
Exact Algorithms and Experiments for Hierarchical Tree Clustering

Jiong Guo ∗
Universität des Saarlandes

jguo@mmci.uni-saarland.de

Sepp Hartung †
Friedrich-Schiller-Universität Jena

sepp.hartung@uni-jena.de

Christian Komusiewicz ‡
Friedrich-Schiller-Universität Jena

c.komus@uni-jena.de

Rolf Niedermeier
Friedrich-Schiller-Universität Jena

rolf.niedermeier@uni-jena.de

Johannes Uhlmann §
Friedrich-Schiller-Universität Jena

johannes.uhlmann@uni-jena.de

Abstract

We perform new theoretical as well as first-time experimental
studies for the NP-hard problem to find a closest ultramet-
ric for given dissimilarity data on pairs. This is a central
problem in the area of hierarchical clustering, where so far
only polynomial-time approximation algorithms were known.
In contrast, we develop efficient preprocessing algorithms
(known as kernelization in parameterized algorithmics) with
provable performance guarantees and a simple search tree
algorithm. These are used to find optimal solutions. Our
experiments with synthetic and biological data show the effec-
tiveness of our algorithms and demonstrate that an approxima-
tion algorithm due to Ailon and Charikar [FOCS 2005] often
gives (almost) optimal solutions.

1 Introduction
Hierarchical representations of data play an important role
in biology, the social sciences, and statistics (Hartigan 1985;
Křivánek and Morávek 1986; Ailon and Charikar 2005;
Dasgupta and Long 2005). The basic idea behind hierarchical
clustering is to obtain a recursive partitioning of the input
data in a tree-like fashion such that the leaves one-to-one rep-
resent the single items and all inner points represent clusters
of various granularity degrees. Hierarchical clusterings do
not require a prior specification of the number of clusters
and they allow to understand the data at many levels of fine-
grainedness (the root of the tree representing the whole data
set). We contribute new theoretical and experimental results
for a well-studied NP-hard problem in this context, which is
called M -HIERARCHICAL TREE CLUSTERING. The essen-
tial point of our work is that we can efficiently find provably
optimal (not only approximate) solutions in cases of practical
interest.
Hierarchical Tree Clustering. Let X be the input set of
elements to be clustered. The dissimilarity of the elements
∗Partially supported by the DFG, research project DARE,

GU 1023/1, and the DFG cluster of excellence “Multimodal Com-
puting and Interaction”.
†Partially supported by the DFG, research project DARE,

GU 1023/1.
‡Supported by a PhD fellowship of the Carl-Zeiss-Stiftung.
§Supported by the DFG, research project PABI, NI 369/7.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is expressed by a positive-definite symmetric function
D : X × X → {0, . . . ,M + 1}, briefly called distance
function. Herein, the constant M ∈ N specifies the depth
of the clustering tree to be computed. We focus on the case
to find a closest ultrametric that fits the given data.
Definition 1. A distance functionD : X×X → {0, . . . ,M+
1} is called ultrametric if for all i, j, l ∈ X the following
condition holds:

D(i, j) ≤ max{D(i, l), D(j, l)}.
The central M -HIERARCHICAL TREE CLUSTERING

problem1 can be formulated as follows:
Input: A set X of elements, a distance function D :
X ×X → {0, . . . ,M + 1}, and k ≥ 0.
Question: Is there a distance function D′ : X ×X →
{0, . . . ,M+1} such thatD′ is an ultrametric and ||D−
D′||1 ≤ k?

