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Abstract

Traditional information extraction systems adopt
pipeline strategies, which are highly ineffective and
suffer from several problems such as error propa-
gation. Typically, pipeline models fail to produce
highly-accurate final output. On the other hand,
there has been growing interest in integrated or joint
models which explore mutual benefits and perform
multiple subtasks simultaneously to avoid problems
caused by pipeline models. However, building such
systems usually increases computational complexity
and requires considerable engineering. This paper
presents a general, strongly-coupled, and bidirectional
architecture based on discriminatively trained factor
graphs for information extraction. First we introduce
joint factors connecting variables of relevant subtasks
to capture dependencies and interactions between
them. We then propose a strong bidirectional MCMC
sampling inference algorithm which allows information
to flow in both directions to find the approximate
MAP solution for all subtasks. Extensive experiments
on entity identification and relation extraction using
real-world data illustrate the promise of our approach.

Introduction
The goal of information extraction (IE) is to automati-
cally extract structured information from free text or semi-
structured sources. Most IE consists of compound, aggre-
gate subtasks. Typically, two key subtasks are segmentation
which identifies candidate records (e.g., word segmenta-
tion, chunking and entity recognition), and relation learning
which discovers certain relations between different records
(e.g., relation extraction and entity resolution). For such IE
tasks, the availability of robust, flexible, and accurate sys-
tems is highly desirable.

Traditionally, the most common approach to IE is a
pipeline in which stages are run independently in sequential
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order, and later stages have access to the output of already-
completed earlier stages. While comparatively easy to as-
semble and computationally efficient, this pipeline approach
is highly ineffective and suffers from inherent inferiority
such as brittle accumulation of errors. It is therefore disap-
pointing, but not surprising, that the overall performance is
limited and upper-bounded (Yu 2007; Poon and Domingos
2007; Zhu et al. 2008).

In contrast, there has been increasing interest in using
integrated or joint models across multiple subtasks as a
paradigm for avoiding the cascading accumulation of errors
in traditional pipelines. Setting up such models is usually
very complex, and the computational cost of running them
can be prohibitively intractable. While a number of previ-
ous researchers have taken steps toward this direction, they
have various shortcomings: high computational complexity
(Sutton, McCallum, and Rohanimanesh 2007); the number
of uncertain hypotheses is severely limited (Wellner et al.
2004); subtasks are only loosely coupled (Zhu et al. 2007;
Yu, Lam, and Chen 2009); or the approach is feed-forward
or top-down integrated and it only allows information to
flow in one direction (Finkel, Manning, and Ng 2006). Joint
models can sometimes hurt accuracy, and fully joint ap-
proaches are still rare.

A significant amount of recent work has shown the power
of conditionally-trained probabilistic graphical models for
IE tasks (Sutton and McCallum 2006). Let G be a fac-
tor graph defining a probability distribution over a set of
output variables y conditioned on observation sequences x.
{Φi} is a set of factors in G, and each factor is defined
as the exponential family of an inner product over suffi-
cient statistics {fik(xi, yi)} and corresponding parameters
λik as Φi = exp{

∑
k λikfik(xi, yi)}. Let Z(x) be the

normalization factor, then the probability distribution (Laf-
ferty, McCallum, and Pereira 2001) over G can be written as
P (y|x) = 1

Z(x)

∏
Φi∈G exp{

∑
k λikfik(xi, yi)}. Practical

models rely extensively on parameter tying to use the same
parameters for several factors.

In this paper, we propose a highly-coupled, bidirectional
integrated architecture based on discriminatively-trained
factor graphs for IE tasks, which consists of two components
– segmentation and relation. We introduce joint factors con-
necting variables of relevant subtasks capturing tight interac-
tions between them. We then propose a strong bidirectional
algorithm based on efficient Markov chain Monte Carlo
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(MCMC) sampling to enable tractable inference, which al-
lows information to flow bidirectionally and mutual benefits
from different subtasks can be well exploited. We perform
extensive experiments on entity identification and relation
extraction from Wikipedia, and our model substantially out-
performs previous state-of-the-art pipeline and joint models.
Notably, our framework is considerably simpler to imple-
ment, and outperforms previous ones. It is also general and
can be easily applied to a variety of probabilistic models and
other real-world IE problems without considerable modifi-
cations.

