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Abstract

Vectored data frequently occur in a variety of fields, which are
easy to handle since they can be mathematically abstracted
as points residing in a Euclidean space. An appropriate dis-
tance metric in the data space is quite demanding for a great
number of applications. In this paper, we pose robust and
tractable metric learning under pairwise constraints that are
expressed as similarity judgements between data pairs. The
major features of our approach include: 1) it maximizes the
gap between the average squared distance among dissimilar
pairs and the average squared distance among similar pairs;
2) it is capable of propagating similar constraints to all data
pairs; and 3) it is easy to implement in contrast to the existing
approaches using expensive optimization such as semidefi-
nite programming. Our constrained metric learning approach
has widespread applicability without being limited to particu-
lar backgrounds. Quantitative experiments are performed for
classification and retrieval tasks, uncovering the effectiveness
of the proposed approach.

Introduction

In the field of content-based image retrieval (CBIR) and im-
age categorization, choosing appropriate distance metrics
plays a key role in establishing effective systems. Regular
CBIR systems usually adopt Euclidean metrics for distance
measure on images represented into a vector form. Unfor-
tunately, the Euclidean distance is generally not effective
enough in retrieving relevant images. A main reason stems
from the well-known semantic gap between low-level visual
features and high-level semantic concepts (Smeulders et al.
2000).

The commonly used relevance feedback scheme may
remedy the semantic gap issue, which produces, aided by
users, a set of constraints about relevance (similarity) or ir-
relevance (dissimilarity). These constraints along with in-
volved image examples are called log data. Then the key
to CBIR is to find an effective way of utilizing the log data
in relevance feedback so that the semantic gap can be suc-
cessfully reduced. A lot of ways could be studied to use the
log data to boost the retrieval performance. In this paper, we
explore to learn distance metrics from the log data toward
image retrieval tasks or any related applications involving
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distance metric learning. Recently, learning distance metrics
from pairwise constraints (or called side information (Xing
et al. 2003)) has been proposed in the machine learning
community. Different from previous distance metric learn-
ing approaches, we address some technical and practical is-
sues found in applying distance metric techniques to real ap-
plications.

Particularly, we are aware that routine metric learning
techniques may fail to learn reliable metrics when handling
a small amount of log data. In this paper, we present a novel
weakly supervised distance metric learning algorithm so as
to incorporate the abundant unlabeled data in a learning task.
Specifically, we develop an intuitive learning framework to
integrate synergistic information from both the log data and
the unlabeled data for the goal of coherently learning a dis-
tance metric. The proposed Constrained Metric Learning
(CML) algorithm is elegantly formulated, resulting in a sim-
ple solution which can be solved efficiently.

Related Work

The major group of related work is the hot distance met-
ric learning research in the machine learning community,
which can be divided into three main categories. One is
unsupervised learning approaches most of which attempt to
find low-dimensional embeddings given high-dimensional
input data. The well-known linear embedding techniques
include Principal Component Analysis (PCA), Multidimen-
sional Scaling (MDS) (Hastie, Tibshirani, and Friedman
2009), and Locality Preserving Projections (LPP) (He and
Niyogi 2004). Some manifold based approaches study non-
linear embedding techniques such as Locally Linear Embed-
ding (LLE) (Roweis and Saul 2000), Isomap (Tenenbaum,
de Silva, and Langford 2000), etc.

The second category is supervised learning approaches
for classification, where distance metrics are usually learned
from the training data associated with explicit class la-
bels. The representative techniques include Linear Dis-
criminant Analysis (LDA) (Hastie, Tibshirani, and Fried-
man 2009) and some recently proposed methods such as
Neighbourhood Components Analysis (NCA) (Goldberger,
Roweis, and Salakhutdinov 2005), Maximally Collapsing
Metric Learning (MCML) (Globerson and Roweis 2006),
distance metric learning for Large Margin Nearest Neigh-
bor classification (LMNN) (Weinberger, Blitzer, and Saul
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2006)(Weinberger and Saul 2008), and local distance metric
learning (Yang et al. 2006)(Frome et al. 2007).