Herein, ||D − D′||1 :=
∑
{i,j}⊆X |D′(i, j) − D(i, j)|. In

other words, given any distance function D, the goal is to
modify D as little as possible to obtain an ultrametric D′. An
ultrametric one-to-one corresponds to a rooted depth-(M+1)
tree where all leaves have distance exactly M + 1 to the root
and they are bijectively labeled with the elements ofX (Ailon
and Charikar 2005). This problem is closely related to the
reconstruction of phylogenetic trees (Farach, Kannan, and
Warnow 1995; Ailon and Charikar 2005). 1-HIERARCHICAL
TREE CLUSTERING is the same as the CORRELATION CLUS-
TERING problem on complete graphs (Bansal, Blum, and
Chawla 2004; Ailon, Charikar, and Newman 2008), also
known as CLUSTER EDITING (Guo 2009; Böcker, Briese-
meister, and Klau 2009).
Related Work. M -HIERARCHICAL TREE CLUSTER-
ING is NP-complete (Křivánek and Morávek 1986) and
APX-hard (Agarwala et al. 1999), excluding any hope
for polynomial-time approximation schemes. (Ailon and
Charikar 2005) presented a randomized polynomial-time
combinatorial algorithm for M -HIERARCHICAL TREE
CLUSTERING that achieves an approximation ratio of M +2.
Moreover, there is a deterministic algorithm achieving the
same approximation guarantee (van Zuylen and Williamson

1Our algorithms also deal with the practically more relevant op-
timization problem where one wants to minimize the “perturbation
value” k.

457

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

2009). Numerous papers deal with 1-HIERARCHICAL TREE
CLUSTERING and its approximability (Ailon, Charikar, and
Newman 2008; van Zuylen and Williamson 2009) or fixed-
parameter tractability (Guo 2009; Böcker, Briesemeister, and
Klau 2009). In particular, there have been encouraging exper-
imental studies based on fixed-parameter algorithms (Rah-
mann et al. 2007; Böcker, Briesemeister, and Klau 2009). In
the area of phylogeny reconstruction, M -HIERARCHICAL
TREE CLUSTERING is known as “FITTING ULTRAMETRICS
under the `1 norm”.

Our Results. On the theoretical side, we provide polynomial-
time preprocessing algorithms with provable performance
guarantees (in the field of parameterized complexity analy-
sis (Niedermeier 2006) known as “kernelization”). More pre-
cisely, we develop efficient data reduction rules that provably
transform an original input instance of M -HIERARCHICAL
TREE CLUSTERING into an equivalent instance consisting
of only O(k2) elements or O(M · k) elements, respectively.
Moreover, a straightforward exact algorithm based on a size-
O(3k) search tree is presented.

On the practical side, we contribute implementations and
experiments for our new data reduction rules (combined with
the search tree strategy) and the known approximation algo-
rithm: First, with our exact algorithms, we can solve a large
fraction of non-trivial problem instances. Second, we observe
that Ailon and Charikar’s algorithm (Ailon and Charikar
2005) often yields optimal results.

Basic Notation. Throughout this work let n := |X|. A con-
flict is a triple {i, j, l} of elements from the data set X that
does not fulfill the condition of Definition 1. A pair {i, j}
is the max-distance pair of a conflict {i, j, l} if D(i, j) >
max{D(i, l), D(j, l)}. For Y ⊆ X the restriction of D
to Y is denoted by D[Y] and is called the distance func-
tion induced by Y . For some of our data reduction rules
we use notation from graph theory. We only consider undi-
rected, simple graphs G = (V,E), where V is the vertex
set and E ⊆ {{u, v} | u, v ∈ V }. The (open) neigh-
borhood NG(v) of a vertex v is the set of vertices that
are adjacent to v, and the closed neighborhood is defined
as NG[v] := NG(v) ∪ {v}. For a vertex set S ⊆ V ,
let NG(S) :=

⋃
v∈S NG(v) \ S and NG[S] := S ∪NG(S).

With N2
G(S) := NG(NG(S)) \NG[S] we denote the second

neighborhood of a vertex set S.

