
retical guarantees on the quality of the transferred policy, as
well as promising empirical results.

Introduction
Autonomous intelligent agents are often faced with the prob-
lem of making decisions with favorable long-term conse-
quences in the presence of stochasticity. In this paper, we
consider this problem in the context of Markov Decision
Processes (MDPs) (Puterman, 1994), in which the agent has
to find a way of behaving that maximizes its long-term ex-
pected return. Much of the work on using MDPs in AI
and operations research focuses on solving a single problem.
However, in practice, AI agents often exist over a longer pe-
riod of time, during which they may be required to solve
several, related tasks. For example, a physical robot may be
in use for a period of several years, during which it has to
navigate to different locations, pick up different objects, etc.
Typically, these tasks are distinct, but share important prop-
erties (e.g., the robot may be located in one specific building,
where all its tasks take place). This type of scenario has mo-
tivated a significant amount of recent research in knowledge
transfer methods for MDPs. The idea is to allow an agent to
continue to re-use the expertise accumulated while solving
past tasks, over its lifetime. Several approaches for knowl-
edge transfer in MDPs have been proposed; Taylor & Stone
(2009) provide a comprehensive survey. Broadly speaking,
the goal of knowledge transfer is two-fold. On one hand, it
should speed up the process of solving new tasks. On the
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other hand, it should enable solving tasks that are very com-
plex in the given (raw) representation. The first goal has
been emphasized more in reinforcement learning, while the
second goal is more prevalent in general machine learning.

In this paper we focus on transferring knowledge in MDPs
that are specified fully by their states, actions, rewards and
model of state transition probabilities. The knowledge to be
transferred is in the form of a policy, i.e. a way of behaving
for the agent. The goal is to specify a transfer method with
strong guarantees on the expected returns of this policy in
the new MDP. In particular, we focus on bisimulation met-
rics (Ferns et al., 2004; Taylor et al., 2009), which measure
the long-term behavioral similarity of different states. States
which are “close” in terms of these metrics also have sim-
ilar expected returns (Ferns et al., 2004). However, bisim-
ulation suffers from three drawbacks. The metrics are very
expensive to compute; the optimal policy or value function
are irrelevant to the metrics; and their estimates tend to be
too pessimistic. We present a variant of the bisimulation
metrics which overcomes these problems and improves the
empirical behavior significantly, while still retaining good
theoretical properties (in some cases).

Previous work has also illustrated the fact that using tem-
porally extended actions (and their models) can significantly
improve knowledge transfer in MDPs (e.g., Perkins & Pre-
cup, 1999, Andre & Russell, 2002; Ravindran & Barto,
2003; Konidaris & Barto, 2007). Intuitively, it is easier to
transfer high-level controls rather than low-level primitive
actions. For instance, someone giving driving directions will
use high-level specifications (such as street names and phys-
ical landmarks), and will not mention lower-level controls,
such as how to drive a car. This overcomes many of the diffi-
culties that arise when comparing dynamics on a primitive-
action level: different individuals will have differences in
how they drive, but the high-level description will “smooth”
them out. We establish bisimulation metrics for MDPs with
temporally extended actions, using the framework of options
(Sutton et al., 1999). All theoretical results hold in this case
as well, and options provide better empirical behavior.

We first introduce notation and discuss related work, then
present knowledge transfer using bisimulation metrics and
discuss its theoretical properties; the approximation to the
bisimulation metrics follows. The use of bisimulation with
options is introduced, followed by an empirical illustration.
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Background
A Markov decision process (MDP) is a 4-tuple 〈S,A,P,R〉,
where S is a finite state space, A is a finite set of actions,
P : S×A→Dist(S) 1 specifies the next-state transition prob-
abilities and R : S×A→ R is the reward function. A policy

: S → A specifies the action choice for each state. The
value of a state s ∈ S under a policy is defined as: V (s) =
E { t=0

trt |s0 = s}, where rt is the reward received at time
step t, and ∈ (0,1) is a discount factor. Solving an MDP
means finding the optimal value V ∗(s) = max V (s) and the
associated policy ∗. In a finite MDP, there is a unique op-
timal value function and at least one deterministic optimal
policy. The action-value function, Q∗ : S×A→R, gives the
optimal value for each state-action pair, given that the op-
timal policy is followed afterwards. It obeys the Bellman
equations:

Q∗(s,a) = R(s,a)+
s′∈S

P(s,a)(s′)max
a′∈A

Q∗(s′,a′)

Several types of knowledge can be transferred between
MDPs. Existing work includes transferring models (e.g.,
Sunmola & Wyatt, 2006), using samples obtained by inter-
acting with one MDP to learn a good policy in a different
MDP (e.g., Lasaric et al., 2008), transferring values (e.g.,
Ferrante et al., 2008 ), or transferring policies. In this pa-
per, we focus on the latter approach, and mention just a
few pieces of work, most closely related to ours. The main
idea of policy transfer methods is to take policies learned
on small tasks and apply them to larger tasks. Sherstov &
Stone (2005) show how policies learned previously can be
used to restrict the policy space in MDPs with many actions.
Taylor et al. (2007) transfer policies, represented as neural
network action selectors, from a source to a target task. A
hand-coded mapping between the two tasks is used in the
process. MDP homomorphisms (Ravindran & Barto, 2002)
allow correspondences to be defined between state-action
pairs, rather than just states. Follow-up work (e.g. Ravin-
dran & Barto, 2003; Konidaris & Barto, 2007) uses MDP
homomorphisms and options to transfer knowledge between
MDPs with different state and action spaces. Wolfe & Barto
(2006) construct a reduced MDP using options and MDP ho-
momorphisms, and transfer the policy between two states if
they both map to the same state in the reduced MDP. Unfor-
tunately, because the work is based on an equivalence rela-
tion, rather than a metric, small perturbations in the reward
or transition dynamics make the results brittle. Soni & Singh
(2006) transfer policies learned in a small domain as options
for a larger domain, assuming that a mapping between state
variables is given. A closely related idea was presented in
(Sorg & Singh, 2009) where the authors use soft homomor-
phisms to perform transfer and provide theoretical bounds
on the loss incurred from the transfer.

Knowledge transfer using bisimulation metrics
Suppose that we are given two MDPs M1 = 〈S1,A,P,R〉,
M2 = 〈S2,A,P,R〉 with the same action sets, and a metric

1Dist(X) is the set of distributions over the set X

d : S1× S2 → R between their state spaces. We define the
policy d on M2 as

∀t ∈ S2. d(t) = ∗(argmin
s∈S1

d(s, t)) (1)

In other words, d(t) does what is optimal for the state in
S1 that is closest to t according to metric d. Note that the
mapping between the states of the two MDPs is defined im-
plicitly by the distance metric d.

Bisimulation for MDPs was defined by (Givan et al.,
2003) based on the notion of probabilistic bisimulation from
process algebra (Larsen & Skou, 1991). Intuitively, bisimi-
lar states have the same long-term behavior.

Definition 1. A relation E ⊆ S×S is said to be a bisimula-
tion relation if whenever sEt:

1. ∀a ∈ A. R(s,a) = R(t,a)
2. ∀a.∀C ∈ S/E. s′∈C P(s,a)(s′) = s′∈C P(t,a)(s′)

where S/E is the set of all equivalence classes in S w.r.t
equivalence relation E. Two states s and t are called bisim-
ilar, denoted s ∼ t, if there exists a bisimulation relation E
such that sEt.

Ferns et al., (2004) defined a bisimulation metric and
proved that it is an appropriate quantitative analogue of
bisimulation. The metric is not brittle, like bisimulation: if
the transitions or rewards of two bisimilar states are changed
slightly, the states will no longer be bisimilar, but they will
remain close in the metric. A metric d is a bisimulation met-
ric if for any s, t ∈ S, d(s, t) = 0⇔ s∼ t.

