Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

Ontological Reasoning with F-Logic Lite and Its Extensions

Andrea Cali*!*, Georg Gottlob'2, Michael Kifer®, Thomas Lukasiewicz' and Andreas Pieris'

!Computing Laboratory, University of Oxford, UK
20xford-Man Institute of Quantitative Finance, University of Oxford, UK
3Department of Computer Science, Stony Brook University, USA
4Department of Information Systems and Computing, Brunel University, UK

{andrea.cali,georg.gottlob,thomas.lukasiewicz,andreas.pieris}@comlab.ox.ac.uk
kifer@cs.sunysb.edu

Introduction

Answering queries posed over knowledge bases is a cen-
tral problem in knowledge representation and database the-
ory. In the database area, checking query containment is an
important query optimization and schema integration tech-
nique (Aho, Sagiv, and Ullman 1979; Johnson and Klug
1984). In knowledge representation it has been used for
object classification, schema integration, service discovery,
and more. In the presence of a knowledge base, the problem
of query containment is strictly related to that of query an-
swering; indeed, the two are reducible to each other (Cali,
Gottlob, and Kifer 2008b); we focus on the latter, and
our results immediately extend to the former. A practi-
cally relevant instance of the query containment problem
was first studied in (Johnson and Klug 1984) for functional
and inclusion dependencies, and later, for instance, in (Cal-
vanese, Giacomo, and Lenzerini 1998). DL-lite ontolo-
gies (Poggi et al. 2008) have gained importance in the area
of the Semantic Web, since they provide tractable query an-
swering while keeping high flexibility and expressiveness.
Rather than focusing on specific logical theories, we analyze
the fundamental difficulty that underlies earlier approaches,
such as (Johnson and Klug 1984; Cali and Kifer 2006;
Cali, Lembo, and Rosati 2003). All such works consid-
ered special classes of so-called tuple-generating dependen-
cies (TGDs) and equality-generating dependencies (EGDs)
(a generalization of key dependencies and functional de-
pendencies), and used the technique called chase. The
chase (Maier, Mendelzon, and Sagiv 1979) is a well-known
procedure of enforcing the validity of a set of TGDs, suc-
cessfully applied in database theory, data exchange (Fagin
et al. 2005), and terminological reasoning (Calvanese et
al. 2007). Several authors have studied query evaluation
problems for settings where the chase always terminates and
thus produces a finite solution (Fagin et al. 2005). To this
aim, restrictions on TGDs, such as weak acyclicity (Deutsch
2002), have been defined. In cases where the chase is pos-
sibly infinite, query answering (and containment) may be-
come undecidable (Chandra and Vardi 1985; Mitchell 1983;
Johnson and Klug 1984; Cali, Lembo, and Rosati 2003).
Suitable restrictions on TGDs are then needed to make the

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1660

problem decidable.

Our approach significantly generalizes the above ones.
We carve out a very large class of constraints for which
the infinite chase can be tamed. The class of constraints
we deal with is an extension of Datalog rules; such rules
are known as tuple-generating dependencies (TGDs) in the
database literature (Beeri and Vardi 1984). A TGD is an im-
plication between two conjunction of atoms (called body and
head, where the head is implied by the body), where some
of the variables in the head can be existentially quantified.
TGDs are successfully employed in expressing database
constraints. For example, the fact that each employee works
in some department can be expressed by the TGD:

VE employee(E) — 3D works_in(FE, D).

Note that the above TGD is actually an inclusion depen-
dency (Johnson and Klug 1984). The fact that each depart-
ment is specialized in the areas of the projects which runs
can be expressed by the TGD:

VDV PYAruns(D, P),in_area(P, A) — dep(D, A)