Fixed-Parameter Tractability and Kernelization. Param-
eterized algorithmics is a two-dimensional framework for
studying the computational complexity of problems (Nie-
dermeier 2006). One dimension is the input size n (as
in classical complexity theory), and the other one is the
parameter k (usually a positive integer). A problem is called
fixed-parameter tractable if it can be solved in f(k) · nO(1)

time, where f is a computable function only depending on k.
A core tool in the development of fixed-parameter algo-

rithms is problem kernelization, which can be viewed as
polynomial-time preprocessing. Here, the goal is to trans-
form a given problem instance x with parameter k by ap-
plying so-called data reduction rules into a new instance x′
with parameter k′ such that the size of x′ is upper-bounded
by some function only depending on k, the instance (x, k)

is a yes-instance if and only if (x′, k′) is a yes-instance, and
k′ ≤ k. The reduced instance, which must be computable
in polynomial time, is called a problem kernel; the whole
process is called kernelization.

Several details and proofs are deferred to a full version of
this article.

2 A Simple Search Tree Strategy
The following search tree strategy solvesM -HIERARCHICAL
TREE CLUSTERING: As long as D is not an ultrametric,
search for a conflict, and branch into the three cases (either
decrease the max-distance pair or increase one of the other
two distances) to resolve this conflict by changing the pair-
wise distances. Solve each branch recursively for k − 1.

Proposition 1. M -HIERARCHICAL TREE CLUSTER-
ING can be solved in O(3k · n3) time.

In the next section, we will show that by developing
polynomial-time executable data reduction rules one can
achieve that the above search tree no longer has to operate
on sets X of size n but only needs to deal with sets X of
size O(k2) or O(M · k), respectively.

3 Preprocessing and Data Reduction
In this section, we present our main theoretical results,
two kernelization algorithms for M -HIERARCHICAL TREE
CLUSTERING. Both algorithms partition the input instance
into small subinstances, and handle these subinstances inde-
pendently. This partition is based on the following lemma.

Lemma 1. Let D be a distance function over a set X . If
there is a subset X ′ ⊆ X such that for each conflict C
either C ⊆ X ′ or C ⊆ (X \ X ′), then there is a closest
ultrametric D′ to D such that for each i ∈ X ′ and j ∈
X \X ′, D(i, j) = D′(i, j).

An O(k2)-Element Problem Kernel. Our first and simpler
kernelization algorithm uses two data reduction rules which
handle two extremal cases concerning the elements: The
first rule corrects the distance between two elements which
together appear in many conflicts, while the second rule
safely removes elements which are not in conflicts.

Reduction Rule 1. If there is a pair {i, j} ⊆ X which is
the max-distance pair (or not the max-distance pair) in at
least k+ 1 conflicts, then decrease (or increase) the distance
D(i, j) and decrease the parameter k by one.

Reduction Rule 2. Remove all elements which are not part
of any conflict.

Lemma 2. Rule 2 is correct.

Proof. LetD be a distance function over a setX , and let x ∈
X be an element which is not part of any conflict. We show
the correctness of Rule 2 by proving the following.

Claim. (X,D) has an ultrametricD′ with ||D−D′||1 ≤
k iff (X \ {x}, D[X \ {x}]) has an ultrametric D′′
with ||D[X \ {x}]−D′′||1 ≤ k.

458

Only the “⇐”-direction is non-trivial. The proof is or-
ganized as follows. First, we show that X \ {x} can be
partitioned into M + 1 subsets X1, . . . , XM+1 such that the
maximum distance within each Xr is at most r. Then, we
show that for each conflict {i, j, l} we have {i, j, l} ⊆ Xr

for some r. Using these facts and Lemma 1, we then show
that there is a closest ultrametric D′ to D[X \ {x}] that only
changes distances within the Xr and that “reinserting” x
into D′ results in an ultrametric D′′ within distance k to D.

First, we show that there is a partition ofX\{x} intoM+1
subsets X1, . . . , XM+1 such that the maximum distance
within each Xr is at most r. For 1 ≤ r ≤ M + 1,
let Xr := {y ∈ X | D(x, y) = r}. Clearly, this yields
a partition of X \ {x}. Furthermore, the distance between
two elements i, j ∈ Xr is at most r, because otherwise there
would be a conflict {i, j, x} since D(i, x) = D(j, x) = r
and D(i, j) > r. This, however, contradicts that x is not part
of any conflict.