The bisimulation metric is based on the Kantorovich
probability metric TK(d)(P,Q) applied to state probability
distributions P and Q, where d is a semimetric on S. It is
defined by the following primal linear program (LP):

max
ui,i=1,··· ,|S|

|S|

i=1
(P(si)−Q(si))ui (2)

subject to: ∀i, j.ui−u j ≤ d(si,s j)
∀i.0≤ ui ≤ 1

Intuitively, TK(d)(P,Q) calculates the cost of “converting”
P into Q under d. The dual formulation, which is typically
solved, is a Minimum Cost Flow (MCF) problem (see Ferns
et al., 2004 for details).

Theorem 2. (From Ferns et al., 2004) Let M be
the set of all semimetrics on S and define F :
M → M by F(d)(s,s′) = maxa∈A(|R(s,a) − R(s′,a)| +
TK(d)(P(s,a),P(s′,a))). Then F has a least-fixed point,

d∼, and d∼ is a bisimulation metric.

Phillips (2006) used bisimulation metrics to transfer poli-
cies in MDPs, assuming that a state mapping between the
MDPs is given. Here, we relax this requirement and let the
mapping be determined automatically from bisimulation.

When transferring knowledge between MDPs, we are
only interested in computing the distance between the states
in S1 and the states in S2, but not between states of the same
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MDP. Because of this, the primal LP (2) can be rewritten as:

max
ui,i=1,··· ,|S1|,vi,i=1,··· ,|S2|

|S1|

i=1
P(si)ui−

|S2|

j=1
Q(s j)v j

subject to: ∀i, j.ui− v j ≤ d(si,s j)
∀i.−1≤ ui ≤ 1

Let V ∗1 (Q∗1) and V ∗2 (Q∗2) denote the optimal policies (optimal
Q-values) for M1 and M2, respectively. The following lem-
mas are necessary for Theorem 5.
Lemma 3. ∀s ∈ S1, t ∈ S2, |V ∗1 (s)−V ∗2 (t)| ≤ d∼(s, t).
Proof: See the proof of Theorem 5.1 in (Ferns et al., 2004)
Lemma 4. For all t ∈ S2 let st = argmins∈S1 d∼(s, t) and
aT

t = ∗(st). Then |Q∗2(t,aT
t )−V ∗1 (s)| ≤ d∼(s, t).

Proof.

|Q∗2(t,aT
t )−V ∗1 (s)|= |Q∗2(t,aT

t )−Q∗1(s,a
T
t )|

≤max
a∈A

{∣∣R(t,aT
t )−R(s,aT

t )
∣∣

+

∣∣∣∣∣t ′∈S2

P(t,aT
t )(t ′)V ∗2 (t ′)−

s′∈S1

P(s,aT
t )(s′)V ∗1 (s′)

∣∣∣∣∣
}

≤max
a∈A

{∣∣R(t,aT
t )−R(s,aT

t )
∣∣+ TK(d∼)(P(t,a),P(s,a))

}
= d∼(s, t)

where the second to last line follows from the fact that V ∗1
and V ∗2 together constitute a feasible solution to primal LP
TK(d∼) by Lemma 3.

We can now use the last lemmas to bound the loss incurred
when using the transferred policy.
Theorem 5. For all t ∈ S2 let aT

t = ∼(t). Then:
|Q∗2(t,aT

t )−V ∗2 (t)| ≤ 2mins∈S1 d∼(s, t).
Proof: Let st = argmins∈S1 d∼(s, t). We have:

|Q∗2(t,aT
t )−V ∗2 (t)| ≤ |Q∗2(t,aT

t )−V ∗1 (st)|+ |V ∗1 (st)−V ∗2 (t)|
≤ 2d∼(st , t) (by Lemmas 4 and 3)
= 2min

s∈S1
d∼(s, t) �

The following simple example proves that the above
bound is tight. Consider the following two systems:

s

a,[1+ ]
��

b,[1− ]
		

t

a,[0]
��

b,[2]
		

s′

a,b,[0]

XX t ′

a,b,[0]

XX

The two available actions are a and b. The numbers in brack-
ets indicate the reward received when following that branch.
The optimal action for state s is a, yielding V ∗1 (s) = 1 + ,
while the optimal action for state t is b, yielding V ∗2 (t) = 2.
Since s′ and t ′ are bisimilar states, s and t have the same
probability of transitioning to all bisimulation equivalence

classes. Thus, d∼(s, t) = 1+ and d∼(s′, t) = 2; so the pol-
icy from s will be transferred to t, yielding Q∗2(t,a

T
t ) = 0. We

then have |Q∗2(t,aT
t )−V ∗2 (t)|= 2≤ 2(1+ ) = 2d∼(s, t).

