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Abstract

Pairwise Markov Networks (PMN) are an important class of
Markov networks which, due to their simplicity, are widely
used in many applications such as image analysis, bioinfor-
matics, sensor networks, etc. However, learning of Markov
networks from data is a challenging task; there are many pos-
sible structures one must consider and each of these structures
comes with its own parameters making it easy to overfit the
model with limited data. To deal with the problem, recent
learning methods build upon the L1 regularization to express
the bias towards sparse network structures. In this paper, we
propose a new and more flexible framework that let us bias
the structure, that can, for example, encode the preference to
networks with certain local substructures which as a whole
exhibit some special global structure. We experiment with
and show the benefit of our framework on two types of prob-
lems: learning of modular networks and learning of traffic
networks models.

Introduction
Pairwise Markov Networks (PMN) define an important class
of probabilistic graphical models (Koller and Friedman
2009) with applications in areas as diverse as image anal-
ysis, genetics, natural language processing or transporta-
tion network analysis. PMNs represent the structure of the
joint distribution in terms of direct interactions (dependen-
cies) among individual variables and potential functions for
each interacting pair. In general, learning of PMNs from
data is a hard task. The parameters of the network with a
fixed structure are found using iterative methods such as it-
erative proportional scaling (Jirouśek and Přeučil 1995) and
its variants. The learning of the structure or the learning
of the complete Markov network (both the parameters and
the structure) is even harder. However, learning PMNs may
be particularly important for knowledge discovery; for ex-
ample, the automatic learning of the interaction structure
among genes from observational data may provide new in-
sights into the cell regulatory mechanisms.

The structure learning problem for PMNs has been the
topic of active research by AI and UAI communities in re-
cent years. The methods typically applied to this prob-
lem, rely on the L1 (lasso) regularization ((Lee, Ganap-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

athi, and Koller 2007), (Wainwright, Ravikumar, and Laf-
ferty 2007), (Friedman, Hastie, and Tibshirani 2008), (Am-
broise, Chiquet, and Matias 2009), (Banerjee, Ghaoui, and
d’Aspremont 2008), (Meinshausen and Bühlmann 2006),
(Marlin and Murphy 2009)) which optimizes the loglikeli-
hood of data penalized with the L1 regularization term. The
L1 regularization term biases the learning towards sparser
structures and in principle defines a prior distribution over
possible PMN structures. However, this approach lacks the
flexibility of defining other types of structural biases. To
address this limitation, we propose a new PMN learning
method that lets us incorporate a larger class of structural
priors over possible models into learning process. The pri-
ors, induced by the L1 regularization penalty, then become
a special case. In our model, the prior distribution over the
structures is defined in terms of a joint probability distri-
bution over a set of latent variables, each representing the
presence or the absence of one edge in the underlying PMN
model. This higher level model and its distribution is de-
fined by another (structure-generating) Markov network and
its corresponding energy functions. The structure and the
parameter learning of the underlying PMN model are then
solved by optimizing the loglikelihood of the data using the
variational expectation-maximization (EM) approach (Jor-
dan et al. 1998) on the extended model.

Our proposed framework for learning PMNs is very gen-
eral and may be customized to any type of PMN (for ex-
ample, a binary PMN (Höfling and Tibshirani 2009) or a
Gaussian graphical model (Friedman, Hastie, and Tibshirani
2008)), any type of energy functions defining the structural
prior, or additional regularization penalties (L1, L2). In this
paper, due to the space limitation, we experiment with pair-
wise Gaussian Graphical Models (GGMs), L1 regularization
terms, and two types of energy functions defining structural
priors. We show that these energy functions are able to re-
cover the structure of the underlying GGM better than other
structure-learning methods.

The structure of the paper is as follows. First we in-
troduce a latent variable model with a structure-generating
layer defining the structural prior. After that we describe a
variational EM method we use to solve the latent variable
model. Then we briefly describe the options for refining
our general framework. Finally we test our method on two
learning problems: (1) learning of modular PMNs, and (2)
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learning of vehicular traffic networks.