Next, we show that for each conflict {i, j, l} all elements
belong to the same Xr. Suppose towards a contradiction
that this is not the case. Without loss of generality, as-
sume that D(i, x) = r > D(j, x) and D(i, x) ≥ D(l, x).
Since {i, j, x} is not a conflict, we have D(i, j) = r.

We distinguish two cases for D(l, x):
Case 1: D(l, x) = r. Since {j, l, x} is not a conflict, we
also have D(j, l) = r. Then, since {i, j, l} is a conflict, we
have D(i, l) > r. Since D(i, x) = D(l, x) = r the triple
{i, l, x} is a conflict, a contradiction.
Case 2: D(l, x) < r. Analogous to Case 1.

Consequently, there are no conflicts that contain elements
from different Xr’s.

Finally, let D′ be an ultrametric for D[X \ {x}]. Since
there are no conflicts that contain elements from differ-
ent Xr’s and by Lemma 1, we can assume that D′ only
modifies distances within the Xr and not between differ-
ent Xr’s. From D′ we can obtain a distance function D′′
over X as follows:

D′′(i, j) :=
{
D′(i, j) i 6= x ∧ j 6= x,

D(i, j) otherwise.

That is, D′′ is obtained from D′ by reinserting x and the
original distances from x to X \{x}. Clearly, ||D−D′′||1 ≤
k. It thus remains to show thatD′′ is an ultrametric. SinceD′
is an ultrametric, it suffices to show that there are no conflicts
containing x.

In D′ the distance between two elements i ∈ Xr and j ∈
Xr is at most r since this is the maximum distance in D[Xr]
and this maximum distance will clearly not be increased by a
closest ultrametric. Hence, there can be no conflicts in D′′
containing x and two vertices from the same Xr. There also
can be no conflicts containing x, an element i ∈ Xr, and
some other element j ∈ Xr′ because the distances between
these elements have not been changed from D to D′′, and
these elements were not in conflict in D. Hence, D′′ is an
ultrametric.

Theorem 1. M -HIERARCHICAL TREE CLUSTERING ad-
mits a problem kernel with k · (k+ 2) elements. The running
time for the kernelization is O(M · n3).

Proof. Let I = (X,D, k) be an instance that is reduced with
respect to Rules 1 and 2. Assume that I is a yes-instance,
that is, there exists an ultrametric D′ on X with distance
at most k to D. We show that |X| ≤ k · (k + 2). For
the analysis of the kernel size we partition the elements
of X into two subsets A and B, where A := {i ∈ X |
∃j ∈ X : D′(i, j) 6= D(i, j)} and B := X \ A. The el-
ements in A are called affected and the elements in B are
called unaffected. Note that |A| ≤ 2k since D′ has distance
at most k to D. Hence, it remains to show that |B| ≤ k2.
Let S := {{i, j} ⊆ X | D′(i, j) 6= D(i, j)} denote the
set of pairs whose distances have been modified, and for
each {i, j} ∈ S let B{i,j} denote the elements of B that are
in some conflict with {i, j}. Since the input instance is re-
duced with respect to Rule 2 we have B =

⋃
{i,j}∈S B{i,j}.

Furthermore, since the input instance is reduced with respect
to Rule 1, we have |B{i,j}| ≤ k for all {i, j} ∈ S. The size
bound |B| ≤ k2 then immediately follows from |S| ≤ k.

The running time can be seen as follows. First, we cal-
culate for each pair of elements the number of conflicts in
which it is the max-distance pair and the number of conflicts
in which it is not the max-distance pair in O(n3) time. Then
we check whether Rule 1 can be applied. If this is the case,
we update the number of conflicts for all pairs that contain at
least one of the elements whose distance has been modified
in O(n) time. This is repeated as long as a pair to which
the rule can be applied has been found, at most O(M · n2)
times. Hence, the overall running time of exhaustively apply-
ing Rule 1 is O(M · n3). Afterwards, we exhaustively apply
Rule 2 in O(n3) time overall.