A shortcoming of the bisimulation approach is that it re-
quires both systems to have the same action sets. This not
only restricts the target domain to those that have equal ac-
tion sets as the target, but it also means the transfer will not
work if the target domain has a different ordering for the
actions. To overcome this problem, Taylor et al. (2009) in-
troduced lax bisimulation metrics, dL. The idea is to have
a metric for state-action pairs rather than just for state pairs.
Given two MDPs M1 = 〈S1,A1,P1,R1〉M2 = 〈S2,A2,P2,R2〉,
for all s∈ S1, t ∈ S2, a∈ A1 and b∈ A2, let dL((s,a),(t,b)) =
|R1(s,a)−R2(t,b)|+ TK(dL)(P1(s,a),P2(t,b)). From the
distance between state-action pairs we can then define a state
lax-bisimulation metric. We use the same symbol dL for the
state lax-bisimulation metric, but the arguments will resolve
any ambiguity. For all s∈ S1 and t ∈ S2, the metric is defined
as: dL(s, t) = max(maxa∈A1 minb∈A2 d((s,a),(t,b)),
maxb∈A2 ,mina∈A1 d((s,a),(t,b))) The transferred policy
can be computed as follows.

Algorithm 1 laxBisimTransfer(S1,S2)
1: Compute dL
2: for all t ∈ S2 do
3: st ← argmins∈S1 dL(s, t)
4: bt = minb∈A2 dL((st ,

∗(st)),(t,b))
5: L(t)← bt
6: end for
7: return L

In other words L(t) finds the closest state s∈ S1 to t under
dL and then chooses the action b from t that is closest to
∗(s). With little effort we obtain the following result.

Theorem 6. For all t ∈ S2, let aT
t = L(t); then |Q∗2(t,aT

t )−
V ∗2 (t)| ≤ 2mins∈S1 dL(s, t).

The following example demonstrates that the bound of
Theorem 6 is tight.

s

a,[0]
� �

b,[1− ]
		

t

a,[0]
��

b,[2]
	 	

s′

a,b,[0]

XX t ′

a,b,[0]

X X

We can see that dL(s, t) = dL((s,b),(t,b)) = 1 + and
dL(s′, t) = 2, so the policy from s will be used to transfer
to t. Since ∗(s) = b and a = argminc∈{a,b} d((s,b),(t,c)),

T (t) = a, yielding Q∗2(t,a
T
t ) = 0. Thus, |Q∗2(t,aT

t ) −
V ∗2 (t)|= 2≤ 2(1+ ) = dL(s, t).

Speeding up the computation
A problem that haunts bisimulation methods is the computa-
tion time. Because many MCF problems have to be solved,
the time it takes to compute these metrics is prohibitive. Al-
though we are considering all actions in the source system,
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we really only transfer the optimal ones. This suggests a
simple way to modify the lax bisimulation approach to speed
up the computation of the metric by only considering the
optimal actions in the source system. Given two MDPs
M1 = 〈S1,A1,P1,R1〉 M2 = 〈S2,A2,P2,R2〉, for all s ∈ S1,
t ∈ S2 and b ∈ A2, where a∗s = ∗(s),

d≈(s,(t,b)) = |R1(s,a∗s )−R2(t,b)|
+ TK(dL)(P1(s,a∗s ),P2(t,b))

Again, we use the same symbol d≈ for the state metric, but
the arguments will resolve any ambiguity:

∀s ∈ S1,∀t ∈ S2, d≈(s, t) = max
b∈A2

d≈(s,(t,b))

We can now use Algorithm 1 again, with the new metric d≈,
to obtain the transferred policy ≈. In other words ≈(t)
finds the closest state s ∈ S1 to t under d≈ and then chooses
the action b from t that is closest to ∗(s).