Latent Variable Model for Learning PMNs
A pairwise Markov network (PMN) M is a probabilis-
tic graphical model over a set of random variables X =
{X1, X2, . . . , Xp} that is defined by an undirected graph
G =< X,E > and two sets of potentials: node potentials
V = {vi | i ∈ 1..p}, and edge potentials F = {fij |
{i, j} ∈ E}. Here, E is a subset of all possible undi-
rected edges L defined over the set of nodes (variables) in
X. Each edge potential fij is a parametric positive func-
tion over Xi and Xj parameterized by the vector θij , i.e.
fij , f(Xi, Xj ; θij) > 0. The same holds for node poten-
tials; that is, vi , v(Xi; θi) > 0. The distribution over X is
subsequently defined as (Koller and Friedman 2009):

Pr(X | Θ) =
1

α(Θ)

∏
{i,j}∈E

f(Xi, Xj ; θij)
p∏
i=1

v(Xi; θi),

(1)
where, α(Θ) is the normalization factor (aka the partition
function) and Θ = {θij | {i, j} ∈ E} ∪ {θi | i ∈ 1..p}.

Having formalized PMNs, the task of learning a PMN
from data is defined as follows: given a set of observations
D over variables X drawn independently from some under-
lying PMN M, find an edge set E∗ (the structure) and its
corresponding parameter set Θ∗ so that the PMN M∗, in-
duced by E∗ and Θ∗, is as close to M as possible. We
approach this problem by formalizing the problem proba-
bilistically with the help of a group of latent variables repre-
senting the edges between the variables in the model and the
prior distribution over different structures.

Dummy potentials and parameter densities: We as-
sume there exists a specific parameter vector θ0 such that
f(Xi, Xj ; θ0) = 1 for all possible values of Xi and Xj .
Therefore, we can extend F to contain edge potentials over
all possible pairs such that the edge potentials for missing
edges are parameterized by θ0. The potentials for missing
edges are called dummy potentials. Furthermore, we assume
the edge parameter vectors for existing edges are drawn from
some density Pe. For missing edges, the parameter vector is
ideally equal to θ0. However, due to the finite sample size
and presence of noise, we model the parameter vectors for
missing edges to be drawn from some sharp density Pm cen-
tered on θ0.

Auxiliary latent variables: For each candidate edge eij
(for a pair of variables Xi and Xj), we define an (auxiliary)
latent binary variable Zij to explicitly model the presence
or absence of that edge in the PMN model. The value of
Zij indicates which distribution the parameter vector θij is
drawn from. Zij = 1 means that eij is present and θij is
drawn from Pe while Zij = 0 implies that eij is absent and
θij is drawn from Pm. Subsequently, we will have Pe =
Pr(θij |Zij = 1) and Pm = Pr(θij |Zij = 0). We call the
binary matrix Z = [Zij ]p×p the structural matrix since it
encodes the structure of the model.

By extending Θ to contain the parameter vectors for miss-
ing edges as well (which are ideally equal to θ0), knowing Θ
will completely specify the model to generate data. In other

words, the extended set Θ implicitly encodes the structure
as well. As a result, given Θ, the dataset D will become
independent of the structural matrix Z. Why do we need Z
then? As we will see next, by imposing some dependency
structures on binary variables Zijs, we can introduce some
biases toward some desired structures. Note that, an alterna-
tive model is to make data directly dependent on Z without
introducing dummy potentials. The problem with this model
is that the partition function is dependent on Z which makes
the computations intractable.

Structural priors: The prior probability of different
PMN structures can be defined in terms of the joint prob-
ability distribution over the latent variables Z. We define the
structural prior over Z as:

Pr(Z) =
1
αφ

exp
(
− φ(Z)

)
(2)

Here, αφ is the normalization constant and φ(·) is a non-
negative energy function which maps a candidate structure
Z to a real energy value. φ(·) is designed in a way that more
preferable (stable) structures get lower energy values. The
different choices of the energy function will be discussed
later in this paper.