The third category is weakly supervised learning ap-
proaches which try to learn distance metrics with pairwise
constraints, or known as side information (Xing et al. 2003).
Each constraint indicates whether two data points are rele-
vant (similar) or irrelevant (dissimilar) in a particular learn-
ing task. A well-known metric learning method with these
constraints was proposed by Xing et al. (Xing et al. 2003)
who cast the learning task into a convex optimization prob-
lem and applied the generated solution to data clustering.
Following their work, there are several emerging metric
techniques in this “weakly supervised” direction. For in-
stance, Relevant Component Analysis (RCA) learns a global
linear transformation by exploiting only the equivalent (rel-
evant) constraints (Bar-Hillel et al. 2005). Discriminative
Component Analysis (DCA) improves RCA via incorporat-
ing the inequivalent (irrelevant) constraints (Hoi et al. 2006).
Lately, an Information-Theoretic Metric Learning (ITML)
approach is presented to express the weakly supervised met-
ric learning problem as a Bregman optimization problem
(Davis et al. 2007)(Davis and Dhillon 2008).

Our previous work Output Regularized Metric Learning
(ORML) (Liu, Hoi, and Liu 2008) falls into the third cate-
gory. However, ORML was proposed merely for image re-
trieval and limited to the particular querying-feedback back-
ground. To remedy this limitation, this paper studies the
general weakly supervised metric learning scenario and sug-
gests an approach without being limited to particular back-
grounds. Consequently, our approach can accommodate it-
self to broad applications including semi-supervised classi-
fication, relevance-feedback based image retrieval, and con-
strained clustering with background knowledge (Bennett,
Bradley, and Demiriz 2000)(Wagstaff et al. 2001).

Constrained Metric Learning

In this section, we propose a novel weakly supervised met-
ric learning technique, i.e., Constrained Metric Learning
(CML), to produce metrics with high fidelity.

Problem Statement

Assume that we are given a set of n data points X =
{xi}n

i=1 ⊆ R
m, and two sets of pairwise constraints among

these data points:

S = {(i, j) | xi and xj are judged to be similar}

D = {(i, j) | xi and xj are judged to be dissimilar}, (1)

where S is the set of similar pairwise constraints, and D
is the set of dissimilar pairwise constraints. Each pairwise
constraint (i, j) indicates if two data points xi and xj are
relevant or irrelevant judged by users under some application
context. Note that it is not necessary for all the points in X
to be involved in S or D.

For any pair of points xi and xj , let d(xi,xj) denote the
distance between them. To compute this distance, let M ∈
R

m×m be a symmetric metric matrix. Then we can express

the distance measure as follows:

dM (xi,xj) = ‖xi − xj‖M =
√

(xi − xj)⊤M(xi − xj).

(2)
In practice, the symmetric matrix M is a valid metric if and
only if it satisfies the non-negativity and triangle inequality
conditions. In other words, M must be positive semidefi-
nite, i.e., M � 0. Generally, the matrix M parameterizes
a family of Mahalanobis distances on the vector space R

m.
As an extreme case, when setting M to be the identity ma-
trix I ∈ R

m×m, the distance in eq. (2) becomes the common
Euclidean distance.

CML Prototype. The constrained distance metric learn-
ing problem is to learn a symmetric matrix M ∈ R

m×m

from a collection of data points X on a vector space R
m to-

gether with a set of similar pairwise constraints S and a set
of dissimilar pairwise constraints D. This problem can be
formulated as the following optimization prototype:

max
M�0

g(M,X ,S,D)

f(M,X ,S)
(3)

where M is maintained to be positive semidefinite, and f(·)
and g(·) are two proper objective functions defined over the
given data and constraints.

Given the above definition, the theme to attack metric
learning is to design appropriate objective functions f and
g, and afterward find an efficient algorithm to solve the opti-
mization problem. In the following subsections, we will dis-
cuss some principles for formulating reasonable optimiza-
tion models. Importantly, we have to emphasize that it is
critical to avoid overfitting when solving real-world metric
learning problems.