Model
Let X be a document containing N observation sequences:
X = {X1, · · · ,XN}, each Xi consists of p tokens: Xi =
{xi1, · · · , xip}. Let Si = {si1, · · · , siq} be a segmentation
assignment of observation sequence Xi. Each segment sij
is a triple sij = {αij , βij , yij}, where αij is a start posi-
tion, βij is an end position, and yij is the label assigned
to all tokens of this segment. The segment sij satisfies
0 ≤ αij < βij ≤ |Xi| and αij+1 = βij + 1. Let em and en
be two arbitrary entities in the document X, and rmn be the
relation assignment between them. And R is the set of rela-
tion assignments of all entity pairs within document X. For
example, em and en can be entity candidates from segments
or entire observation sequences. And rmn can be a semantic
relation (e.g., member of ) between entity candidates or the
boolean coreference variable indicating whether or not two
sequences (e.g., paper citations) are referring to each other.

To enable a bidirectional integration of two components
– segmentation and relation in our framework, we intro-
duce joint factors capturing interactions between variables
in these components. The hypotheses from one component
can be used for another to guide its decision making itera-
tively. The information flows between the two components
form a closed loop. The two components are optimized in
a collaborative manner such that both of their performance
can be enhanced.

Segmentation
Due to its iterative manner, we use the superscript j to
indicate the decision in the j-th iteration. Besides the
conventional segmentation factor Φ(Sj ,X), the joint fac-
tor Φ∇(Sj ,X,Rj , Sj−1) involves both relation hypotheses in
the j-th iteration and segmentation assignments from the
last iteration. We assume that all potential functions fac-
torize according to a set of feature functions and a corre-
sponding set of real-valued weights. Suppose L, I and K
are the number of observation sequences in document X,
the number of segments, and the number of feature func-
tions. λk, µk and νk are corresponding weights for fea-
ture functions gk(·), rk(·) and qk(·), respectively. The fac-
tor Φ(Sj ,X) = exp{

PL
l

PI
i

PK
k λkgk(sj

l,i−1, s
j
l,i,Xl)}. Sim-

ilar to semi-CRFs (Sarawagi and Cohen 2004), the value
of segment feature function gk(·) depends on the current
segment sjl,i, the previous segment sjl,i−1, and the whole
observation Xl. And transitions within a segment can be
non-Markovian. The joint factor Φ∇(Sj ,X,Rj , Sj−1) =

exp{
PL

l

PI
i

PK
k µkrk(sj

l,i−1, s
j
l,i,R

j ,Xl)+
PL

l

PI
i

PK
k νkqk

(sj
l,i−1, s

j
l,i, S

j−1,X)}. The newly introduced feature func-

tion rk(·) uses the decision of relation component in the j-th
iteration Rj as its additional input. The function qk(·) in-
cludes observation sequences in the entire document X and
segmentation results Sj−1 in the last iteration. Using qk(·),
the segmentation and labeling evidences from other occur-
rences all over the document can be exploited by referring
the decision Sj−1. Thus evidences for the same entity seg-
ments are shared among all their occurrences within the doc-
ument. This can significantly alleviate the label consistency
problem caused in previous probabilistic models. According
to the celebrated Hammersley-Clifford theorem, the factor
of the segmentation component in the j-th iteration is de-
fined as a product of all potential functions over cliques in
the graph:

Φ(Sj
,X,Rj

, Sj−1
) = Φ(Sj

,X) · Φ∇(Sj
,X,Rj

, Sj−1
)

= exp

(
LX
l

IX
i

KX
k

λkgk(s
j
l,i−1, s

j
l,i,Xl) +

LX
l

IX
i

KX
k

µkrk

(s
j
l,i−1, s

j
l,i,Rj

,Xl) +
LX
l

IX
i

KX
k

νkqk(s
j
l,i−1, s

j
l,i, Sj−1

,X)

)
(1)

Then the probability distribution of the segmentation
component in the j-th iteration can be defined as

P (Sj |X,Rj
, Sj−1

) =
1

Z(X,Rj , Sj−1)

Y
Φ(Sj

,X,Rj
, Sj−1

) (2)

where Z(X,Rj , Sj−1) =
P

Sj

Q
Φ(Sj ,X,Rj , Sj−1) is the nor-

malization factor.

