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Abstract

‘We present a novel method to control a biped humanoid
robot to walk on unknown inclined terrains, using an
online learning algorithm to estimate in real-time the
local terrain from proprioceptive and inertial sensors.
Compliant controllers for the ankle joints are used to
actively probe the surrounding surface, and the mea-
sured sensor data are combined to explicitly learn the
global inclination and local disturbances of the terrain.
These estimates are then used to adaptively modify the
robot locomotion and control parameters. Results from
both a physically-realistic computer simulation and ex-
periments on a commercially available small humanoid
robot show that our method can rapidly adapt to chang-
ing surface conditions to ensure stable walking on un-
even surfaces.

Introduction

The main advantage of legged locomotion over wheeled lo-
comotion is that legs have the capability of climbing rougher
terrain than wheeled or tracked vehicles. Unfortunately, this
ideal is often not achieved in reality, especially for the cur-
rent generation of bipedal humanoid robots. Many walking
controller implementations for humanoid robots assume per-
fectly flat surfaces, and even a slight deviation in the floor
can lead to serious instabilities in these controllers. In this
manuscript, we propose a novel method to learn and adapt to
uneven terrain, and demonstrate how our methods can stabi-
lize walking in humanoid robots.

The problem of legged walking control on uneven
surfaces has been studied by a number of researchers
(Hashimoto et al. 2006; Hyon 2009; Jenkins, Wrotek,
and McGuire 2007; Kalakrishnan et al. 2009; Kim et al.
2007; Kim, Park, and Oh 2007; Mikuriya et al. 2005;
Kolter, Rodgers, and Ng 2008; Liu, Chen, and Veloso 2009;
Ogino, Toyama, and Asada 2007; Park and Kim 2009;
Pongas, Mistry, and Schaal 2007; Ratliff, Bagnell, and Srini-
vasa 2007; Rebula et al. 2007; Sano et al. 2008; Yamaguchi,
Takanishi, and Kato 1994). This problem can be divided into
two parts: (a) using sensor information to create a model of
the surrounding terrain, and (b) constructing controllers to
walk on rough terrains. Much of the previous research in the
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literature have focused on the second part of this problem,
such as building reactive feedback controllers to walk on
uneven surfaces without an explicit model of the surface. In
these approaches, the terrain model is implicitly represented
in parameters of the feedback controller and tuned indirectly.
In addition, much of this work has been implemented on pro-
prietary hardware platforms, using special hardware to help
mechanically stabilize the robot platform (Sano et al. 2008;
Hashimoto et al. 2006). More recent work on quadruped lo-
comotion over uneven terrain assumes that a precise model
of the terrain is given, and uses motion planning techniques
with perfect state and terrain information (Kalakrishnan et
al.  2009; Kolter, Rodgers, and Ng 2008; Pongas, Mis-
try, and Schaal 2007; Ratliff, Bagnell, and Srinivasa 2007;
Rebula et al. 2007). Obviously, this has clear limitations in
real world implementations where noise and uncertainty are
much greater problems.

In this work, we show how to use existing hardware on
bipedal robots to address the sensing part of the problem
using online machine learning techniques. By incorporating
electronic compliance and foot pressure sensors, the swing
foot is used to provide noisy estimates of the local gradient
of the contact point, and the computed pose of the foot from
joint encoders and the inertial measurement unit is used to
rapidly learn an explicit model of the surface the robot is
walking upon.

Our proposed framework has a number of key advantages.
We show how algorithms for surface measurement, terrain
model estimation, and adaptive walking control can be sep-
arately analyzed and integrated without having to consider
the full complicated dynamics of the robot and environment.
Our approach also uses direct sensory information from the
foot, thus enabling more rapid learning of the surround-
ing environmental characteristics compared to other meth-
ods that depend upon indirect measurement from the torso
alone.

To show the effectiveness of our approach, we first
demonstrate our algorithms using a freely available robot
simulation package that we have developed. This simula-
tion environment allows us to perform many trials to quan-
tify the performance of our approach. In addition, we
have performed experiments using a commercially available
small humanoid robot platform without any special hard-
ware modifications. In spite of limitations in the hardware
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Figure 1: Side and frontal view of surface sensing. Foot

position displacement f:l and foot normal fn are calculated
by forward kinematics using inertial sensors and joint angle
readings.

platform, our results show that our method can rapidly esti-
mate the surface gradient, enabling the robot to successfully
walk across unknown surfaces.

This paper is structured as follows. First we describe
our method to probe the shape of the walking surface us-
ing a compliant swing foot, and show how online learning is
used to estimate an explicit surface model in real-time using
the measured foot position and angles. Then we demon-
strate our walk controller for rough terrain when the surface
model is known and estimated from the sensors. We quan-
tify our results from simulation as well as experiments on a
humanoid robot, and conclude with a discussion of our find-
ings.