(a) Distance Gap Maximization. It is very intuitive to
formulate g to be maximized as the gap between the average
squared distance among dissimilar data pairs in the set D
and the average squared distance among similar data pairs
in the set S, that is

g(M,X ,S,D)

=
1

|D|

∑

(i,j)∈D

‖xi − xj‖
2
M −

γ

|S|

∑

(i,j)∈S

‖xi − xj‖
2
M ,

(4)

where γ ≥ 1 is the gap factor.
To learn a distance metric, one can assume there exits

a corresponding linear mapping U⊤ : R
m → R

r, where
U = [u1, . . . ,ur] ∈ R

m×r and M = UU⊤. We require
that u1, . . . ,ur be linearly independent so that r is the rank
of the target metric matrix M . Then the distance under M
between two inputs can be computed as:

‖xi − xj‖M =
√

(xi − xj)⊤M(xi − xj)

=
√

(xi − xj)⊤UU⊤(xi − xj)

=
∥

∥U⊤(xi − xj)
∥

∥ .

Actually, the target metric M is usually low-rank in high-
dimensional data spaces (Davis and Dhillon 2008). Hence,
we seek the subspace U instead of the full square matrix M .
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In terms of U , the distance gap function defined in eq. (4)
can be reformulated as

g(U) =
1

|D|

∑

(i,j)∈D

(xi − xj)
⊤UU⊤(xi − xj)−

γ

|S|

∑

(i,j)∈S

(xi − xj)
⊤UU⊤(xi − xj)

=
1

|D|

∑

(i,j)∈D

tr
(

U⊤(xi − xj)(xi − xj)
⊤U

)

−

γ

|S|

∑

(i,j)∈S

tr
(

U⊤(xi − xj)(xi − xj)
⊤U

)

= tr
(

U⊤CgU
)

, (5)

in which we define an m × m matrix by

Cg =

∑

(i,j)∈D(xi − xj)(xi − xj)
⊤

|D|

− γ

∑

(i,j)∈S(xi − xj)(xi − xj)
⊤

|S|
. (6)

tr(·) stands for the trace operator.
One common principle for metric learning is minimizing

the distances among the data points of similar constraints
and meanwhile maximizing the distances among the data
points of dissimilar constraints. We refer to it as a min-
max principle. Some existing metric learning works such
as (Xing et al. 2003) and (Weinberger, Blitzer, and Saul
2006) can be interpreted via this min-max principle. Ob-
viously, our principle distance gap maximization coincides
with the min-max principle. Unlike (Davis et al. 2007), we
do not enforce any constraint on the values of the distances
on the two sets S and D, which is because of limited and
possibly noisy log data. More naturally, we choose to maxi-
mize the gap between two average squared distances on two
constraint sets S and D.

(b) Neighborhood Smoothness. In the prototype eq. (3),
we also hope for minimization of some function f . The
straightforward way is to minimize the sum of squared dis-
tances between all similar pairs in S, but such an optimiza-
tion will overfit the log data that are scarce in real-world ap-
plications. To remedy that, we aim at taking full advantage
of unlabeled data that are demonstrated to be quite benefi-
cial to the semi-supervised learning problem. Due to this
consideration, we define f based on the notion of neighbor-
hood preserving (He and Niyogi 2004).

Given the collection of n data points X including the log
data and the unlabeled data, we can define a neighborhood
indicator matrix W ∈ R

n×n on X :

Wij =

{

1, xj ∈ N (xi)

0, otherwise
(7)

where N (xi) denotes the list composed of k nearest neigh-
bors of the data point xi using the Euclidean metric. Actu-
ally, such a matrix W holds weak (probably correct) similar-
ities between all data pairs. Note that W is asymmetric and
Wii = 0 for i = 1, · · · , n.