Relation
In the j-th iteration, the traditional relation fac-
tor Φ(Rj ,X) in this component is written as
exp{

PM
m,n

PK
k θkfk(em, en, r

j
mn,X) +

PM
m,t,n

PK
k ξkwk(rj

mt

, rj
nt, r

j
mn,X)} to model relations rjmn between all possible

entity pairs {em, en} in the document X and to enforce
transitivity for relations, where M is the number of ar-
bitrary entities in the document X and K is the number
of feature functions. 1 ≤ m, t, n ≤ M ,m 6= t, t 6= n,
and m 6= n. The joint factor Φ∇(Rj ,X, Sj−1) is defined
as exp{

PM
m,n

PK
k γkhk(em, en, r

j
mn, Sj−1,X)}, taking the

segmentation hypotheses in the (j − 1)-th iteration Sj−1

as its input. This joint factor captures tight dependencies
between segmentations and relations. For example, if two
segments are labeled as a location and a person, the seman-
tic relation between them can be birth place or visited, but
cannot be employment. Such dependencies are crucial and
modeling them often leads to improved performance. fk(·),
wk(·) and hk(·) are feature functions and θk, ξk and γk are
their corresponding weights. Then the factor of the relation
component in the j-th iteration can be written as follows:

Φ(Rj
,X, Sj−1

) = Φ(Rj
,X) · Φ∇(Rj

,X, Sj−1
)

= exp

(
MX

m,n

KX
k

θkfk(em, en, r
j
mn,X) +

MX
m,t,n

KX
k

ξkwk

(r
j
mt, r

j
nt, r

j
mn,X) +

MX
m,n

KX
k

γkhk(em, en, r
j
mn, Sj−1

,X)

)
(3)

Similarly, we can get the conditional distribution of this
component in the j-th iteration as follows:

P (Rj |X, Sj−1
) =

1

Z(X, Sj−1)

Y
Φ(Rj

,X, Sj−1
) (4)

where Z(X, Sj−1) =
P

Rj

Q
Φ(Rj ,X, Sj−1) is the normaliza-

tion factor to make P (Rj |X, Sj−1) a probability distribution.
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Collaborative Parameter Estimation
Although both segmentation and relation components con-
tain new variables, we show that they can be trained effi-
ciently in a collaborative manner. Once we have trained a
component, the decision of this component can guide the
learning and decision making for another component. The
two components run iteratively until converge. Such itera-
tive optimization can boost both the performance of the two
components.

Assume that the training instances are independent and
identically distributed (IID). Under this assumption, we ig-
nore the summation operator

∑
X in the log-likelihood dur-

ing the following derivations. To reduce over-fitting, we use
regularization and a common choice is a spherical Gaussian
prior with mean 0 and covariance σ2I . Then the regularized
log-likelihood function L for the segmentation component
on the training document X is defined as

L = log
h
Φ(Sj

,X,Rj
, Sj−1

)
i
− log

h
Z(X,Rj

, Sj−1
)
i
−

X
k

δ2k
2σ2

(5)

To simplify the expression, let ck(sj
l,i−1, s

j
l,i,R

j , Sj−1,X)

be the general form of functions gk(·), rk(·) and qk(·), and
let δk be the general form of weights λk,µk and νk. Taking
derivatives of this function over the parameter δk yields:

∂L
∂δk

=
LX
l

IX
i

ck(s
j
l,i−1, s

j
l,i,Rj

, Sj−1
,X)−

LX
l

IX
i

ck(s
j
l,i−1,

s
j
l,i,Rj

, Sj−1
,X)× P (Sj |X,Rj

, Sj−1
)−

KX
k

δk

σ2
(6)

Let bk(em, en, r
j
mt, r

j
nt, r

j
mn, Sj−1,X) be the general form

of fk(·), wk(·) and hk(·), and let ηk be the general form of
parameters θk, ξk and γk. Similarly, for the relation compo-
nent, the log-likelihood function L′ is defined as

L′ = log
h
Φ(Rj

,X, Sj−1
)
i
− log

h
Z(X, Sj−1

)
i
−

X
k

η2
k

2σ2
(7)

and the derivative of this function with respect to the param-
eter ηk is as follows