Having defined all the elements of our generative model,
now we derive the joint distribution Pr(D,Θ,Z) in our
model. Assuming an I.I.D. sample D = {x(1), . . . , x(n)},
the log-joint distribution over data D, the latent variables Z,
and the parameters Θ can be expressed as:

log Pr(D,Θ,Z) =
n∑
i=1

log Pr(x(i) | Θ)− φ(Z)

+
∑
i6=j

log Pr(θij | Zij) +
p∑
i=1

log Pr(θi)− logαφ

(3)

Variational Learning Algorithm
Given the expanded model with the latent variables Z that
represent the edges, our goal is to estimate Θ that maximizes
the posterior distribution Pr(Θ | D) ∝ Pr(Θ,D). How-
ever, since we have a latent component in our model (i.e. Z),
we cannot directly maximize Pr(Θ,D). Instead, we can,
in principle, carry this optimization using the Expectation-
Maximization (EM) algorithm that solves the problem itera-
tively by taking the expectation of Equation (3) over Z with
respect to Pr(Z | Θ,D) ≡ Pr(Z | Θ) (due to Z ⊥ D | Θ)
in the E-step and maximizing the result over Θ in the M-
step. However, due to the complex form of Pr(Z | Θ) in
our model, taking the expectation is computationally very
costly and, in general, requires us to sum over exponentially
many assignments of values to Z. To alleviate the problem,
we adopt the variational EM method (Jordan et al. 1998)
that approximates Pr(Z | Θ) with a different, but computa-
tionally more convenient distribution. Using this technique,
not only we estimate Θ, but also, as a byproduct, we get a
factorized approximation to Pr(Z | Θ) which can be used to
infer the structure of the underlying model very efficiently.
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Mean Field Approximation of Pr(Z | Θ)
Our goal is to find a distribution Q(Z) that approximates
Pr(Z | Θ) well and at the same time permits efficient infer-
ences in the E-step. To find this distribution we resort to the
mean field approximation (Jordan et al. 1998):

Q(Z) =
∏
i6=j

qij(Zij) =
∏
i6=j

δ
Zij

ij (1− δij)1−Zij (4)

where, δijs are the parameters of our approximation. Note
that parameters δij are free (variational) parameters that can
be optimized to better approximate Pr(Z | Θ). Also, note
that Q(Z) nicely decomposes along variables Zijs.

Variational Lower Bound
To optimize both Θ and Q(Z), we maximize: :

J (D,Θ, Q(Z)) = EQ{log Pr(D,Θ,Z)}+H(Q(Z))
(5)

where H(·) denotes the entropy function. More precisely,
we try to maximize the expected log Pr(D,Θ,Z) with re-
spect to a new distribution Q(Z) instead of Pr(Z | Θ)
whose entropy is high. It can be shown that:

J = log Pr(D,Θ)− DKL(Q(Z)‖Pr(Z | Θ)) (6)

which is the lower bound of log Pr(D,Θ). Therefore, max-
imizing J with respect to Θ andQ(Z) is equivalent to max-
imization of the lower bound of log Pr(D,Θ). The differ-
ence between J and log Pr(D,Θ) is exactly the KL diver-
gence of Q(Z) and Pr(Z | Θ). In our model, J becomes:

J =
n∑
i=1

log Pr(x(i) | Θ)− EQ
{
φ(Z)

}
− logαφ

+
∑
i6=j

EQ
{

log Pr(θij | Zij)
}

+
p∑
i=1

log Pr(θi)

−
∑
i6=j

(
δij log δij + (1− δij) log(1− δij)

)
(7)

Note that J includes the original parameters Θ and the vari-
ational parameters δij ∀i, j. Both parameter sets can be
maximized using the Variational EM algorithm. In the E-
step, given the current estimate of parameter set Θ̂, we find
Q(Z) that maximizes J . The J is maximized whenever