The aim of the present paper is to define significantly
larger classes of TGDs than those studied in the litera-
ture, especially in cases where the chase is not guaranteed
to terminate; indeed, the methods adopted to find our re-
sults hinge on the notion of chase. In particular, inspired
by guarded logics (Goncalves and Gradel 2000), we de-
fine the notions of sets of linear TGDs (LTGDs), guarded
TGDs (GTGDs), and weakly guarded TGDs (WGTGD:s),
which form the languages called linear Datalog™, guarded
Datalog™, and weakly-guarded Datalog™, respectively, in
the Datalog® family. Decidability of query answering un-
der such classes of rules follows from the fact that the chase
under WGTGDs has bounded treewidth, together with the
well-known results about the generalized tree-model prop-
erty (Courcelle 1990; Goncalves and Gridel 2000); how-
ever, this result does not help us in deriving useful complex-
ity bounds. Our main contribution lies in the complexity
bounds, summarized in Figure 1, for query evaluation under
linear, guarded, and weakly-guarded Datalog®. They regard
answering for Boolean conjunctive queries (BCQs), which is
equivalent to answering for conjunctive queries. Notice that
one cannot directly or easily use known results on guarded

[BCQ type | LTGDs | GTGDs | WGTGDs |
general PSPACE | 2EXPTIME | 2EXPTIME |
boundedw'.dth’ PSPACE | 2EXPTIME | 2EXPTIME ‘
fixed, atomic

Complexity results for variable TGDs.

| BCQ type | LTGDs | GTGDs | WGTGDs |
general NP NP EXPTIME
bounded width, | .
fixed, atomic in ACo PTIME EXPTIME

Complexity results for fixed TGDs.

Figure 1: Summary of complexity results.

logics (Goncalves and Gridel 2000) to derive complexity re-
sults for query evaluation, since queries are in general non-
guarded. All complexity bounds (except the ACy one) are
tight. By “bounded width” we mean bounded treewidth or
even hypertree width (Gottlob, Leone, and Scarcello 2002).
Notice that complexity in the case of fixed queries and fixed
TGDs is the so-called data complexity, i.e., the complexity
wrt the data only, which is of particular interest in database
applications.

We then introduce key dependencies (KDs) (which are a
special case of EGDs) together with TGDs, showing cases
where the addition of KDs does not increase the complex-
ity of query answering; such cases are characterized by the
notion of separability between KDs and TGDs. A syntac-
tic, sufficient criterion for separability is defined by means
of the notion of non-conflicting KDs (Cali, Gottlob, and
Lukasiewicz 2009). When KDs are non-conflicting, they
can be ignored (apart from an initial check), and therefore
the complexity remains the same as in the case of the TGDs
alone. Therefore, all the results in Figure 1 also hold in the
presence of non-conflicting KDs.

Applications. As a first application of Datalog®, we con-
sider F-logic (Kifer, Lausen, and Wu 1995), a formalism
for object-oriented deductive databases. For a smaller but
still powerful version of F-logic, called F-logic Lite (Cali
and Kifer 2006), we show how to encode F-logic Lite using
TGDs and a single EGD, which is non-conflicting. The re-
sults of this paper apply to this case, since the TGDs used
in F-logic Lite are WGTGDs. In addition, our results cover
a much larger set of F-logic queries than (Cali and Kifer
2006). Also, we prove that query answering under F-logic
Lite can be decided in NP and combining this with a hardness
result (reduction from 3-COLORABILITY), we prove that
query answering (and query containment) in F-logic Lite
is NP-complete. We show that the upper complexity bound
for query answering under F-logic Lite can be obtained as a
special case of WGTGDs, characterized by a semantic con-
dition called polynomial cloud criterion (PCC) (Cali, Gott-
lob, and Kifer 2008b). As a second application of Datalog®,
we consider a class of LTGDs and KDs that encodes an ex-
tended version of the Entity-Relationship (ER) (Chen 1976)
formalism that we call EER. We call such class of KDs and
TGDs conceptual dependencies (CDs) (Cali, Gottlob, and
Pieris 2009). This class is certainly relevant in data model-
ing, given the wide adoption of the ER formalism in the in-
dustry. Interestingly, conceptual dependencies are in general

1661

not non-conflicting, and therefore not separable. However,
we give a necessary and sufficient syntactic condition that
precisely characterizes separable classes of CDs. For sep-
arable CDs, then, the comglexity of BCQ answering is the
same as for linear Datalog™.

Our results handily subsume both the main decidabil-
ity and complexity results in (Johnson and Klug 1984),
as well as the decidability and complexity results on F-
logic lite (Cali and Kifer 2006) as special cases. More-
over, both the results on EER and those on linear Datalogi,
with the addition of negative constraints (Cali, Gottlob, and
Lukasiewicz 2009), properly generalize the languages in the
DL-lite family (Poggi et al. 2008).