∂L′

∂ηk

=
MX

m,t,n

bk(em, en, r
j
mt, r

j
nt, r

j
mn, Sj−1

,X)−
MX

m,t,n

bk(em, en,

r
j
mt, r

j
nt, r

j
mn, Sj−1

,X)× P (Rj |X, Sj−1
)−

KX
k

ηk

σ2
(8)

Both of functions L and L′ are concave, and can there-
fore be efficiently maximized by standard techniques such
as stochastic gradient and L-BFGS algorithms. The seg-
mentation component is optimized by using both the relation
hypotheses from the relation component and the segmenta-
tion and labeling results from its last iteration as additional
feature functions. The relation component benefits from the
segmentation component by using the segmentation and la-
beling results explicitly in its feature functions. For initial-
ization, we run segmentation component first without rela-
tion assignments. Since it is powerful enough to make a
reasonable segmentation decision. The two components are
optimized iteratively until convergence criteria is reached.

Bidirectional MCMC Sampling Inference
Ideally, the objective of inference is to find the most
likely segmentation assignments S∗ and corresponding most
likely relation assignment R∗, that is, to find (S,R)∗ =
arg max(S,R) P (S,R|X) such that both of them are optimized
simultaneously. Unfortunately, exact inference to this prob-
lem is generally intractable, since the search space is the
Cartesian product of all possible segmentation and rela-
tion assignments. Consequently, approximate inference be-
comes an alternative. Instead of solving the joint opti-
mization problem described above, we can solve two sim-
pler inference problems S∗ = arg maxS P (S|R,X) and R∗ =
arg maxR P (R|S,X) to optimize S and R iteratively.

We propose a bidirectional MCMC sampling algorithm
to find the maximum a posteriori (MAP) assignments for
both segmentations and relations. This algorithm is strongly
coupled to inference based on efficient Metropolis-Hastings
(MH) sampling (Hastings 1970) from both segmentations
and relations to find an approximate solution of (S,R)∗.
This algorithm is a theoretically well-founded MCMC al-
gorithm, and is guaranteed to converge. And it allows in-
ference information to flow bidirectionally, such that mutual
benefits from segmentations and relations can be well cap-
tured.

The MCMC methods are an efficient class of methods for
approximate inference based on sampling. We can construct
a Markov chain whose states are the variables we wish to
sample. We can walk the Markov chain, occasionally out-
putting samples, and that these samples are guaranteed to
be drawn from the target distribution. Let St be the cur-
rent state of one segmentation sequence S and St+1 be the
next state of S. We assume that the current relation samples
Rt have already been drawn. To draw segmentation sam-
ples from P (S|Rt,X) in the model, we define the Markov
chain as follows: from each state sequence we transfer to
a state sequence obtained by changing the state at a par-
ticular segment Si. If |Si| = 1, we only change the label
of this segment. If 1 < |Si| ≤ L where L is the upper
bound on segment length, we divide Si into k sub-segments
Si1Si2 · · ·Sik with different labels. Thus the distribution
over these possible transitions from state St to state St+1

is defined as:

P (S
t+1|St

, R
t
,X) = P (S

t+1
i |St

−i, R
t
,X) (9)

where Si = (Si1 · · ·Sik), S−i is all segments except Si,
and St−i = St+1

−i . If k = 1, we assume Si1 = Si.
We can walk the Markov chain to loop through segment

Si from i = 1 to i = I , and the attribute (boundary and
label) of every segment can be changed dynamically. And
for each one, we re-sample the state at segment Si from dis-
tribution given in Equation 9. Let yij be the label of the
sub-segment Sij(1 ≤ j ≤ k) and Y be the label set, after
re-sampling all I segments, we can sample the whole seg-
mentation sequences from the conditional distribution

P (S
t+1|St

, R
t
,X) =

P ((Si1 · · ·Sik)t+1, St
−i, R

t,X)P
yij∈Y

P ((Si1 · · ·Sik)t+1, St
−i, R

t,X)
(10)