Through absorbing all data points X = [x1, · · · ,xn] and
utilizing all weak similarities W , we formulate f as follows:

f(M,X ,S) =
1

2

n
∑

i,j=1

‖xi − xj‖
2
MWij

=
1

2

n
∑

i,j=1

∥

∥U⊤(xi − xj)
∥

∥

2
Wij . (8)

Importantly, f(·) provides a smoothness measure of data
neighborhoods under the chosen distance metric M .

Similarity Propagation

To enable metric learning techniques to work for practical
applications such as classification and retrieval, we should
shrink the distances between as many similar pairs as pos-
sible. Although the neighborhood smoothness function f
has incorporated all unlabeled data, it does not emphasize
the distances between “real” similar data pairs. Since the
similar constraint set S is available, we desire to propagate
the limited real similar constraints to all data pairs via the
found neighborhoods. Specifically, we intend to learn a new

similarity matrix W̃ such that W̃ij reflects the extent of real
similarity between data pair (xi,xj).

Let us begin with the strong (definitely correct) similarity
matrix S0 ∈ R

n×n where we set S0
ii = 1 for any i and S0

ij =
1 for any similar constraint (i, j) ∈ S. If we conceived 1-
entries in S0 as positive energies, our purpose would be to
propagate energies in S0 to its 0-entries. The propagation
path follows the neighborhood structures residing on each
data point, so we pose the similarity propagation criterion as
the locally linear energy mixture, i.e.

S
(t+1)
i. = (1 − α)S

(0)
i. + α

∑n

j=1 WijS
(t)
j.

∑n

j=1 Wij

, (9)

where S
(t)
i. denotes the ith row of S(t) and t = 0, 1, 2, · · · is

time stamp. We write the matrix form of eq. (9) as

S(t+1) = (1 − α)S(0) + αPS(t), (10)

where 0 < α < 1 is the trade-off parameter and P =
D−1W (D is a diagonal matrix whose diagonal elements
equal the sums of row entries of W , i.e., Dii =

∑n

j=1 Wij )

is the transition probability matrix widely used in Markov
random walk models.

Because 0 < α < 1 and the eigenvalues of P are in

[−1, 1], the limit S∗ = limt→∞ S(t) exists. It suffices to
solve the limit as

S∗ = (1 − α)(I − αP )−1S(0). (11)

Then, we build the new similarity matrix by symmetrizing
the converged similarity matrix S∗ and removing small sim-
ilarity values, that is

W̃ =

⌊

S∗ + S∗⊤

2

⌋

≥θ

, (12)
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Figure 1: The two-moon problem of 600 2D points. (a) Strong similarities, i.e., two similar constraints among four points of
which each two come from the same class; (b) weak similarities provided by k-NN (k = 6) search; (c) similarity propagation
with α = 0.9 and θ = 0.01.

in which the operator ⌊S⌋≥θ zeros out the entries of S
smaller than 0 < θ < 1.

Subsequently, we define a new smoothness function f us-

ing the learned similarity matrix W̃ as

f(U) =
1

2

n
∑

i,j=1

‖xi − xj‖
2
MW̃ij

=
1

2

n
∑

i,j=1

∥

∥U⊤(xi − xj)
∥

∥

2
W̃ij

=

r
∑

d=1

u
⊤
d X(D̃ − W̃ )X⊤

ud =

r
∑

d=1

u
⊤
d XL̃X⊤

ud

= tr
(

U⊤XL̃X⊤U
)

, (13)

where D̃ is a diagonal matrix whose diagonal elements equal

the sums of row entries of W̃ , i.e., D̃ii =
∑n

j=1 W̃ij , and

L̃ = D̃ − W̃ is known as the graph Laplacian. At this time,
the smoothness function f(·) unifies low-level neighbor-
hood structures {N (xi)} and high-level similar constraints
in S. In summary, we are capable of learning a reliable
similarity matrix provided with heuristic k-NN search and
a genuine similar constraint set. The technical essence of
similarity propagation subject to real similar constraints is
enhancing the generalization and robustness of the smooth-
ness function f .