Online Learning of Uneven Terrain

When bipedal animals walk on unknown terrains without vi-
sual feedback, they can cautiously sense the local surface
using proprioception and force feedback. A foot is placed
into an expected landing position until the ground reaction
force is felt, and the location and shape of the surface can be
estimated from the foot landing position and angle. In situa-
tions where the surface is very rough, humans actively probe
the surface by sensing a number of positions and the foot
trajectory is actively modified according to the learned sur-
face profile. This process is the inspiration for our approach.
Instead of relying upon torso-based measurements, we take
the foot landing positions and angles as noisy measurements
and use them to learn the surrounding surface gradient. We
explain this process in more detail here.

Surface sensing using compliant swing leg

In order for the foot to conform to the local surface gradi-
ent upon landing, we purposefully give higher compliance

1640

Figure 2: Estimating the surface gradient N from foot dis-
placement f_:i and foot normal fn measurements. For the
foot displacement case, we incorporate the constraints that
Npews should lie in the same plane with N and f_:i to uniquely
determine Nnew.

to the joints of the swing leg during the latter part of the sin-
gle support phase. Touchdown is determined using the foot
force sensors, and the swing leg is stiffened once the foot has
successfully made ground contact. After landing, joint angle
values from the encoders are measured, and the pose of the
foot is calculated using the forward kinematic model of the
robot. An overview of this surface sensing process is shown
in Figure 1. The reliability of this calculation depends upon
the accuracy of the joint encoders and inertial sensor read-
ings. We compensate for any noise in the estimates of the

foot displacement f;l and the foot normal fn by using the
following online learning algorithm.

Learning the surface model

After the position and angle of the landed foot is determined,
we use this information to explicitly estimate the local sur-
face gradient. There are a variety of methods to explicitly
model the various terrain surfaces. One possibility is to de-
fine the surface as a function of the global 2D position of the
robot: Msurface = .f(xv y)

This requires very good localization capability, as well as
building a detailed map of the surrounding environment. In-
stead we take a simpler approach, using rapid online learn-
ing of the local surface gradient via the noisy, built-in sen-
sors. Thus, in this simple approach, the model consists of
maintaining an estimate of the local surface normal vector:
M surface — N.

After each footfall, we get two unit vectors as noisy mea-
surements: the foot normal fn and foot displacement f_;i. We
will estimate the surface gradient using both of these mea-



surements. In the ideal case, the measured gradient of the
landing point will coincide with that of the surface gradient,
and the foot displacement vector will be perpendicular to the
surface normal:

fn=N ey

Ja-N=0 2

But because of noise in these measurements, we will not
use these as hard constraints for the model. Instead, we de-
fine the new model NV, so that it minimizes an online
learning cost function. For the foot normal measurement,
we use following cost:

Cpn = |NfZw = ful* + el NE, = N2 3)
which results in the following simple update rule:
Nittw = (1= a/)NI" + o f, )

For the foot displacement measurement, we use following
cost:

Cra = fa- Niéul® + al|Nicw — N7> - (5)
Optimizing this cost with minimal norm yields the following
update rule:

Nid, = Nfd 4 o' (fy - NId) f ©6)

Thus, we have two separate ways to estimate the sur-
face gradient from foot measurements, as shown in Figure 2.
Both these measurements are inherently quite noisy due to
a number of factors. Since the length of the foot is typi-
cally longer than its width, and the torso roll angle is con-
stantly varying during dynamic walking, foot roll angle mea-
surements are usually noisier than foot pitch angle measure-
ments. On the other hand, the lateral displacement of the
two feet is usually larger than the transverse displacement,

so the surface normal estimate from foot displacement has
lower roll error than pitch error in many cases. It is thus ad-

vantageous to combine two separate filtered estimates, N /™
and N/ using the online learning rules above into a single
estimate. In this work, we use a simple weighted filter for
this combination, where the weight matrices W, and W5 are
determined using cross-validation:
N =WN/n + WyNfd @)
Because of the simple surface model used, estimation
and adaptation of the small number of model parameters is
rapidly achieved. We could also incorporate higher order
statistics in the model by maintaining a dynamic distribu-
tion over measured surface gradients. The walk controller
could then be modified accordingly to take into account the
measured uncertainty in the surface gradient estimates.
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Figure 3: Stepping on uneven terrain. (a) The swing foot

starts at ground position with distance variable dy,. (b) The
foot pose follows the computed trajectory during the early
phase of the step, and the swing leg becomes compliant dur-
ing the latter part of the step. (c) Gait timing is delayed until
the ground reaction force F), goes above threshold, and the

new disturbance variable d_;{ is measured to keep the torso
upright. (d) After landing, the target height of the foot f, is
dynamically adjusted according to the ground reaction force
F..