∀i 6= j : δij =
Ω(θ̂ij , z = 1)

Ω(θ̂ij , z = 1) + Ω(θ̂ij , z = 0)
(8)

such that

Ω(θ̂ij , z) = Pr(θ̂ij | Zij = z)

× exp(−EQ
{
φ(Z) | Zij = z

}
)

(9)

(8) defines the mean-field fixed-point equations for δijs and
can be solved iteratively. This corresponds to the E-step of
the Variational EM. In the M-step, we try to find Θ that
maximizes J given the current estimate of Q̂(Z) (i.e. δ̂ijs).

Refinement of The Framework
So far, we have developed a general framework for learning
PMN from a finite sample. In order to refine our framework
for specific applications, we need to specify three compo-
nents in our model: (I) the energy function φ(·) which ex-
presses our structural bias in a specific problem, (II) Pr(θij |
Zij) which defines how the edge parameter vectors are dis-
tributed in different edge states (as we will see in this sec-
tion, the choice of Pr(θij | Zij), in fact, determines the type
of regularization that shows up in the M-step, e.g. L1, L2),
and (III) Pr(X | Θ) which specifies the type of PMN we
are interested to learn. While the choices (I) and (II) affect
the E-step, the choices (II) and (III) affect the M-step. In the
next two subsections, we discuss some useful candidates for
these three choices.

Structural Priors
The Equation (2) defines the prior distribution over the dif-
ferent PMNs structures in terms of an energy function φ(·).
Hence, φ(·) biases the learning algorithm toward some de-
sired structures by assigning them less energy values. How-
ever, from the computational perspective, we also need to
assure the conditional expectation of φ(·) in Equation (9) is
efficiently computable.

To this end, we define the class of additive energy func-
tions as a general subclass of energy functions. The idea is
that the energy of a candidate structure can be decomposed
into the energies of its substructures. A substructure s, in
general, is defined as a subset of all possible edges (e.g. a
collection of all edges that form a specific shape or share a
node, etc.) Note that different substructures are not neces-
sarily disjoint and can have some edges in common. As a
result, we have φ(Z) =

∑
s∈S ψ(s) where S is the set of all

interesting substructures and ψ(·) is the sub-energy function
which computes the energy of a substructure. In this paper,
we propose (and later experiment with) two additive energy
functions which we describe next.

The simplest substructures are the single edges. We define
the pairwise energy of the edge {i, j} as:

ψp(Zij) = −
(
Zij log βij + (1− Zij) log(1− βij)

)
βij = Pr(Zij = 1)

(10)

Here, βij expresses the prior belief regarding the existence
of edge {i, j} in the model. Using this energy function, it
is easy to see that (8) reduces to the standard Bayesian for-
mula for computing the posterior probability of the edge’s
existence (i.e. δij). As expected, the pairwise energy func-
tion (PEF) can only be used in those problems where a good
estimate of the edge priors is available beforehand. For ex-
ample, in this paper (in the Experiments section), we em-
ploy our framework to learn a PMN over a set of road traffic
sensors each of which has a geographical position and mea-
sures the traffic volume at that position. The intuition here
is that geographically distant sensors are less likely to be di-
rectly correlated with each other. Therefore, the pairwise
geographical distances can be used to form the edge priors.
We will describe this problem in more details in the next
section.
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The second energy function we introduce here is called
clustering energy function (CEF). The substructures for
CEF are all sets of three edges which form a triangle. The
energy of a triangle is then computed as:

ψc(Zij , Zjk, Zki) = ε · I(Zij , Zjk, Zki), ε > 0 (11)

where, I(·, ·, ·) is an indicator function which returns 1 iff
two of its inputs are 1 and the other one is 0. In other words,
a triangle is assigned the energy of ε iff it is an incomplete
triangle, with two edges present and one missing. Using
CEF, the conditional expectation in (9) can be derived as:

EQ
{
φ(Z) | Zij = 1

}
=
∑
k 6=i,j

(δik + δjk − 2δikδjk)

EQ
{
φ(Z) | Zij = 0

}
=
∑
k 6=i,j

δikδjk
(12)

The equalities in (12) are both up to a same constant c which
is canceled out in (8). It turns out that CEF prefers clus-
tered structures - those structures that consist of a couple
of clusters each of which has dense connections inside and
sparse connections with other clusters. This is in fact due
to the penalizing of the incomplete triangles in a candidate
structure by assigning ε energies to them which makes the
whole structure unstable. Choosing greater values for ε in-
deed enforces more obvious clustered structure. Therefore,
CEF is a perfect choice for those problems where the under-
lying PMN is believed to be modular meaning that variables
are organized in a clustered structure. The experiments with
CEF on modular problems are presented in the next section.

Gaussian Graphical Models
Gaussian Graphical Models (GGM) are a special class of
PMN such that Pr(X | Θ) is a multi-variate Normal dis-
tribution (Koller and Friedman 2009). If K = [kij ]p×p
is the positive definite precision matrix of this distribu-
tion and its mean vector is zero, the edge and the node
potentials will be f(Xi, Xj ; kij) = exp(−XikijXj) and
v(Xi; kii) = exp(− 1

2kiiX
2
i ), respectively. Therefore, in

GGMs, the edge and the node parameter vectors are actu-
ally the scalar values which are the elements of the preci-
sion matrix (i.e. θij = kij , θi = kii). In the ideal case, if
{i, j} /∈ E, we will have kij = 0 (that is, θ0 = 0).

Modeling Pr(θij | Zij)
The next choice is to specify Pr(θij | Zij) which in the
GGM case corresponds to Pr(kij | Zij). One option here is
to adopt Laplace distribution:

Pr(kij | Zij = t) =
1

2λt
exp

{
− |kij − µt|

λt

}
(13)

where t ∈ {0, 1} and the hyper-parameters (µt, λt) repre-
sent the mean and the variance of the Laplace distribution,
respectively. These hyper-parameters can be fixed or esti-
mated in the E-step by taking derivatives ofJ . In both cases,
the only constraints are µ0 = 0 and λ1 > λ0. µ0 = 0 en-
sures the noise distribution Pr(kij | Zij = 0) is centered on

θ0. The second constraint expresses that the partial correla-
tion coefficient kij has more variation if Xi and Xj are, in
fact, directly correlated with each other (i.e. {i, j} ∈ E).

Having specified choices (II) and (III), we can derive the
M-step optimization problem for the GGMs with Laplace
parameter distribution as follows. Assuming the current es-
timate of Q̂Θ(Z) and D, maximization of J over K is:

K̂← arg max
K�0

{n
2

(log det K−tr(Σ̂K))−‖Γ?K‖1
}

(14)

Γ = [γij ]p×p, γij =
δij
λ1

+
1− δij
λ0

(15)

where, n is the sample size, Σ̂ is the empirical covariance
matrix of D, tr(·) is the trace of matrix, ‖A‖1 =

∑
|aij | is

the L1-norm of matrix A, and ? is the element-by-element
matrix multiplication.

Interestingly, (14) can be viewed as the generalized L1-
regularized maximum likelihood (L1ML) optimization for
learning sparse GGMs. In fact, viewing Γ as the penalty
matrix, the L1-norm in (14) would be a proxy for sparsity.
The only difference is that, in the standard L1ML, uniform
penalty values are multiplied by the elements of K (Fried-
man, Hastie, and Tibshirani 2008), while in our case, the
penalties for different kijs are different based on δij values
estimated in the E-step. As a matter of fact, the standard
L1ML for learning sparse GGMs can be seen as a special
case of our general framework in which all the edges a pri-
ori have the same probability of existence which determines
the degree of sparseness. Equation (14) is a concave op-
timization problem which is guaranteed to have only one
maximum and can be solved using standard Block Coordi-
nate Descent algorithm used for the standard L1ML (Baner-
jee, Ghaoui, and d’Aspremont 2008). Note that choice
of Normal distribution instead of Laplace distribution for
Pr(θij | Zij), in the previous subsection, would result in
the L2 regularization in the M-step.