A toy example to illustrate the effect of similarity propa-
gation from strong similarities over the basis of weak sim-
ilarities is show in Fig. 1. It is clear that we produce more
reliable similarities (see Fig. 1(c)) than those weak ones that
introduce a few wrong links (see Fig. 1(b)).

Generalized Eigenvalue Problem

After designing two functions g(U) and f(U), we propose
a novel distance metric learning technique, Constrained
Metric Learning (CML), by implementing the following
simple optimization framework

max
U∈Rm×r

g(U)

f(U)
= max

U∈Rm×r

tr
(

U⊤CgU
)

tr
(

U⊤XL̃X⊤U
) . (14)

The optimal subspace U = [u1, . . . ,ur] that maximizes
eq. (14) is offered by the maximal eigenvalue solution to the
generalized eigenvalue problem:

Cgud = λdXL̃X⊤
ud, d = 1, 2, · · · , r. (15)

Note that we retain r eigenvectors ud’s corresponding to r
largest positive eigenvalues λd’s in order to make the dis-
tance gap under the learned metric M = UU⊤ be

g(U) = tr
(

U⊤CgU
)

=

r
∑

d=1

u
⊤
d Cgud =

r
∑

d=1

λd > 0.

(16)
Accordingly, the proposed CML approach always keeps a
positive gap between the average squared distance over the
dissimilar constraints D and the average squared distance
over the similar constraints S.

It is delightful to see that CML does not invoke expen-
sive optimization such as semidefinite programming (SDP)
(Boyd and Vandenberge 2003) which was usually applied
to solve metric learning problems (Weinberger, Blitzer, and
Saul 2006). While solving metric learning by an SDP
solver is feasible for small-scale problems, it often becomes
impractical for real applications, even for moderate-scale
datasets. This is because the time complexity of a general
SDP solver may be quite expensive, which is clearly inef-
ficient and not scalable for real applications. In contrast,
the proposed CML method is simple and significantly fast,
avoiding to invoke costly SDP. We expect that CML would
have widespread applicability because CML only involves
simple matrix inversion and eigen-decomposition.

One noticeable issue is the singularity of the matrix

XL̃X⊤ ∈ R
m×m. L̃ is a singular matrix with Rank(L̃) ≤

n − 1, so Rank(XL̃X⊤) ≤ min(m, n − 1). If the data di-

mension m is larger than the data size n, XL̃X⊤ must be
singular. In this case, the generalized eigenvalue decom-
position eq. (15) leads to many zero eigenvalues as well
as the corresponding useless eigenvectors. We may ap-
ply PCA to reduce the data dimension to m1 ≤ n − 1
to guarantee that eq. (15) provides meaningful eigenvec-
tors. As a broadly adopted strategy for data dimensionality
reduction, this PCA preprocessing step has been engaged
into high-dimensional metric learning (Weinberger and Saul
2008)(Davis and Dhillon 2008).
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Table 1: Dataset Information: the numbers of dimensions,
samples and classes.

Dataset # Dimensions # Samples # Classes

WINE 13 178 3

BREAST CANCER 30 569 2

USPS 256 2007 10

Experiments

In this section, we investigate the power of the proposed
metric learning approach CML on two UCI datasets1 and
one image dataset USPS2. Table 1 describes the fundamental
information about these benchmark datasets. In detail, we
compare CML of two versions with the baseline Euclidean
and Mahalanobis metrics and two recently published met-
ric learning methods LMNN (Weinberger, Blitzer, and Saul
2006) and ITML (Davis et al. 2007). We know that the
success of semi-supervised learning stems from making use
of unlabeled data for performance gain. In many applica-
tion domains, unlabeled data are plentiful, such as images,
documents, etc. On the other hand, in many cases it is of-
ten convenient to collect unlabeled data. Therefore, the pro-
posed CML method explores the potential of unlabeled data
by incorporating them into conventional supervised metric
learning problems, exhibiting superior performance in clas-
sification and retrieval. As the unified computation platform,
we let kNN cooperate with various distance metrics.