Walking Control on Uneven Terrain

In this section we introduce our walking controller that has
been extended to handle uneven surfaces. Our basic con-
troller consists of a real-time foot trajectory generator, up-
per body movement controller using a zero-moment point
(ZMP) algorithm, and a fast inverse kinematics solver to ob-
tain desired joint angles. The controller is capable of omni-
directional motion with real-time speed control and a high
degree of maneuverability. Figure 3 shows a number of ex-
tensions we have made to the controller to enable the robot
to walk over uneven surfaces, which are explained in more
detail in the following subsections.

Posture control and foot trajectory modification

To ensure that the robot does not tilt on the inclined surface,
we use the estimated gradient of the surface to bias the target
foot height and angles, and modify the swing foot trajectory
accordingly. Furthermore, to allow for local disturbances
in surface gradient and height, we modify the walking phase
(Hashimoto et al. 2006; Kim, Park, and Oh 2007). Each foot
has a local disturbance variable d that denotes the difference
of the actual foot height and angle from the calculated values
using the surface model. The swing foot starts at the pre-
vious landed position and angles with nonzero disturbance
variable, and it returns to its calculated trajectory as the dis-
turbance variable goes to zero during the early phase of the
step. In the latter part of the step, the swing leg becomes
compliant to land on the surface with unknown position and
gradient. When foot landing is detected by the force sen-
sors, the swing foot stiffens and a new disturbance variable
is measured from the pose of the foot.
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Figure 4: Simulations of walking on known uneven surfaces.
(a) Uneven surface used for the experiment where local in-
clination exceeds 20 percent. Z axis is scaled to clearly show
the shape of the surface. (b) Snapshots of omnidirectional
walk trial on the uneven surface.

Adaptive gait timing

When the robot walks on an uneven surface, there are er-
rors between the expected surface height and actual surface
height. This results in landing timing errors, with the foot
landing too early or the foot landing too late. If we do not
account for these timing errors explicitly, it can seriously
impact the stability of walking. In our controller, early land-
ing is handled implicitly in the foot trajectory modification
algorithm described above. In the latter part of the walk-
ing phase, the swing foot is lowered until it lands on the
ground, and stops when the foot lands on the surface. During
early landing, the robot stops the swing foot at the moment
of landing, effectively preventing the instability induced by
continually lowering the swing foot after early landing. Late
landing is handled via an extended foot trajectory curve to
ensure the swing foot is lowered until touchdown, and the
phase of the locomotion gait is prolonged accordingly.

Virtual compliance control

Impact during foot landing can make the robot shake later-
ally and make walking unstable. This problem is mitigated
by using a foot trajectory curve with zero velocity at land-
ing, and fast feedback control to allow the foot to follow
the precalculated trajectory very closely. However we have
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Figure 5: Simulated walking experiment on inclined sur-
face. (a) Estimated surface pitch and roll angles for a surface
with changing inclinations (0%, 4%, 8%). Dash-dotted line
shows the real surface gradient. (b) Estimated surface pitch
and roll angles for a surface with changing inclinations (0%,
6%) as well as local disturbances. Dash-dotted line shows
the real surface gradient. (c) A snapshot of walking on ter-
rain with local disturbances.

found that due to uncertainty in motors and gear backlash,
such a precise control is very difficult to achieve in practice.
There will also be footfall disturbances due to rapidly chang-
ing terrain and errors in the underlying estimated surface
model. One way of handling this is to incorporate special
hardware compliance in the robot joints (Sano et al. 2008;
Yamaguchi, Takanishi, and Kato 1994). In the commercial
platform used in our experiments, such a hardware modifica-
tion was not possible. Instead, we implemented a software-
controlled compliance by using virtual compliance in the
walk controller (Kim, Park, and Oh 2007; Kim et al. 2007;
Mikuriya et al. 2005) Based upon the ground reaction force
F, measured from the foot, the target height of the foot f, is
dynamically adjusted to mimic a spring and damper system:

Afz(tnfl) - Afz(tn72)
tnfl - tn72

Afz(tn) = lez + k2 (8)

Simulation Results

We first ran trials on a simulation environment incorporat-
ing hypothetical terrains. These results are based upon the
open-sourced simulation environment we built integrating
the Open Dynamics Engine (ODE) with Matlab-based con-
trollers and graphics.



Our first experiment tests the performance of our walk-
ing controller on an fully known uneven terrain. We made
a test surface modeled with a mixture of Gaussians and let
the robot walk over it using accurate information about the
robot pose and surface model. In our simulations, the fol-
lowing parameters were used: step size 0.06 m, step height
0.04 m, double support phase ratio 0.5. Figure 4 shows the
result of the test. We see that with the known model of the
surface, our controller is capable of stable omnidirectional
walking on uneven surfaces where the pitch exceeds 20 per-
cent grade. On the other hand, the baseline walk controller,
not considering unevenness of the surface, makes the robot
fall down at the initial stage of the trial.