An MH step of the target distribution P (St+1|Rt,X) and
the proposal distribution Q(Ŝ|St, Rt,X) involves sampling
a candidate sequence Ŝ given the current value St according
to Q(Ŝ|St, Rt,X), and uses an acceptance/rejection scheme
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to define a transition kernel with P (St+1|St, Rt,X). The
Markov chain then moves towards Ŝ (as the next state St+1)
with acceptance probability A(St, Ŝ) and with probability
1 − A(St, Ŝ) it is rejected and the next state remains at St.
Moreover, to perform global optimization, a more principled
strategy is to adopt simulated annealing (Kirkpatrick, Gelatt,
and Vecchi 1983) in the MH algorithm, and the acceptance
probability A(St, Ŝ) is written as

A(S
t
, Ŝ) = min

(
1,

P 1/ct (Ŝ|Rt,X)Q(St|Ŝ, Rt,X)

P 1/ct (St|Rt,X)Q(Ŝ|St, Rt,X)

)
(11)

where ct is a decreasing cooling schedule with
limt→∞ ct = 0. And this annealing technique has been
shown to be very effective for optimization.

The proposal distribution Q(Ŝ|St, Rt,X) can be com-
puted via Equation 10, and Q(St|Ŝ, Rt,X) can also be eas-
ily computed as

Q(S
t|Ŝ, Rt

,X) = P (S
t
i |Ŝ−i, R

t
,X) =

P (St
i , Ŝ−i, R

t,X)P
yi∈Y

P (St
i , Ŝ−i, Rt,X)

(12)

After we obtain the segmentation sample St+1, we can
draw relation samples from P (R|St+1,X). Similar MH
procedure can also be exploited, and we omit the descrip-
tion due to space limitation. In summary, this bidirectional
MH sampling algorithm will work as follows. Given ini-
tialized segmentation and relation assignments S0 and R0,
and a user-defined sample size N, it draws samples Ŝ from
P (St+1|Rt,X) (0 ≤ t < N) while computing A(St, Ŝ)
and setting St+1 = Ŝ with probability A(St, Ŝ); oth-
erwise setting St+1 = St, and draws samples R̂ from
P (Rt+1|St+1,X) via similar procedure. We run this algo-
rithm to perform sampling for both segmentations and rela-
tions bidirectionally and iteratively for enough time, and it
is guaranteed to converge to its stationary distribution. Thus
it will find an approximate MAP solution for the most likely
pair (S,R)∗.

Note that the proposed algorithm is different from Finkel
et al. (2005), who incorporated a limited number of con-
straints into probabilistic sequence models by Gibbs sam-
pling, which is just a special case for the MH sampler; and
Finkel et al. (2006), who modeled pipelines as Bayesian net-
works which are feed-forward and only allow information to
flow into one direction. Exploring bidirectional information
is appealing, especially during the inference procedure. And
we will demonstrate and analyze its efficiency in the experi-
ments.

Experiments
Data
We investigate the task of identifying entities and
discovering semantic relationships between entity
pairs from English encyclopedic articles in Wikipedia
(http://www.wikipedia.org/). Our dataset consists of 1127
paragraphs from 441 pages from the online encyclopedia
Wikipedia. We labeled 7740 entities into 8 categories, yield-
ing 1243 person, 1085 location, 875 organization, 641 date,
1495 year, 38 time, 59 number, and 2304 miscellaneous

names. This dataset also contains 4701 relation instances
and 53 labeled relation types. The 10 most frequent
relation types are job title, visited, birth place, associate,
birth year, member of, birth day, opus, death year, and
death day. Note that this compound IE task involving entity
identification and relation extraction is very challenging,
and modeling tight interactions between entities and their
relations is highly attractive (Yu and Lam 2008).

Methodology
We set the upper bound of the segment length L to 4 to en-
able efficient computation, since over 95% of the entities are
within this threshold. Using L-BFGS algorithm, the training
procedure is converged quickly within 3 loops between seg-
mentation and relation components. And we set the sample
size N to 10000 for the bidirectional MH inference algo-
rithm. All experiments were performed on the Linux plat-
form, with a 3.2GHz Pentium 4 CPU and 4 GB of memory.

Accurate entities enable features that are naturally ex-
pected to be useful to boost relation extraction. And a wide
range of rich, overlapping features can be exploited in our
model. These features include contextual features, part-of-
speech (POS) tags, morphological features, entity-level dic-
tionary features, clue word features. Feature conjunctions
are also used. In leveraging relation extraction to improve
entity identification, we use a combination of syntactic, en-
tity, keyword, semantic, and Wikipedia characteristic fea-
tures. More importantly, our model can incorporate multiple
mention features qk(·), which are used to collect evidences
from other occurrences of the same entities for consistent
segmentation and labeling. rk(·) uses relation hypotheses
and hk(·) uses segmentation hypotheses as features. These
features capture deep dependencies between entities and re-
lations, and they are natural and useful to enhance the per-
formance.