The results in this paper appeared in (Cali, Gottlob, and
Kifer 2008b) (see also the extended version (Cali, Gottlob,
and Kifer 2008a)), (Cali, Gottlob, and Lukasiewicz 2009),
and (Cali, Gottlob, and Pieris 2009).

Formal Definitions

We introduce the following pairwise disjoint sets of sym-
bols: (i) an infinite set A of constants, which constitute the
“normal” domain of a database; (ii) an infinite set A of la-
beled nulls, which will be used as “fresh” Skolem terms. In-
tuitively, a null is a placeholder for an unknown value. Dif-
ferent nulls may represent the same value; therefore, nulls
can be seen as variables. However, different constants repre-
sent different values (unique name assumption). We assume
a lexicographic order on A U Ay, such that every symbol
in Ay follows all symbols in A. Sets of variables (or se-
quences, with a slight abuse of notation) are denoted as X,
with X = X4,..., X}, for some k£ > 0.

We will refer to a relational schema R, assuming that
database instances (also called databases), queries and de-
pendencies use predicates in 'R. We assume the reader is
familiar with the relational model. As mentioned, we de-
note relational schemas by R, queries by (), database in-
stances by D, and the result of evaluating a query () on a
database instance D by Q(D). In the following, we shall
consider conjunctive queries (CQs), with which we assume
the reader is familiar. Boolean CQs (BCQs) are those with
no variables in the head (i.e., with arity zero). We denote as
vars(Q) the set of variables appearing in a CQ @. Database
instances will be constructed with values from A U Ay, and
they will be possibly infinite.

By an atom we mean an atomic formula of the form
r(t1,...,tn), where r is an n-ary predicate (also called re-
lation name). The constants and labeled nulls appearing in
an atom g are denoted by dom(a). This notation extends
to sets and conjunctions of atoms. A position r[i] in a rela-
tional schema is identified by a relational predicate r and its
1-th attribute, identified by the integer .

We assume the reader is familiar with the notion of a ho-
momorphism—a mapping of symbols that is an identity on
A, and transforms atoms of a set into atoms of another set.
We refer the reader, for instance, to (Cali, Gottlob, and Kifer
2008b) for the details.

A major issue in this work are database dependencies,
which are defined over a relational schema. In the relational

model, one of the most important classes of dependencies
are tuple-generating dependencies (TGDs), which are a gen-
eralization of inclusion dependencies.

Definition 1 Given a relational schema R, a TGD o
is a first-order formula of the form YXVY p(X,Y) —
3Z (X, Z), where o(X,Y) and (X , Z) are conjunctions
of atoms over R, called body and head of the TGD, and
denoted body(o) and head (o), respectively. Such a depen-
dency is satisfied by a database D for R if, whenever there
is a homomorphism h that maps the atoms of ¢(X,Y) to
atoms of D, there exists an extension h' of h (i.e., ' D h)
that maps the atoms of (X, Z) to atoms of D.

Henceforth, to avoid notational clutter, we will omit the uni-
versal quantifiers in TGDs.

We now define the notion of query answering under
TGDs. A similar notion is used in data exchange (Fagin
et al. 2005; Gottlob and Nash 2008) and in query answering
over incomplete data (Cali, Lembo, and Rosati 2003). Given
a database D and a set X of TGDs, we first define the set of
instances B, such that B = D U X, as the set of solutions
of D given ¥, denoted sol(X, D). The answers to a CQ Q
on D given X, denoted ans(Q, 3, D), is the set of ground
atoms g such that for every B € sol(¥, D), it holds that
a € Q(B). ForaBCQ, if ans(Q, X, D) # @, then we write
D UZX = Q; otherwise, we write D U X [~ Q.