Using the standard technique of interleaving search trees
with kernelization (Niedermeier 2006), one can improve the
worst-case running time of the search tree algorithm from
Section 2 As our experiments show (see Section 4), there is
also a speed-up in practice.
Corollary 1. M -HIERARCHICAL TREE CLUSTERING can
be solved in O(3k +M · n3) time.

An O(M · k)-Element Problem Kernel. Our second
kernelization algorithm extends the basic idea of an O(k)-
element problem kernel for CLUSTER EDITING (Guo 2009).
Consider a distance function D on X := {1, . . . , n}. For an
integer t with 1 ≤ t ≤ M , the t-threshold graph Gt is de-
fined as (X,Et) with {i, j} ∈ Et if and only if D(i, j) ≤ t.
If D is an ultrametric, then, for all 1 ≤ t ≤ M , the corre-
sponding graph Gt is a disjoint union of cliques. We call
each of these cliques a t-cluster. Recall that a clique is a
set of pairwisely adjacent vertices. A clique K is a critical
clique if all its vertices have an identical closed neighborhood
and K is maximal under this property.

The kernelization algorithm employs Rule 2 and one fur-
ther data reduction rule. This new rule works on the t-
threshold graphs Gt, beginning with t = M until t = 1.
In each Gt, this rule applies a procedure which deals with
large critical cliques in Gt:
Procedure: Critical-Clique.
Input: A set X ′ ⊆ {1, . . . , n} and an integer t.
1. Construct Gt for X ′.
2. While Gt contains a non-isolated critical clique K with

459

• |K| ≥ t · |NGt(K)| and
• |K| ≥ |NGt

(K)|+ t · |N2
Gt

(K)|, do

3. For all x ∈ NGt [K] and y ∈ X ′ \ (NGt [K]),
set D(x, y) := t + 1, and for all x, y ∈ NGt

(K)
with D(x, y) = t+ 1, set D(x, y) := t.
4. Update Gt.
5. Decrease the parameter k correspondingly, that is, by the
distance between the original and new instances.
6. If k < 0 then return “no”.
7. End while

Reduction Rule 3. Recursively apply the Critical-Clique
procedure to the t-threshold graphs Gt from t = M to t =
1 by calling the following procedure with parameters X
and M .

Procedure: RR3
Input: A set X ′ ⊆ {1, . . . , n} and an integer t.
Global variables: A distance function D on X =
{1, . . . , n} and an integer k.
1. Critical-Clique(X ′, t);
2. For each isolated clique K in Gt that does not induce an
ultrametric do RR3(K, t− 1).

In the following, we show that the Critical-Clique proce-
dure is correct, that is, an instance (X,D, k) has a solution if
and only if the instance (X,D′, k′) resulting by one applica-
tion of Critical-Clique has a solution. Then, the correctness
of Rule 3 follows from the observation that every call of
RR3 is on a subset K and an integer t such that K is an
isolated clique in Gt+1. Then, K can be solved indepen-
dently from X \K: Since the elements in K have distance at
least t+ 1 to all elements in X \K, there is no conflict that
contains vertices from both K and X \K. By Lemma 1, we
thus do not need to change the distance between an element
in K and an element in X \K.

For the correctness of Critical-Clique, we consider only the
case t = M ; for other values of t the proof works similarly.
The following lemma is essential for our proof.
Lemma 3. Let K be a critical clique in GM with
• |K| ≥M · |NGM

(K)| and
• |K| ≥ |NGM

(K)|+M · |N2
GM

(K)|.
Then, there exists a closest ultrametric U for D such
that NGM

[K] is an M -cluster in U .
Lemma 4. The Critical-Clique procedure is correct.

Proof. Let D denote a distance function and let K denote a
critical clique of GM fulfilling the while-condition (line 2)
in the Critical-Clique procedure. Furthermore, let D′ denote
the distance function that results by executing lines 3-5 of
Critical-Clique on K and let d := ||D − D′||1. To show
the correctness of Critical-Clique it suffices to show that
(X,D, k) is a yes-instance if and only if (X,D′, k − d) is a
yes-instance.