Lemma 7. For all s ∈ S1, t ∈ S2 |V ∗1 (s)−V ∗2 (t)| ≤ d≈(s, t).

Proof: |V ∗1 (s)−V ∗2 (t)|= |Q∗1(s,a∗s )−Q∗2(t,a
∗
t )|

≤ |R(s,a∗s )−R(t,a∗t )|+ TK(d≈(P(s,a∗s ),P(t,a∗t ))
by a similar argument as for Lemma 4

= d≈((s,a∗s ),(t,a
∗
t ))≤ d≈(s, t) �

Corollary 8. For all s ∈ S1, t ∈ S2 and b ∈ A2, |Q∗2(t,b)−
V ∗1 (s)| ≤ d≈(s, t).

Corollary 9. For all s ∈ S1, t ∈ S2, let aT
t = ≈(t). Then

|Q∗2(t,aT
t )−V ∗1 (s)| ≤ d≈(s, t).

The last results yield the following theorem.

Theorem 10. For all t ∈ S2 let aT
t = ≈(t), then

|Q∗2(t,aT
t )−V ∗2 (t)| ≤ 2mins∈S1 d≈(s, t).

This last result confirms our claim that we really need
only consider the optimal actions in the source MDP. How-
ever, there is still a problem inherent to the previous trans-
fers, illustrated below. We only indicate the optimal actions
in the source system.

s1

a∗s1
,[1] ��?

??
??

??
? s2

a∗s2
,[3]����

��
��

��
t

a,[1]
��

b,[2]
		

s′

a∗s′ ,[0]

XX t ′

a,b,[0]

XX

We can see that d≈(s1, t) = 1, V ∗(s1) = 1, d≈(s2, t) = 2 and
V ∗(s2) = 3, but ≈(t) = argminc∈{a,b} d≈((s1,a∗s1

),(t,c)) =
a, yielding V T (t) = 1 < 2 = V ∗(t). This illustrates an un-
derlying problem: when performing the transfer the target
system is trying to find the state in the source system which
it can most closely simulate, regardless of the actual value
this produces. From Corollary 9 we obtain another interest-
ing result.

Corollary 11. For all s ∈ S1, t ∈ S2, let aT
t = ≈(t). Then

Q∗2(t,a
T
t )≥V ∗1 (s)−d≈(s, t).

Algorithm 2 pessTransfer(S1,S2)
1: Compute d≈
2: for All t ∈ S2 do
3: for All s ∈ S1 do
4: LB(s, t)←V ∗1 (s)−d≈(s, t)
5: end for
6: st ← argmaxs∈S1 LB(s, t)
7: bt = minb∈A2 d≈(st ,(t,b))
8: Pess(t)← bt
9: end for

10: return L

With this result we now have a lower bound on the value
of the action transferred which takes into consideration the
value function in the source system. This suggests a differ-
ent algorithm to obtain transferred policy Pess, shown di-
rectly above.

In other words Pess(t) uses the source state with the high-
est guaranteed lower bound on the value of its optimal ac-
tion. This overcomes the problem of the last example.

Optimistic approach
The idea of the pessimistic approach is appealing as it uses
the value function of the source system as well as the metric
to guide the transfer. However, there is still an underlying
problem in all of the previous algorithms. This is in fact
a problem with bisimulation when used for transfer. There
is an inherent “pessimism” in bisimulation: we always con-
sider the action that maximizes the distance between two
states. This pessimism is what equips bisimulation with all
the mathematical guarantees, since we are usually “upper-
bounding”. However, one may (not infrequently) encounter
situations where this pessimism produces a poor transfer.
For instance, assume there is a source state s whose opti-
mal action can be transferred with almost no loss as action
b in a target state t (i.e. d≈(s,(t,b)) is almost 0); however,
assume there is another action c in t such that d≈(s,(t,c))
is very large. This large distance may disqualify state s as a
transfer candidate for state t, when it may very well be the
best choice! The inherent pessimism of bisimulation would
have overlooked this ideal transfer. If we would have taken
a more “optimistic” approach, then we would have ignored
d≈(s,(t,c)) and focused on d≈(s,(t,b)). This idea motivates
the main algorithmic contribution of the paper.