The chase process was introduced in order to enable
checking implication of dependencies (Maier, Mendelzon,
and Sagiv 1979), and later also for checking query con-
tainment (Johnson and Klug 1984). Informally, chase is
a process of repairing a database with respect to a set of
database dependencies by adding tuples that may contain la-
beled nulls to denote unknown values. We will use the term
“chase” both for the chase procedure and for its output. We
do not describe the chase in detail here, and we refer the
interested reader, for instance, to (Cali, Gottlob, and Kifer
2008b; Deutsch, Nash, and Remmel 2008). The (possibly
infinite) chase of a database D w.r.t. a set 3 of TGDs, de-
noted as chase(X, D), is a universal solution of D given ¥,
i.e., for each database B € sol(X, D), there exists a ho-
momorphism from chase(X, D) to B (Fagin et al. 2005;
Deutsch, Nash, and Remmel 2008). Using this fact it can be
shown that fora BCQ Q, DUX. = Q iff chase(X, D) = Q.

Containment of relational queries has long been con-
sidered a fundamental problem in query optimization—
especially query containment under constraints such as
TGDs. CQ containment and CQ answering are mutually
PTIME-reducible. Moreover, BCQ answering is LOGSPACE-
equivalent to CQ answering. We shall henceforth consider
BCQ answering only. Finally, it can be shown that every set
> of TGDs can be transformed in LOGSPACE in another set
Y of TGDs with single-atom head, such that for every BCQ
@ and for every instance D it holds that D U ¥ | @ iff

DuUY EQ.
F-logic Lite

In this section we present F-logic Lite and then show that

query answering and containment under this formalism are
NP-complete (Cali and Kifer 2006).

1662

F-logic Lite is a small but expressive subset of F-logic,
a well-known formalism introduced for object-oriented de-
ductive databases. Roughly speaking, F-logic Lite omits
negation and default inheritance, and allows only a limited
form of cardinality constraints.

To avoid a lengthy introduction, we do not use the stan-
dard F-logic notation and instead represent F-logic Lite us-
ing the following predicates:

member (O, C): object O is a member of class C'.
sub(C1, Cy): class (1 is a subclass of class Cf.

data(O, A, V): attribute A has value V' on object O.
type(O, A, T): attribute A has type T for object O (recall
that in F-logic classes are also objects).

mandatory(A, O): attribute A is mandatory for object
(class) O, i.e., it must have at least one value for O.
funct(A,0): A is a functional attribute for the object
(class) O, i.e., it can have at most one value for O.

These predicates are related to each other by the following
twelve deductive rules, which we denote as > gy 1.

p1: member(V,T) — type(O, A, T),data(O, A, V).

P2 sub(Cl, CQ) — SUb(Cl, C3), SUb(Cg, CQ)

p3: member(O, Cy) « member(O, C),sub(C, Cy).

pa: V=W «—data(0, A,V),data(O, A, W), funct(A4, O).
Note that this is the only EGD in this axiomatization.

ps: data(O, A, V') « mandatory(A, O).
Note that this is a TGD with an existentially quantified
variable in the head (variable V'; quantifiers are omitted).

pe: type(O, A, T) «— member(O, C), type(C, A, T).

pr: type(C, A, T) «— sub(C, Cy), type(C1, A, T).

ps: type(C, A, T) — type(C, A, T), sub(T1,T).

po: mandatory(A, C) < sub(C, C1), mandatory(A, Cy).

p10: mandatory(A, O) < member(O, C), mandatory(A4, C).

p11: funct(4, C) «— sub(C, Cy), funct(A, Cy).

p12: funct(A4, O) — member(O, C), funct(A, C).

It can be shown that the only EGD in the above rules, that
is, rule p4, does not actually interact with the TGDs, and
therefore the chase can ignore it. More precisely, the above
set Xz can be transformed into an equivalent one with
a single EGD that syntactically falls into the class of non-
conflicting keys w.r.t. the TGDs in Xz (Cali, Gottlob,
and Lukasiewicz 2009). For more details on non-conflicting
keys see the section where we consider key dependencies.

By a reduction from the 3-COLORABILITY problem, we
can show that conjunctive query answering under F-logic
Lite rules is NP-hard. For the upper bound, we can use a
technique of (Cali and Kifer 2006) to show that every query
can be answered by looking only at a finite segment of the
chase of polynomial size in X r7,;,. Hence conjunctive query
answering under F-logic Lite is in NP.

Theorem 2 BCQ answering under F-logic Lite rules is NP-
complete.

(Weakly) Guarded Datalog™

This section introduces the classes of guarded and weakly
guarded TGDs, also called guarded and weakly guarded
Datalogi, respectively, which have a number of useful
properties.