We proceeded to test the validity of our surface gradient
learning algorithm using a test surface with a number of dif-
ferent inclinations. Figure 5(a) shows the estimated surface
gradient during walking. and we see that our method is ca-
pable of learning the surface gradient rapidly and reliably in
this simulated environment.

Finally we have tested our method on an uneven surface
with local disturbances. The test surface is shown in Fig-
ure 5(c), which consists of two planes with inclination zero
and six percent, with a number of small millimeter thick
plates placed randomly on top. Considering that the hu-
manoid model we use has feet width of 70mm, one millime-
ter of local height difference may induce as much as 3% of
local gradient, which is sufficient to make the walking un-
stable from our experience.

Although the estimated surface gradient shown in Fig-
ure 5(b) shows higher variance with the presence of local
disturbances, the robot has no difficulty in walking stably on
the surface in the presence of both changing surface normals
and local disturbances.

Experimental Results

We have also tested our algorithms using a commercially
available small humanoid robot, the Nao robot from Alde-
baran Robotics!. The Nao robot is 58cm tall, weighs 4.3kg,
and has 21 joints. It has a number of sensors, including
cameras, inertial accelerometer and gyroscopic sensors, ul-
trasonic range sensors, foot bumper sensors and pressure
sensors. It can operate untethered using a built-in lithium
polymer battery, and algorithms are run on the embedded
Geode-based Linux computer.

As a mass-produced, low-budget robot platform, the Nao
has some limitations on maximum motor torques and back-
lash in its gear trains. Combined with noise in the sensors
and limits on control update rates, the platform poses sev-
eral challenges for successful implementation of control and
learning algorithms. Nevertheless, to show that our method
is applicable on such a system, we first let the robot walk on
a flat surface using a walking controller for flat surfaces, and
observed how well the robots learns the flat surface model.
We used the same controller as used in our simulation ex-
periments, but with a lower step size of 0.04 m, and a higher
double support phase ratio of 0.75.

'http://www.aldebaran-robotics.com
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Figure 6: Results of robot walking experiment. (a) Torso
angle readings during walking on a flat surface. (b) Torso
angle readings during walking on a surface with changing
inclination. (c) Estimated surface pitch and roll angles dur-
ing walking on a flat surface. (d) Estimated surface pitch
and roll angles during walking on a surface with changing
inclination. (e) Snapshots of Nao robot walking on a surface
with changing inclination.

Figure 6(a) shows the torso angle measured by the inertial
sensor. We see that the dynamics of the Nao robot are more
compliant than in simulation, resulting in higher variance
of torso pitch angle. However, as seen in Figure 6(c), the
estimated surface gradient remained within one degree of
error, which shows that our learning algorithm is accurate
enough even with the noisy sensors on the Nao.

After this initial test, we proceeded to test our method on a
surface of changing inclination. The testing surface is made
of two wooden planks with inclination of roughly zero and
ten percent, and we let the robot walk over the transition to
see how rapidly our method can estimate the changing sur-
face gradient and make the robot walk stably on both sets
of surfaces. Snapshots of this experiment are shown in Fig-
ure 6(e). Figure 6(b) shows the torso angle measured by the
inertial sensor, and Figure 6(d) shows the estimated surface
gradient during walking.



We see that our method can estimate the new surface gra-
dient after a couple of steps, and although the torso angle
shows higher variance than the flat surface case, our method
can let the robot walk stably over the uneven surface. On
the other hands, baseline walk controller, not considering
the unevenness of the surface, makes the robot unstable and
eventually lets it fall down on the inclined surface.

Conclusions and Future Work

We have proposed a method for having a humanoid robot
walk over an unknown, uneven surface. We use compliance
in the swing leg to actively probe the surface, and incorpo-
rate noisy measurements from built-in sensors in an online
learning algorithm to model the surrounding surface. Fi-
nally, we use the estimated surface model to enable the hu-
manoid robot to walk stably on the uneven terrain.

We have tested our method in simulation, showing that
our method can rapidly estimate and walk on uneven sur-
faces. Our algorithms are also robust enough to handle local
disturbances in simulation. We have also tested our method
on the commercial Nao humanoid robot without any spe-
cial modifications. Our experiments show that our methods
can quickly learn surface gradients and enable this robot to
walk stably on uneven surfaces, in spite of some limitations
of the hardware platform. As the accuracy and speed of the
learning is largely dependent on the platform, we think our
approach can handle more diverse terrain types with more
powerful platforms.

There is much room for improvement within our frame-
work. We can explicitly account for additional uncertainty
in the environment by incorporating prior knowledge from
vision or ranging sensors in a Bayesian framework. Also,
we are currently working to implement these methods on
the much larger Hubo humanoid platform.
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