We start by defining a new metric, dOpt(s, t) =
minb∈A2 d≈((s,a∗s ),(t,b)), and use Algorithm 2 but with
dOpt instead of d≈ in the computation of LB(s, t) to obtain
our transferred policy Opt . In other words Opt(t) chooses
the action with the highest optimistic lower bound on the
value of the action. Unfortunately, by removing the pes-
simism we lose the theoretical properties but we expect to
obtain better results in practice.

Bisimulation metrics for options
An option o is a triple 〈Io, o, o〉, where Io ⊆ S is the set of
states where the option is enabled, o : S→ Dist(A) is the
policy for the option, and o : S→ [0,1] is the probability
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Table 1: Running times (in seconds) and ‖V ∗2 −V T
t ‖

First instance (4to4) Second instance (4to4) Second instance (4to3) Second instance (3to4)
Algorithm Time ‖V ∗2 −V T

t ‖ Time ‖V ∗2 −V T
t ‖ Time ‖V ∗2 −V T

t ‖ Time ‖V ∗2 −V T
t ‖

Bisim 15.565 0.952872 - - - - - -
Lax-Bisim 66.167 0.847645 128.135 0.749583 67.115 0.749583 100.394 0.749583
Pessimistic 25.082 0.954625 47.723 0.904437 24.125 0.875533 37.048 0.904437
Optimistic 23.053 0.335348 47.710 0.327911 24.649 0.360802 39.672 0.002052

of the option terminating at each state (Sutton et al., 1999).
Options are temporally abstract actions and generalize one-
step primitive actions. Given that an option o is started at
state s, one can define Pr(s′|s,o) as the discounted probabil-
ity of ending in state s′ given that the option started in state s.
Similarly, one can define the expected reward received while
executing the option as R(s,o) (see Sutton et al., 1999 for
details).
Definition 12. A relation E ⊆ S×S is said to be an option-
bisimulation relation if whenever sEt:

1. ∀o,R(s,o) = R(t,o)
2. ∀o,∀C ∈ S/E. s′∈C Pr(s′|s,o) = s′∈C Pr(s′|t,o)
Two states s and t are said to be option-bisimilar if there
exists an option-bisimulation relation E such that sEt. Let
s∼O t denote the maximal option-bisimulation relation.

As before, a metric d is an option-bisimulation metric if
for any s, t ∈ S, d(s, t) = 0⇔ s∼O t.

Ferns et al. (2004) pass the next state transition probabil-
ities in to TK(d). However, we need to use Pr(·|s,o), which
is a sub-probability distribution. To account for this, we add
two dummy states to the MCF problem, meant to absorb any
leftover probability mass. These dummy nodes are still con-
nected like the other nodes, but with a cost of 1 (see Van
Breugel & Worrell, 2001 for more details).
Theorem 13. Let F(d)(s, t) = maxo∈OPT (|R(s,o) −
R(t,o)|+ TK(d)(Pr(·|s,o),Pr(·|t,o)). Then F has a least
fixed-point, d∼ which is an option-bisimulation metric.

The proof is almost identical to that of Theorem 4.5 in
Ferns et al, (2004). As shown there, d∼ can be approximated
to a desired accuracy by applying F for d ln

ln e steps. All
other metric approximations presented so far generalize to
the option setting in a similar, straightforward way.

Experimental results
To illustrate the performance of the policy transfer algo-
rithms, we used the gridworld task of Sutton et al., (1999),
consisting of four rooms connected by four hallways. There
are four primitive actions: ∧ (up), ∨ (down), < (left) and >
(right). When one of the actions is chosen, the agent moves
in the desired direction with 0.9 probability, and with 0.1
probability uniformly moves in one of the other three direc-
tions or stays in the same place. Whenever a move would
take the agent into a wall, the agent does not move.