We first give the notion of an affected position of a re-
lational schema w.r.t. a set of TGDs. Given a relational
schema R and a set of TGDs X over R, an affected posi-
tion in R w.r.t. ¥ is defined inductively as follows (here we
use lowercase Greek letters to denote positions). Let 7, be
a position in the head of a TGD o in X. (a) If an existen-
tially quantified variable appears in 7, then 7, is affected
w.r.t. 2. (b) If the same universally quantified variable X
appears both in position 75, and in the body of ¢ in affected
positions only, then 7y, is affected w.r.t. 2.

Example 1 Consider the following set of TGDs:

r(X,Y),r(X,Y) — 3Zr(Y,Z)
ro(X,Y),re(W, X) — m(Y,X)

o1 ¢
o9 .

Notice that r5[2] is affected since the variable Z in o is ex-
istentially quantified. Considering again o, the variable Y
appears in r[2] but also in 1 [2], therefore it does not make
the position 72 [1] affected. In oo, X appears in the affected
position 72[2] but also in r2[1], which is not affected; there-
fore, it does not make the position 7 [2] affected. On the
other hand, in o2, Y appears in 72 [2] and nowhere else, thus
r1[1] is affected. "

Definition 3 Given a TGD o of the form o(X,Y) —
AZY(X,Z), we say that o is a (fully) guarded TGD
(GTGD) if there exists an atom in body(c), called a guard,
that contains all the universally quantified variables of o,
i.e., all the variables X,Y that occurin o(X,Y).

Example 2 The TGD r(X,Y,Z),r2(Y),r3(X, Z)
IW r4(W, X) is guarded; in particular, the guard is the atom
r1(X,Y, Z), since it contains all the universally quantified
variables of the TGD.]

Definition 4 Given a TGD o of the form o(X,Y) —
3IZY(X, Z), belonging to a set of TGDs 3 over a schema
R, we say that o is a weakly guarded TGD (WGTGD)
w.rt. ¥ if there exists an atom in body (o), called a weak
guard, that contains all the universally quantified variables
of o that appear only in positions that are affected w.r.t. 3.

—

Example 3 Consider the two TGDs in Example 1. In o0
both atoms are guards (and obviously weak guards), since
they contain all universally quantified variables in the TGD.
In o9, Y is the sole variable that appears in affected positions
only. Therefore, 2 (X, Y) is a weak guard. "

It is important to keep in mind that the transformation
to singleton-atom head rules, mentioned in the preliminar-
ies section, preserves the guardedness and weak guarded-
ness properties. Therefore, we can assume that TGDs have
singleton-atom heads.

Decidability. The following theorem, proved by reduction
from a Turing machine, shows that a single unguarded rule
can destroy the decidability of basic reasoning tasks under
TGDs.

Theorem S There is a fixed set of TGDs ¥, and a fixed
atomic BCQ Q, such that all but one TGDs of ¥, are
guarded and it is undecidable whether, for a database D,
D UZX, = Q (equivalently, whether chase(¥,, D) = Q).

1663

Theorem 6 Given a relational schema R, a set of WGTGDs
Y, a BCQ Q, and a database instance D for R, the problem
whether DUY |= Q) (equivalently, whether chase(%, D) =
Q) is decidable.

This theorem establishes decidability of query answering
under WGTGDs, but it tells little about the complexity. Let
us then focus on complexity issues.

Complexity. The following theorem characterizes the
complexity of reasoning under WGTGDs.

Theorem 7 Let X2 be a set of WGTGDs, let D be an in-
stance, and let () be a BCQ. Determining whether D UY, =
Q (equivalently, whether chase(X, D) = Q) is EXPTIME-
complete in case of bounded predicate arities, and even in
case X is fixed; it is 2EXPTIME complete in general.

For guarded TGDs, the results are summarized in Fig-
ure 1.

Linear Datalog™

We now introduce linear Datalog™ as a variant of guarded
Datalog®, where we prove that query answering is in AC
in data complexity; for a complete picture of the complexity
of query answering under linear Datalog™ see Figure 1 (first
column). Nonetheless, linear Datalog™ is still expressive
enough for representing ontologies.