Experimental Results
In this section, we use the GGM refinement of our frame-
work with two energy functions introduced in this paper to
learn two different PMNs: modular networks and traffic sen-
sor networks (where each variable is assigned a geographical
position). The first experiment is performed on the synthetic
data while the second one is performed on the real data.

Modular Networks: Modular networks are networks in
which nodes are organized in some clusters each of which
has dense connections inside and sparse connections with
other clusters. Here, we apply our approach to data sam-
ples generated from a synthetic modular GGMs (with 200
variables organized in roughly 4 ring-shaped clusters). The
objective is to uncover the original structure of the GGM
(Figure 1(a)). In particular, we use CEF as the energy func-
tion for our framework which biases the structure learn-
ing process toward the modular structures. For this exper-
iment, we generate training samples of different sizes, vary-
ing from 250 to 4250. The plots in Figure 1(b,c) repre-
sent the averages over 50 runs of the experiment with 2-
standard deviation error bars. We compare our approach
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Figure 1: (a) A modular PMN (b) the log-likelihood of test data vs. sample size (c) the Hamming distances with the true model
(d) penalized log-likelihood vs. ε (e) penalized log-likelihood vs. C

with three other methods developed for learning GGMs in-
cluding non-regularized maximum likelihood (ML), stan-
dard L1-regularized maximum likelihood (L1-ML)(Baner-
jee, Ghaoui, and d’Aspremont 2008), and SIMoNe (Am-
broise, Chiquet, and Matias 2009). SIMoNe along with the
method in (Marlin and Murphy 2009) are specialized algo-
rithms to learn modular GGMs by first clustering the vari-
ables of the GGM and then applying the group L1 on the
clustered structure.

We evaluate all the methods based on their generalization
power as well as their structural accuracy. The score measur-
ing the generalization power is the log-likelihood of a fixed
test sample of size 100. Figures 1(b) depicts the average
log-likelihood of the test data against the training sample
size. These plots show that all the regularization methods
including ours achieve pretty much the same performance in
terms of the generalization power which is significantly bet-
ter than that of the non-regularized ML. It should be noted
that the mean generalization power for L1ML and SIMoNe
is slightly better than that of our approach. However, the
difference is insignificant.

To measure the structural accuracy, we compute the Ham-
ming distance between the resulted structures and the true
model (the number of differences between two structures).
Figures 1(c) plots the Hamming distance against the sample
size for all the regularization methods. The Hamming dis-
tances for the non-regularized ML were so large that we did
not even include the corresponding curve in the plot. Ac-
cording to these results, as the sample size grows, the GGM
realization of our framework with CEF achieves the most
accurate structure (the lowest Hamming distance) with sig-
nificant margins to L1ML and SIMoNe. However, for small
sample sizes all of these methods except the non-regularized
ML perform similarly in terms of the structural accuracy.

Note that SIMoNe, as a specialized method for learning
modular networks, needs to know the true number of clus-
ters C in advance. For CEF, on the other hand, the value
of ε energy assigned to incomplete triangles should be given
initially. In principle, we can find the values of these param-
eters using cross-validation: Figure 1(d,e) shows the penal-
ized log-likelihood of test data for different values of ε and
C. However, ε is conceptually very different from C. Re-
gardless of the true C, by choosing large ε values, we bias
our algorithm toward more clear cluster structures; while in
the case of fuzzy clusters (like in this simulation), cross-
validation naturally finds lower values of ε. This means that

regardless of the fuzziness and the number of clusters in the
true model, by choosing a proper ε using cross-validation,
CEF can achieve the closest structure to the truth. In con-
trast, the primary assumption for the specialized algorithms
for modular networks like SIMoNe is that the clusters are
well separated from each other which is not the case in this
experiment. That explains the atypical shape of the cross-
validation curve in Figure 1(e) for C: it cannot determine
the best number of clusters for the network in Figure 1(a).