“⇒”: If (X,D, k) is a yes-instance, then, by Lemma 3,
there exists an ultrametric U of distance at most k to D such
that NGM

[K] is an M -cluster of U . Hence, it must hold
that U(i, j) = M + 1 for all i ∈ NGM

[K] and j ∈ X \

NGM
[K] and U(i, j) ≤ M for all i, j ∈ NGM

[K]. Hence,
the changes performed by Critical-Clique are necessary to
obtain U .

“⇐”: After the application of Critical-Clique NGM
[K]

is an isolated clique in the M -threshold graph for D′. That
is, D′(i, j) = M +1 all i ∈ NGM

[K] and j ∈ X \NGM
[K]

and D′(i, j) ≤ M for all i, j ∈ NGM
[K], which im-

plies that there is no conflict with vertices in NGM
[K]

and X \ NGM
[K]. Let U denote an ultrametric with

minimum distance to D′. By Lemma 1, we can assume
that U(i, j) = M + 1 for all i ∈ NGM

[K] and j ∈
X \ NGM

[K] and U(i, j) ≤ M for all i, j ∈ NGM
[K].

Hence, the distance of U to D is at most k.

Theorem 2. M -HIERARCHICAL TREE CLUSTERING ad-
mits a problem kernel with 2k · (M + 2) elements. The
running time for the kernelization is O(M · n3).

4 Experimental Results
Implementation Details. We briefly describe some notable
differences between the theoretical algorithms from Sec-
tions 2 and 3 and their actual implementation.2
Main algorithm loop: We call the search tree algorithm
(see Section 2) with increasing k, starting with k = 1 and
aborting when an (optimal) solution has been found.
Data reduction rules: We implemented all of the presented
data reduction rules. However, in preliminary experiments,
Rule 3 showed to be relatively slow and was thus deacti-
vated.3
Interleaving: In the search tree we interleave branching with
the application of the data reduction rules, that is, after a suit-
able number of branching steps the data reduction rules are
invoked. In the experiments described below we performed
data reduction in every second step, since this value yielded
the largest speed-up.
Modification flags: We use flags to mark distances that may
not be decreased (or increased) anymore. There are three
reasons for setting such a mark: the distance has been already
increased (or decreased); decreasing (or increasing) it leads
to a solution with distance more than k; decreasing (or in-
creasing) it leads to a conflict that cannot be repaired without
violating previous flags.
Choice of conflicts for branching: We choose the conflict
to branch on in the following order of preference: First, we
choose conflicts where either both non-max-distance pairs
cannot be increased or the max-distance pair cannot be de-
creased and one non-max-distance pair cannot be increased.
In this case, no actual branching takes place since only one
option to destroy the conflict remains. Second, if no such
conflicts exist we choose conflicts where the max-distance
pair cannot be decreased or one of the non-max-distance pairs
cannot be increased. If these conflicts are also not present, we
choose the smallest conflict with respect to a predetermined
lexicographic order. This often creates a conflict of the first
two types.

2The Java program is free software and available from
http://theinf1.informatik.uni-jena.de/tree-cluster

3For some larger instances, however, the rule is very effective
because it reduces the search tree size by up to 33%.

460

We also implemented the randomized (M + 2)-factor ap-
proximation algorithm by (Ailon and Charikar 2005). In
our experiments, we repeated the algorithm 1000 times and
compared the best ultrametric that was found during these
trials with the exact solution found by our algorithm.

Experiments were run on an AMD Athlon 64 3700+ ma-
chine with 2.2 GHz, 1 M L2 cache, and 3 GB main memory
running under the Debian GNU/Linux 5.0 operating system
with Java version 1.6.0 12.

Synthetic Data. We generate random instances to chart the
border of tractability with respect to different values of n
and k. We perform two studies, considering varying k for
fixed values of n and considering varying n for fixed values
of k. In the experiments either M = 2 or M = 4.

For each value of n we generate five ultrametrics and
perturb each of these instances, increasing step by step the
number of perturbations k. For each pair of n and k we
generate five distance functions. We thus create 25 instances
for each pair of n and k. Next, we describe in detail how we
generate and disturb the ultrametrics.