A TGD is linear (LTGD) iff it has a singleton body
atom, i.e., is of the form ¢(X,Y) — 3Z (X, Z), where
©(X,Y) is an atom. Notice that linear Datalog™ general-
izes the well-known class of inclusion dependencies.

We first define inductively the derivation depth of an atom
in chase(X, D) as follows. The atoms in D have derivation
depth 0. Let a be an atom generated by atoms a,...,a,
through the application of a TGD o € X. Let also d be the
maximum depth of an atom among a,...,a,. Then, the
derivation depth of a is d+ 1. We denote with chase” (X, D)
the segment of the chase constituted by atoms of derivation
depth at most 7.

Definition 8 A set of TGDs X has the bounded derivation-
depth property (BDDP) iff, for every database D for R and
for every BCQ Q over R, whenever D UY. = Q, then
chase” (X, D) = Q, where vy depends only on () and R.

Since for LTGDs all descendants of an atom g in the chase
forest depend only on a (we do not define how the chase
can be represented as a forest; we refer the reader to (Cali,
Gottlob, and Kifer 2008b) for details), then the depth of a
coincides with the number of applications of the TGD chase
rule that are necessary to generate it. Hence, LTGDs have
the BDDP.

It is possible to prove that TGDs with the BDDP are first-
order rewritable. A class C of TGDs is first-order rewritable,
abbreviated as FO-rewritable, iff for every set of TGDs X in
C, and for every BCQ (@, there exists a first-order formula
¢ such that, for every database instance D, D UY | @ iff
D k= ¢. It is immediate to notice that, under FO-rewritable
TGDs, BCQ answering is in ACq in data complexity. We
then get the main result of this section.

Theorem 9 BCQ answering under LTGDs is in ACq in data
complexity.

Adding Key Dependencies

We now introduce additional constraints to TGDs, namely
key dependencies (KDs), with which we assume the reader
is familiar. In the presence of TGDs and KDs, the chase
procedure needs to take into account the KDs too; violations
of KDs are repaired by equating values: when equating two
symbols, if both of them are constants of A, then there is a
hard violation and the chase fails. In this case DUYrUX
is unsatisfiable (X7 and X denote the sets of TGDs and
KDs, respectively). In certain favourable cases, the addition
of KDs do not interact with TGDs. This is captured by the
following notion.

Definition 10 Ler X1 and Xk be sets of TGDs and KDs
over a schema R, respectively. Then, Xk is separable from
Yo7 iff for every database D for R, the following conditions
are satisfied: (1) if the chase of D w.rt. Yp and Y fails,
then D does not satisfy X ; (2) if the chase does not fail,
then for every BCQ Q over R, chase(SrUXk, D) E Q iff
chase(X7, D) E Q.

It is possible to show that, if TGDs and KDs are separable,
then the complexity of BCQ answering is the same as in the
case with TGDs only. A syntactic criterion that is sufficient
for separability is shown in (Cali, Gottlob, and Lukasiewicz
2009); TGDs and KDs satisfying the criterion are said non-
conflicting. Due to lack of space, we refer the interested
reader to (Cali, Gottlob, and Lukasiewicz 2009).

Clouds and F-logic Lite

In this section, we briefly explain how the results on F-logic
Lite can be obtained as a special case of weakly guarded
TGDs. Henceforth, we shall assume that X7, does not
contain the rule p4, which can be ignored, as stated earlier
in the paper. First, we define the cloud of an atom in the
chase. Let X be a set of WGTGDs over a schema R and D
be an instance for R. For every atom a of chase(X, D) the
cloud of a w.r.t. ¥ and D, denoted cloud (X, D, a), is the set
of all atoms in the chase whose arguments either appear in
a or in the “active domain” of the input database instance D
(i.e., all arguments of atoms in D).

It can be shown that conjunctive query answering is in NP
if the following conditions hold.

(1) Xrrr is weakly guarded.

(2) X prr is such that, for every instance D, there are
polynomially many clouds (up to D-isomorphisms, i.e.,
isomorphisms that leave all arguments of atoms in D
unchanged). That is, for every instance D there ex-
ists a polynomial pol such that the number of clouds
in chase(X, D) (up to D-isomorphisms) is bounded by
pol(|D)).