Highway Traffic Networks: We use the GGM realiza-
tion of our framework to model the traffic flow networks of
highways (Singliar and Hauskrecht 2007). In particular, we
apply our method to traffic flow data from highways of the
Pittsburgh area gathered in 2003. The dataset consists of the
measurements of 181 volume sensors (p = 181) gathered at
different times of day for 243 workdays (n = 243) through-
out 2003. Each measurement in the dataset is the number of
vehicles passing the respective sensor during a five-minute
interval. In order to generate I.I.D. samples, we chunked
the original dataset into the smaller ones so that each small
dataset contains the sensor measurements for a fixed time of
day throughout 243 days. This way, each small dataset con-
tains exactly 243 records and the time dependency between
the records in the same dataset is minimized.

The small ratio of n/p in this problem demands some sort
of regularization to learn a reliable model. In this specific
problem, the geographical proximity seems to convey infor-
mation regarding the prior probability of the edges. More
precisely, if two sensors are geographically close to each
other, intuitively it is more likely that they are directly corre-
lated to each other or, in other words, there must be an edge
between them in the underlying model. This promotes the
use of PEF which enables us to encode prior belief regard-
ing each single edge. To compute the edge priors, for each
sensor we have assigned the high prior weights to the edges
which connect that sensor to k = 8 closest sensors (based
on Euclidean distance). All the other edges in the network
are assigned low prior weights. These weights are fed into
the algorithm through βijs in PEF.

Figure 2 shows the learned networks for 4 different times
of day each mapped onto the Pittsburgh area’s highway map.
The results are somewhat interesting. In spite of the low
prior belief due the geographical distance, during the rush
hours in the morning, when there is a high and continu-
ous inflow of traffic into the congested downtown (in the
center), many of the distant sensors turn out to be directly
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Figure 2: The learned networks at 7:00am (top-left), 12:00pm (top-right), 4:00pm (bottom-right) and 10:00pm (bottom-right)

correlated. On the other hand, during the non-rush hours,
when the traffic volumes are lower and flow freely (espe-
cially at night), the learned structure coincides more with
the underlying road network (although, even in this case,
there are some unexpected correlations which cannot be un-
covered merely from the road map). This suggests that the
geographical proximity is not the only cause of correlation,
but congestion (during the rush hours in the downtown) or
other events (e.g. scheduled sport event) may also cause dis-
tant sensors to be correlated.

Conclusions
We have proposed a new framework for learning the struc-
ture and parameters of pairwise Markov networks (PMNs).
Unlike previous methods that bias the learning towards
sparse structures, our approach is more flexible and lets one
define priors over many different network structures. We
have proposed a class of priors based on additive energy
functions that lead to more efficient inferences and learn-
ing. We introduced, studied and tested two priors from this
class. In addition to flexible structural priors, our framework
permits and can learn different types of PMNs, for example,
GGMs or binary PMNs. The learning algorithm that powers
our framework is a variational EM method that is used to
estimate both the structure and the parameters of a PMN.

We have evaluated our framework on two PMN learning
problems. On a synthetic GGM data our approach was able
to outperform, in terms of structure recovery, other state-of-
the-art learning algorithms. On a real-world traffic network
data we showed our model was able to recover solely from
observations of traffic flows in different locations reasonably
well the topology of the underlying highway network.

Our framework and its flexibility offer multiple new re-
search directions, such as study of new classes of structural
priors that benefit from local substructures. We also believe
the proposed framework and its flexibility will let us fur-
ther extend its applicability. For example, we are currently
studying, in more depth, its application to models with more
flexible clustered structure.
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