Generation of Ultrametrics. We generate the instances
by creating a random ultrametric tree of depth M + 1. We
start at the root and randomly draw the number of its chil-
dren under uniform distribution from {2, . . . , dlnne}. Then,
the elements are randomly (again under uniform distribu-
tion) assigned to the subtrees rooted at these newly created
nodes. For each child we recursively create ultrametric trees
of depth M . The only difference for a node at a lower level is
that we randomly draw the number of its children under uni-
form distribution from {1, . . . , dlnne}. That is, in contrast
to the root node, we allow that an inner node has only one
child.

Perturbation of Generated Ultrametrics. We randomly
choose a pair {i, j} of elements under uniform distribution
and change the distance value D(i, j). This step is repeated
until k distance values have been changed. For each cho-
sen pair, we randomly decide whether D(i, j) will be in-
creased or decreased (each with probability 1/2). We do
not increase D(i, j) if it has been previously decreased or
if D(i, j) = M +1; we do not decrease D(i, j) if it has been
previously increased or if D(i, j) = 1. Note that with this
approach a generated instance may have a solutions that has
distance < k to the input distance function.

Experiments with fixed n. First, we study the effect
of varying k for fixed values of n. As to be expected by
the theoretical analysis, the running time increases for
increasing k. Fig. 1 shows the running times of the instances
that could be solved within 5 minutes. The combinatorial
explosion that is common to exponential-time algorithms
such as fixed-parameter algorithms sets in at k ≈ n. This
is due to the fact that most instances with k < n could be
solved without branching, just by applying the data reduction
rules. Regression analysis shows that the running time
is best described by exponential functions of the type αk

with α ≤ 1.4. This is due to the data reduction: switching
it off leads to running times with α ≈ 2.4.

Experiments with fixed k. We study the effect of different
input sizes n for k = 50 and k = 100, with n ≥ 10. The
results are shown in Fig. 2. Roughly speaking, the instances

Figure 1: Running times for fixed n and varying k.

Figure 2: Running times for fixed k and varying n.

are difficult to solve when k > n. Again, this behavior can
be attributed to the data reduction rules that are very effective
for k < n.

Protein Similarity Data. We perform experiments on pro-
tein similarity data which have been previously used in exper-
imental evaluation of fixed-parameter algorithms for CLUS-
TER EDITING (Rahmann et al. 2007). The data set contains
3964 files with pairwise similarity data of sets of proteins.
The number of proteins n for each file ranges from 3 to 8836.
We consider a subset of these files, where n ≤ 60, covering
about 90% of the files.

From each file, we create four discrete distance matrices
for M = 2 as follows. We set the distance of the c% of the
pairs with lowest similarity to 3, where c is a predetermined
constant. From the remaining pairs the c% of the pairs with
lowest similarity are set to 2, and all others to 1. In our ex-
periments, we set c to 75, 66, 50, and 33. This approach is
motivated by the following considerations. In a distance func-
tion represented by a balanced ultrametric tree of depthM+1
at least half of all distances are M + 1 and with increasing

461

Table 1: Summary of our experiments for the protein similarity data. The second column contains the number of instances
within the respective range. The next four columns provide the percentage of instances that can be solved within 2, 10, 60,
and 600 seconds by our search tree algorithm. Further, kST

m denotes the maximum, and kST
avg the average distance to a closest

ultrametric. For the approximation algorithm, kAP
avg denotes the maximum distance and %ex is the percentage of instances which

were solved optimal. Finally, d denotes the maximum difference between the distances found by the two algorithms.