We perform four-fold cross-validation on this dataset, and
take the average performance. For performance evalua-
tion, we use the standard measures of Precision (P), Re-
call (R), and F-measure (the harmonic mean of P and R:
2PR
P+R ) for both entity identification and relation extraction.
We also record the token-wise labeling Accuracy. We com-
pare our approach with two pipeline models CRF+CRF,
CRF+MLN and two joint models Single MLN, FCRF.
CRF+CRF uses two linear-chain CRFs (Lafferty, McCal-
lum, and Pereira 2001) to perform entity identification and
relation extraction separately. CRF+MLN uses Markov
logic network (MLN) (Richardson and Domingos 2006) for
relation extraction, which is a highly expressive language for
first-order logic and can conduct relational learning between
entity pairs from CRF. Single MLN performs joint infer-
ence for both subtasks in a single MLN framework (Poon
and Domingos 2007). FCRF (Sutton, McCallum, and Ro-
hanimanesh 2007) is a factorial CRF used to jointly solve the
two subtasks. All these models exploit standard parameter
learning and inference algorithms in our experiments.

Performance of Entity Identification
Table 1 shows the performance of entity identification for
different models. Our model substantially outperforms all
baseline models on F-measure, and it is statistically signif-
icantly better (p-value < 0.05 with a 95% confidence inter-
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val) according to McNemar’s paired tests. The improvement
demonstrates the merits of our approach by using joint fac-
tors to explore tight interactions between entities and rela-
tions such that both of them can be optimized in a collabora-
tive manner to aid each other, resulting in improved perfor-
mance. The pipeline models CRF+CRF and CRF+MLN
perform entity identification and relation extraction inde-
pendently without considering the mutual correlation be-
tween them, leading to reduced performance. By modeling
interactions between two subtasks, boosted performance is
achieved, as illustrated by Single MLN and FCRF.

Table 1: Comparative performance of different models for
entity identification.

Method Accuracy Precision Recall F-measure
CRF+CRF 96.93 89.55 88.70 89.12
CRF+MLN 96.93 89.55 88.70 89.12
Single MLN 97.24 90.45 90.45 90.45
FCRF 97.29 90.98 90.37 90.67
Our model 97.55 94.03 93.89 93.96

Performance of Relation Extraction
Table 2 shows the performance of relation extraction, and
our model achieves the best performance. All improvements
of our model over baseline models are statistically signifi-
cant. Both of the models CRF+CRF and CRF+MLN suf-
fer from pipeline inherent inferiority such as brittle accumu-
lation of errors. For example, they cannot correctly extract
relations between mis-recognized entities. The Single MLN

Table 2: Comparative performance of different models for
relation extraction.

Method Accuracy Precision Recall F-measure
CRF+CRF 93.72 70.40 57.85 63.51
CRF+MLN 93.81 69.39 59.53 64.08
Single MLN 93.96 68.54 61.75 64.97
FCRF 93.90 69.30 60.22 64.44
Our model 96.92 72.89 64.20 68.27

model captures some dependencies between entities and re-
lations via first-order logic, however, limitations of first-
order logic make it difficult to specify a relation factor that
uses the uncertain output of segmentation (Singh, Schultz,
and Mccallum 2009). Joint inference in Single MLN is only
weakly coupled, and does not enforce transitivity, since the
logic formulas only examine pairs of consecutive labels, not
whole fields. As can be seen, our model achieves stronger
interactions between two subtasks, and the proposed infer-
ence algorithm is strongly coupled and bidirectional, tak-
ing advantage of evidences from both subtasks. The FCRF
model uses loopy belief propagation (LBP) for approximate
learning and inference, which is inherently unstable and may
cause convergence problems. In contrast, the L-BFGS algo-
rithm we used is very efficient for parameter optimization,
and the bidirectional MH sampling inference is theoretically
well-founded, and it is guaranteed to converge.