There are four global options available in every state,
analogous to the ∧, ∨, < and > primitive actions. We will
refer to them as u, d, l and r, respectively. If an agent
chooses option u, then the option will take it to the hallway

above its position. If there is no hallway in that direction,
then the option will take the agent to the middle of the upper
wall. The option terminates as soon as the agent reaches the
respective hallway or position along the wall. All other op-
tions are similar. There is a single goal in the right hallway,
yielding a reward of 1. All other rewards are 0.

The above topology for the rooms can be instantiated
with different numbers of cells. We started with an instance
where there are only 8 states: one for each of the rooms,
and one for each of the hallways, with the goal in the right-
most hallway. This domain only has 4 options, which are
simply the primitive actions. The various metrics (d∼, dL,
d≈, and dOpt ) were computed between this small problem
and each of the larger problems, using a desired accuracy of

= 0.01, then the policy transfer algorithms were applied.
For all experiments we used the CS2 algorithm for solving
MCF problems (Frangioni & Manca, 2006) and a discount
factor of = 0.9.

We used a domain with 44 states as target for the trans-
fer. In the first instance the target domain only had primitive
actions. In the second case, the target had both primitive ac-
tions and options. The original bisimulation metric approach
could not be run because of the difference in number of op-
tions. We also ran experiments where the target system only
has 3 rooms (bottom right room was removed), but source
still has 4 rooms, and where the source system only has 3
rooms (bottom right room was removed) and target system
has 4 rooms. Table 1 displays the running times of the vari-
ous algorithms, as well as ‖V ∗2 −V T

2 ‖ .
If we had a model distribution from which problems were

sampled and we wanted to avoid solving the value func-
tion for each sampled model, we could use our algorithms
to transfer the policy from the small source to just one of the
target systems (the mean model, for instance), and use that
policy for all of the other samples. Furthermore, this single
transferred policy can be used as an initial policy for learn-
ing on any of the sampled systems. To illustrate this idea,
we sampled 30 models of the large domain from an underly-
ing Dirichlet distribution with parameter = (46,1,1,1,1),
where the first element corresponds to the probability of
landing in the intended target state and the other parameters
to landing in any of the other possible states. This Dirich-
let distribution was used to sample the transition dynamics
for each state-action pair in the target system. The policy
transferred to the mean model is used as a starting point for
Q-learning. More precisely, if the current Q-value estimate
for the action suggested by the policy would be best, this ac-
tion would be taken. Figure 1 shows the performance of the
various algorithms in this scenario, averaged over 30 inde-
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pendent runs. The optimistic approach is clearly better than
the other methods, while the other methods lag behind regu-
lar Q-learning. Table 1 shows the advantage of this method
in terms of running time and value function bounds as well.
As expected, using options is better than using just primitive
actions.

Figure 1: Comparison of performance of transfer algo-
rithms: optimistic method (black) no transfer (dark blue),
lax bisimulation (green), pessimistic (light blue) and bisim-
ulation (red). The graphs correspond to different tasks.

Discussion and future work
The results we obtained are very promising; however, more
empirical experience, in other domains, is needed. Bowl-
ing & Veloso (1999) derive a bound based on the Bellman
error quantifying the loss of optimality when using policies
of sub-problems to speed up learning. The motivation for
considering solutions to sub-problems is similar to the mo-
tivation for using options in our case. Their bound is ap-
plicable for a particular definition of sub-problem, whereas
our bounds are general. Sorg & Singh (2009) use soft ho-
momorphisms to transfer policies, and derive bounds on the
loss. The state mapping they suggest is loosely based on
MDP homomorphisms and does not have continuity prop-
erties with respect to its underlying equivalence, as is the
case for bisimulation metrics. Our bounds are tighter be-
cause they are state-dependent while their bound is uniform
over the state space. We are currently investigating ways to
approximate the metrics further, e.g. by approximating the
Kantorovich metric, or clustering states before running the
MCF solver to reduce the number of constraints and vari-
ables. An approach such as suggested in (Castro et al., 2009)
could be used to refine the clusters in a principled way. The
pessimistic and optimistic methods could be incorporated
together into a branch-and-bound approach to search for a
good policy that could be transferred. We are currently in-
vestigating this idea as well.
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