Let us fix three simple parameters as k = 6 (for heuristic
k-NN search), α = 0.9, and θ = 0.005. What remains to do
is to tune the distance gap factor γ ≥ 1 to the best values on
each dataset. In the following experiments, we evaluate the
effectiveness of the proposed CML method applied to semi-
supervised classification and content-based image retrieval
(CBIR).

Compared Methods

We compare CML extensively with three classes of repre-
sentative distance metric techniques: two unsupervised ap-
proaches, one supervised approach, and one weakly super-
vised approach. Although it may be unfair to compare the
unsupervised approaches with supervised ones, we still re-
port the unsupervised results which can help us comprehend
how effective is the proposed method compared to tradi-
tional. The compared approaches include:

Euclidean: the well-known Euclidean metric denoted as
“EU” in short.

Mahalanobis: a standard Mahalanobis metric denoted as
“Mah” in short. Specifically, the metric matrix A = Cov−1

where Cov is the sample covariance matrix.

LMNN (Weinberger, Blitzer, and Saul 2006): Large Mar-
gin Nearest Neighbor which works under supervised settings
where each sample has an exact class label.

ITML-1 (Davis et al. 2007): Information-Theoretic Met-
ric Learning which works under pairwise relevance con-

1http://archive.ics.uci.edu/ml/
2http://www-i6.informatik.rwth-aachen.de/ keysers/usps.html

Table 2: Comparisons of classification error rates (%) on
WINE. The last row shows the relative improvement of the
proposed CML over the baseline metric EU.

Compared 10 Labeled 40 Labeled
Methods Samples Samples

EU 34.61±6.34 31.33±3.07

Mah 33.62±6.97 19.03±4.42

LMNN 24.01±8.82 15.03±3.54
ITML-1 30.15±7.28 15.28±4.51

ITML-2 33.06±7.59 17.09±5.63

CML-1 19.79±6.53 8.75±6.11

CML-2 19.40±6.51 5.57±2.62

CML-2 Improve 43.95% 82.22%

straints but does not explicitly engage the unlabeled data.
The initialized metric matrix is the identity matrix.

ITML-2 (Davis et al. 2007): the same as ITML-1 except
the initialized metric matrix is the inverse covariance matrix.

CML-1: the proposed weakly supervised metric learn-
ing method using pairwise relevance constraints and the un-
labeled data, where the neighborhood smoothness function
f(·) adopts the weak similarities described in eq. (7).

CML-2: the same as CML-1 except f(·) uses the learned
similarities described in eq. (12).

Semi-Supervised Classification

We apply the above stated seven metric methods EU, Mah,
LMNN, ITML-1, ITML-2, CML-1, and CML-2 on two UCI
datasets: WINE and BREAST CANCER. To perform semi-
supervised classification, we randomly choose at least one
sample from each class as labeled data and treat the rest
samples as unlabeled data. We evaluate 1NN classification
performance in terms of error rates on unlabeled data. For
each dataset, we repeat the evaluation process with the 7
methods 50 times, and take the average error rates for com-
parison. Table 2 and 3 list the comparative results. In con-
trast to unsupervised EU and Mah, supervised LMNN, and
weakly supervised ITML-1, ITML-2, and CML-1, CML-
2 achieves the lowest average error rates on both datasets.
From Table 2 and 3, we find that CML-2 significantly out-
performs the other methods and improves the baseline EU
up to 82.22%.

Image Retrieval

In the USPS (test) handwritten digits dataset, each sample is
a 16×16 image and there are ten types of digits 0, 1, 2, ..., 9
that are used as ten classes. There are 160 samples for each
class at least, summing up to a total of 2007. For the setup
of image retrieval on USPS, we follow a standard procedure
for CBIR experiments. Specifically, a query image is picked
from the dataset and then queried with the evaluated distance
metrics. The retrieval performance is then evaluated based
on the top ranked images ranging from top 10 to top 100
images. The query-averaged precision and recall, which are
widely used in CBIR-related experiments, are utilized for
the performance measures.
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Table 4: Query-averaged precision/recall (%) of 100 top ranked images over 1,607∼1,807 queries from ten classes. There are
three groups of log data. The last column shows the relative improvement of the proposed CML over the baseline metric EU.