(3) There is a polynomial pol’ such that for each instance
D and for each atom a: (i) if a € D, then cloud(%, D, a)
can be computed in time pol’ (| D|), and (ii) if a & D, then
cloud (X, D, a) can be computed in time pol’(|D|) from
D, a, and cloud(X, D, b), where b is the predecessor of a
in the chase forest of chase(3, D).

1664

since
Q

(1,1 D memb_name

‘ Phd_student

O gr_name

(1,1)

‘ Professor

é) stud_gpa

Figure 2: Example EER Schema.

A set of TGDs satisfying the above three properties is
said to enjoy the polynomial cloud criterion (PCC). It can be
shown that F-logic Lite has this property—see (Cali, Gott-
lob, and Kifer 2008b) for more details. Thus, the complexity
results for F-logic Lite follow from the results for WGTGDs
as a special case. We believe that PCC could be used to char-
acterize the complexity of additional ontology languages.

Extended ER in Linear Datalog™

In this final section, we consider a conceptual modeling
formalism, which can be expressed by means of linear
Datalog™® plus KDs.

The formalism, which we call EER (Extended Entity-
Relationship), derives from the Entity-Relationship model,
where for simplicity we assume all relationships to be bi-
nary (the general case, with arbitrary relationship arity, can
be treated similarly (Cali, Gottlob, and Pieris 2009)). It
can be summarised as follows: (/) entities and relationships
can have attributes; an attribute can be mandatory (instances
have at least one value for it), and functional (instances have
at most one value for it); (2) entities can participate in rela-
tionships; a participation of an entity E in a relationship R
can be mandatory (instances of E participate at least once),
and functional (instances of £ participate at most once); (3)
is-a relations can hold between entities and between rela-
tionships; in the latter case, a permutation [1,2] or [2,1]
specifies the correspondence among the components.

A knowledge base in the above formalism is called an
EER schema. An example one is shown in Figure 2, where
the graphical notation is obvious. Itis straightforwardly seen
that every EER schema can be expressed by means of a re-
lational schema with LTGDs and KDs of a particular form;
every set of dependencies in such a form is classified as con-
ceptual dependencies (CDs). Query answering under CDs
is not FO-rewritable; this is due to the fact that the KDs in
general are not non-conflicting w.r.t. the TGDs (which in this
case are linear). We therefore provide a syntactic character-
ization of a class of CDs, called non-conflicting CDs (NC-
CDs), which is FO-rewritable. Before syntactically defining
NCCDs, we need a preliminary notion, that is, the notion of
CD-graph.

Definition 11 Consider a set 3> of CDs over a schema R.
The CD-graph for R and ¥ is defined as follows: (1) the set
of nodes is the set of positions in R; (2) if there is a TGD o
in X3 such that the same variable appears in a position 7, in
the body and in a position my, in the head, then there is an
arc from my to T,

b F/\ works_in[1] works_in[2F——

phd.stu% p\mfessm [1] ~— lead‘s [1] leads‘[2] \//

Figure 3: CD-graph for the EER schema in Figure 2; k-
nodes are shaded.

A node corresponding to a position derived from an entity
(resp., a relationship) is called an e-node (resp., an r-node).
Moreover, an r-node corresponding to a position which is a
unary key in a relationship is called a k-node. We are now
ready to define NCCDs.

Definition 12 Consider a set X of CDs over a schema R,
and let G be the CD-graph for R and ¥. ¥ is said to be
non-conflicting if the following condition is satisfied. For
each path v{>vs> ... vy, in G, where m > 3, such that:
(1) vy is an e-node; (2) va, . .., Vm—1 are r-nodes; (3) vy, is
a k-node, there exists a path of only r-nodes from vy, to vs.

The schema in Figure 2 has the CD-graph depicted in
Figure 3, where we omit the attributes to avoid clutter. It
is easy to see that the CDs are non-conflicting. The main
result, which precisely characterizes the class of separable
EER schemata, follows.

Theorem 13 Given a set ¥ of CDs, we have that % is non-
conflicting iff 3 is separable.

For separable CDs, BCQ answering is in ACq in data com-
plexity (Cali, Gottlob, and Pieris 2009); we therefore imme-
diately get the following result.