Efficiency
The efficiency of different models is summarized in Table
3. Compared to pipeline models, the learning time of our

model is only increased linearly due to its bidirectional ar-
chitecture. It is particularly notable that our model takes
much less time than joint models. In particular, our model
is over orders of magnitude (approximately 13 times) faster
than FCRF for running. When the graph has large treewidth
as in our case, the LBP algorithm in FCRF is inefficient,
and is slow to converge.

Table 3: Efficiency comparison of different models on learn-
ing time (sec.) and inference time (sec.).

Method Learning time Inference time
CRF+CRF 2822 8
CRF+MLN 3479 118
Single MLN 8766 263
FCRF 105993 127
Our model 7157 859

Comparison with Other Methods
Table 4 compares our results with some recently published
results on the same dataset. Notably, our approach outper-
forms previous ones given that we deal with a fairly more
challenging problem involving both entity identification and
relation extraction. All other listed systems assume that the
golden-standard entities are already known and they only
perform relation extraction (due to this reason, we only com-
pare the performance on relation extraction.). However,
such assumption is not valid in practice. And our model
is more applicable to real-world IE tasks.

Table 4: Performance comparison with other systems.
System Precision Recall F-measure
Culotta et al. (2006) 75.53 61.69 67.91
Nguyen et al. (2007) 29.07 53.86 37.76
Yu et al. (2009) 72.80 59.80 65.66
Our model 72.89 64.20 68.27

Bidirectionality
We also examine the nature and effectiveness of our pro-
posed bidirectional MH inference algorithm and Figure 1
exhibits its feasibility over the greedy, N -best list, and uni-
directional MH algorithms. It shows that the bi-directional
MH algorithm consistently outperforms others on both
tasks. For N -best list, we maintain and re-rank N -best list
of segmentation assignments and corresponding relation as-
signments from our model, and take the most probable seg-
mentation along with its relation assignment as the final out-
put. We set N = 20 according to the holdout methodology.
The greedy algorithm is the special case of the N -best list
whenN = 1. For the unidirectional MH algorithm, we draw
segmentation samples from segmentation component and
then we draw relation samples given the generated segmen-
tation samples. And we also set the sample size to 10000.
The greedy algorithm is very simple, but it only makes use of
one-best list of segmentations and corresponding relations,
losing much useful information. TheN -best list gives useful
improvements over the greedy. However, N -best list does
not necessarily correspond to the bestN list, and theN -best
list is a very limited approximation for the full distribution
of our model. The unidirectional MH algorithm outperforms
N -best list when enough samples are drawn, since sampling
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Figure 1: Performance comparison of different inference al-
gorithms on entity identification (left) and relation extraction
(right) tasks.

gives more diversity at each state and the full probability
distribution can be better approximated. But this algorithm
is only weakly coupled since it is feed-forward and infor-
mation can only flow in one direction from segmentations
to relations. This figure demonstrates the bidirectionality of
our inference algorithm, which is highly coupled and mutual
benefits from both subtasks can be well captured.

Related Work
Several closely related approaches have been proposed.
Wellner et al. (2004) proposed an integrated model based
on CRFs for citation matching, but the N -best list infer-
ence is a restrictive approximation for the full distribution.
Zhu et al. (2007) and Yu et al. (2009) integrated two sub-
models together, but they are only loosely coupled in that
they performed parameter estimation separately and infer-
ence information can only flow in one direction, similar as
(Finkel, Manning, and Ng 2006). Hollingshead and Roark
(2007) proposed pipeline iteration, using output from later
stages of a pipeline to constrain earlier stages of the same
pipeline, but it lacks the ability to model internal tight de-
pendencies between stages. And these models often have
complex structures and involve considerable engineering.
For example, Zhu et al. (2008) used variational optimiza-
tion approach for more learnable parameters in dynamic hi-
erarchical modeling, and conducted extensive feature engi-
neering. As can be seen, our approach outperforms previ-
ous integrated or joint models (Poon and Domingos 2007;
Sutton, McCallum, and Rohanimanesh 2007), and is con-
siderably easier to build and requires much less engineering.
It is also general and can be easily applied to a wide range
of probabilistic models and other real-world IE tasks.