Settings EU Mah ITML-1 ITML-2 CML-1 CML-2 CML-2 Improve

Precision (%) with 200 Log Images 62.08 61.79 66.57 64.45 70.59 73.31 18.09%

Recall (%) with 200 Log Images 28.65 28.47 31.15 30.38 33.45 34.90 21.82%

Precision (%) with 300 Log Images 62.53 62.25 68.91 65.23 70.87 73.40 17.38%

Recall (%) with 300 Log Images 28.74 28.56 32.32 30.50 33.52 34.85 21.26%

Precision (%) with 400 Log Images 62.83 62.54 72.07 71.26 72.08 75.28 19.82%

Recall (%) with 400 Log Images 28.68 28.49 33.75 32.90 34.01 35.65 24.30%

Table 3: Comparisons of classification error rates (%) on
BREAST CANCER. The last row shows the relative improve-
ment of the proposed CML over the baseline metric EU.

Compared 20 Labeled 80 Labeled
Methods Samples Samples

EU 11.09±3.08 9.75±1.79

Mah 28.81±3.67 23.56±2.69

LMNN 10.12±2.74 7.15±1.54
ITML-1 10.45±2.75 7.53±1.34

ITML-2 27.61±3.58 18.56±7.54

CML-1 10.54±2.65 11.98±2.38

CML-2 8.40±2.79 5.87±1.55

CML-2 Improve 24.26% 39.79%

Note that we must provide the log data to run weakly su-
pervised metric learning methods ITML-1, ITML-2, CML-1
and CML-2. Here we select 20, 30, and 40 samples uni-
formly from each class, and then we gather three groups of
log data which contain 200, 300, and 400 log images re-
spectively. The similar constraints are imposed on the same
labeled log images, while the dissimilar constraints are im-
posed on the differently labeled log images. The query im-
ages are those samples outside the log data subset. Table 4
as well as Fig. 2 and 3 shows the experimental results with
different groups of log data. From these results, we find that
CML-2 consistently outperforms the other compared meth-
ods and its improvement over the baseline EU doubles that
of ITML when only using 200 log images. Hence, it suf-
fices to conclude that the proposed CML method is more ef-
fective to learn robust distance metrics by utilizing the unla-
beled data, even with limited log data. The relative improve-
ments of CML-2 over ITML in the case of 400 log images
are less significant than those in the case of 200 log images,
but CML-2 still achieves the best improvement among all
compared methods.

Conclusion and Discussion

This paper studies the weakly supervised distance metric
learning problem which works under pairwise similar and
dissimilar constraints. In the context of image retrieval, real
log data provide such constraints via user’s relevance feed-
back. To robustly exploit the log data and smoothly incor-

porate the unlabeled data, we propose the constrained met-
ric learning (CML) approach. CML offers a robust metric
according to pairwise constraints exposed in the log data
through maximizing the distance gap and learning the robust
similarity matrix both of which can be carried out very effi-
ciently. Extensive experiments have been conducted to eval-
uate semi-supervised classification and content-based image
retrieval performances. The promising results show that the
proposed CML approach is more effective than state-of-the-
arts in learning reliable metrics with unlabeled data. As an
advantage, CML is not limited to particular backgrounds and
can accommodate itself to broad applications. For exam-
ple, CML can be applied to constrained K-means clustering
(Bennett, Bradley, and Demiriz 2000)(Wagstaff et al. 2001)
since it supplies a good distance metric.

In future work, we plan to study techniques for learn-
ing nonlinear distance metrics. A simple kernelization trick
can be used immediately to make CML produce a nonlinear
metric. Another feasible research direction is to try metric
learning under noisy pairwise constraints. Such a learning
problem is confronted frequently in practice because some
of user’s relevance feedbacks are inaccurate. To this end, we
need to design more appropriate learning principles in order
to address the noisy constraints.
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