Theorem 14 BCQ answering under NCCDs is in ACq in
data complexity.

Acknowledgments. The research leading to these results
has received funding from the European Research Council
under the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013)/ERC grant agreement no. 246858
— DIADEM. The authors also acknowledge support by the
EPSRC project “Schema Mappings and Automated Services
for Data Integration and Exchange” (EP/E010865/1). Georg
Gottlob’s work was also supported by a Royal Society Wolf-
son Research Merit Award.

References

Aho, A.; Sagiv, Y.; and Ullman, J. D. 1979. Equivalence of
relational expressions. SIAM J. Comput. 8(2):218-246.
Beeri, C., and Vardi, M. Y. 1984. A proof procedure for data
dependencies. J. ACM 31(4):718-741.

Cali, A., and Kifer, M. 2006. Containment of conjunctive
object meta-queries. In Proc. of VLDB, 942-952.

Cali, A.; Gottlob, G.; and Kifer, M. 2008a. Taming the
infinite chase. Unpublished technical report, available from
the authorsorathttp://benner.dbai.tuwien.ac.
at/staff/gottlob/CGK.pdf.

Cali, A.; Gottlob, G.; and Kifer, M. 2008b. Taming the
infinite chase: Query answering under expressive relational
constraints. In Proc. of KR, 70-80.

group|1]

1665

Cali, A.; Gottlob, G.; and Lukasiewicz, T. 2009. A general
datalog-based framework for tractable query answering over
ontologies. In Proc. of PODS, 77-86.

Cali, A.; Gottlob, G.; and Pieris, A. 2009. Tractable query
answering over conceptual schemata. In Proc. of ER, 175—
190.

Cali, A.; Lembo, D.; and Rosati, R. 2003. On the decidabil-
ity and complexity of query answering over inconsistent and
incomplete databases. In Proc. of PODS, 260-271.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-lite family. J. Au-
tom. Reasoning 39(3):385-429.

Calvanese, D.; Giacomo, G. D.; and Lenzerini, M. 1998. On
the decidability of query containment under constraints. In
Proc. of PODS, 385-429.

Chandra, A. K., and Vardi, M. Y. 1985. The implication
problem for functional and inclusion dependencies. SIAM
J. Comput. 14:671-677.

Chen, P. P. 1976. The entity-relationship model: towards a
unified view of data. ACM TODS 1(1):124-131.

Courcelle, B. 1990. The monadic second-order logic of
graphs. i. recognizable sets of finite graphs. Information and
Computation 85(1):12-75.

Deutsch, A.; Nash, A.; and Remmel, J. B. 2008. The chase
revisisted. In Proc. of PODS, 149-158.

Deutsch, A. 2002. XML query reformulation over mixed and
redundant storage. Ph.D. Dissertation, Dept. of Computer
and Information Sciences, Univ. of Pennsylvania.

Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: Semantics and query answering. Theor.
Comput. Sci. 336(1):89-124.

Goncalves, M. E., and Gridel, E. 2000. Decidability issues
for action guarded logics. In Description Logics, 123—132.

Gottlob, G., and Nash, A. 2008. Efficient core computation
in data exchange. J. ACM 55(2).

Gottlob, G.; Leone, N.; and Scarcello, F. 2002. Hypertree
decompositions and tractable queries. J. Comput. Syst. Sci.
64(3).

Johnson, D. S., and Klug, A. C. 1984. Testing contain-
ment of conjunctive queries under functional and inclusion
dependencies. J. Comput. Syst. Sci. 28(1):167-189.

Kifer, M.; Lausen, G.; and Wu, J. 1995. Logical founda-
tions of object-oriented and frame-based languages. J. ACM
42:741-843.

Maier, D.; Mendelzon, A. O.; and Sagiv, Y. 1979. Testing
implications of data dependencies. ACM Trans. Database
Syst. 4(4):455-469.

Mitchell, J. 1983. The implication problem for func-
tional and inclusion dependencies. Information and Control
56:154-173.

Poggi, A.; Lembo, D.; Calvanese, D.; De Giacomo, G.;
Lenzerini, M.; and Rosati, R. 2008. Linking data to on-
tologies. J. Data Semantics 10:133-173.