Conclusion
We present a highly-coupled, bidirectional approach to inte-
grating probabilistic pipeline models for information extrac-
tion. Joint factors are introduced to explore tight correla-
tions between subtasks to aid each other, and parameter es-
timation can be performed collaboratively and efficiently to
boost the performance. A strong bidirectional MH sampling
algorithm is proposed to enable approximate inference, and
this algorithm allows information to flow in both directions
to capture mutual benefits. Experimental results exhibit that
our model significantly outperforms recent state-of-the-art
models while also running much faster than the joint mod-
els. The nature of the bidirectional inference algorithm is

also analyzed and discussed. Directions for future work in-
clude further improving the scalability of the approach and
applying it to other problems.

References
Culotta, A.; McCallum, A.; and Betz, J. 2006. Integrating proba-
bilistic extraction models and data mining to discover relations and
patterns in text. In Proceedings of HLT/NAACL-06, 296–303.
Finkel, J. R.; Grenager, T.; and Manning, C. 2005. Incorporat-
ing non-local information into information extraction systems by
Gibbs sampling. In Proceedings of ACL-05, 363–370.
Finkel, J. R.; Manning, C. D.; and Ng, A. Y. 2006. Solving
the problem of cascading errors: Approximate Bayesian inference
for linguistic annotation pipelines. In Proceedings of EMNLP-06,
618–626.
Hastings, W. K. 1970. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika 57(1):97–109.
Hollingshead, K., and Roark, B. 2007. Pipeline iteration. In Pro-
ceedings of ACL-07, 952–959.
Kirkpatrick, S.; Gelatt, C. D.; and Vecchi, M. P. 1983. Optimiza-
tion by simulated annealing. Science 220:671–680.
Lafferty, J.; McCallum, A.; and Pereira, F. 2001. Conditional
random fields: Probabilistic models for segmenting and labeling
sequence data. In Proceedings of ICML-01, 282–289.
Nguyen, D. P. T.; Matsuo, Y.; and Ishizuka, M. 2007. Relation
extraction from Wikipedia using subtree mining. In Proceedings
of AAAI-07, 1414–1420.
Poon, H., and Domingos, P. 2007. Joint inference in information
extraction. In Proceedings of AAAI-07, 913–918.
Richardson, M., and Domingos, P. 2006. Markov logic networks.
Machine Learning 62(1-2):107–136.
Sarawagi, S., and Cohen, W. W. 2004. Semi-Markov conditional
random fields for information extraction. In Proceedings of NIPS-
04.
Singh, S.; Schultz, K.; and Mccallum, A. 2009. Bi-
directional joint inference for entity resolution and segmenta-
tion using imperatively-defined factor graphs. In Proceedings of
ECML/PKDD-09, 414–429.
Sutton, C., and McCallum, A. 2006. An introduction to conditional
random fields for relational learning. In Getoor, L., and Taskar, B.,
eds., Introduction to Statistical Relational Learning. MIT Press.
Sutton, C.; McCallum, A.; and Rohanimanesh, K. 2007. Dynamic
conditional random fields: Factorized probabilistic models for la-
beling and segmenting sequence data. Journal of Machine Learn-
ing Research 8:693–723.
Wellner, B.; McCallum, A.; Peng, F.; and Hay, M. 2004. An
integrated, conditional model of information extraction and coref-
erence with application to citation matching. In Proceedings of
UAI-04, 593–601.
Yu, X., and Lam, W. 2008. An integrated probabilistic and logic ap-
proach to encyclopedia relation extraction with multiple features.
In Proceedings of COLING-08, 1065–1072.
Yu, X.; Lam, W.; and Chen, B. 2009. An integrated discriminative
probabilistic approach to information extraction. In Proceedings of
CIKM-09, 325–334.
Yu, X. 2007. Chinese named entity recognition with cascaded
hybrid model. In Proceedings of HLT/NAACL-07, 197–200.
Zhu, J.; Zhang, B.; Nie, Z.; Wen, J.-R.; and Hon, H.-W. 2007.
Webpage understanding: an integrated approach. In Proceedings
of KDD-07, 903–912.
Zhu, J.; Nie, Z.; Zhang, B.; and Wen, J.-R. 2008. Dynamic hier-
archical Markov random fields for integrated Web data extraction.
Journal of Machine Learning Research 9:1583–1614.

1050