c = 75 c = 66
range # 2s 10s 60s 600s kST

m d kST
avg kAP

avg %ex 2s 10s 60s 600s kST
m d kST

avg kAP
avg %ex

n ≤ 20 2806 100 100 100 100 23 3 2.4 2.4 98 99 100 100 100 35 5 2.8 2.8 96
20 < n ≤ 40 486 63 72 79 89 69 6 25.7 26.2 78 57 67 74 82 74 7 27.1 27.5 76
40 < n ≤ 60 298 4.7 8.1 13 22 84 6 48.3 48.8 76 2 4 8 16 76 4 53.6 53.9 80

n ≤ 60 3590 87 89 90 92 84 6 6.4 6.5 95 86 88 89 91 76 7 6.52 6.62 94
c = 50 c = 33

range # 2s 10s 60s 600s kST
m d kST

avg kAP
avg %ex 2s 10s 60s 600s kST

m d kST
avg kAP

avg %ex

n ≤ 20 2806 97 98 99 100 65 10 6.8 7 88 94 96 98 99 73 17 9.4 9.8 83
20 < n ≤ 40 486 18 25 38 50 82 18 46 47 59 7.4 13 20 31 82 22 53 55 65
40 < n ≤ 60 298 0 1.3 1.7 3.4 85 0 62 62 100 0 0 0 0 / / / / /

n ≤ 60 3590 78 81 83 85 85 18 10.1 10.4 86 74 77 79 82 82 22 11.6 12.1 82

degree of the root of the clustering tree the number of pairs
with distance of M + 1 increases. If we assume that the
ultrametric tree is more or less balanced we thus expect a
large portion of pairwise distances to have maximum value
making the choices of c = 75 and c = 66 the most realistic.

We summarize our experimental findings (see Table 1) on
these data as follows. First, our algorithm solves instances
with n ≤ 20 in few seconds. Second, for n ≤ 40, many
instances can be solved within 10 minutes. Third, using our
exact algorithms, we can show that the approximation algo-
rithm often yields almost optimal solutions. Finally, for de-
creasing values of c and increasing instance sizes the solution
sizes and, hence, the running times increase. Interestingly,
the approximation quality decreases simultaneously. Alto-
gether, we conclude that both our new exact and the known
approximation algorithm are useful for a significant range of
practical instances.

5 Conclusion
Our polynomial-time executable data reduction rules shrink
the original instance to a provably smaller, equivalent one.
They can be used in combination with every solving strat-
egy for M -HIERARCHICAL TREE CLUSTERING. For in-
stance, we started to explore the efficacy of combining our
data reduction with Ailon and Charikar’s approximation al-
gorithm (Ailon and Charikar 2005). In case k < n almost all
instances could be solved exactly by data reduction within a
running time that is competitive with the approximation al-
gorithm by (Ailon and Charikar 2005). Obviously, although
having proven usefulness by solving biological real-word
data, the sizes of the instances we can typically solve exactly
are admittedly relatively small (up to around 50 vertices). In
case of larger instances, one approach could be to e.g. use the
approximation algorithm to create small independent subin-
stances, where our algorithms apply. Finally, our algorithms
also serve for “benchmarking” heuristic algorithms indicating
the quality of their solutions. For instance our experiments
indicate that the solution quality of the approximation algo-

rithm (Ailon and Charikar 2005) gets worse with growing
input sizes.

References
Agarwala, R.; Bafna, V.; Farach, M.; Narayanan, B.; Paterson,
M.; and Thorup, M. 1999. On the approximability of numerical
taxonomy (fitting distances by tree matrices). SIAM J. Comput.
28(3):1073–1085.
Ailon, N., and Charikar, M. 2005. Fitting tree metrics: Hierarchical
clustering and phylogeny. In Proc. 46th FOCS, 73–82. IEEE
Computer Society.
Ailon, N.; Charikar, M.; and Newman, A. 2008. Aggregating
inconsistent information: Ranking and clustering. J. ACM 55(5).
Bansal, N.; Blum, A.; and Chawla, S. 2004. Correlation clustering.
Machine Learning 56(1–3):89–113.
Böcker, S.; Briesemeister, S.; and Klau, G. W. 2009. Exact algo-
rithms for cluster editing: Evaluation and experiments. Algorith-
mica. To appear.
Dasgupta, S., and Long, P. M. 2005. Performance guarantees for
hierarchical clustering. J. Comput. Syst. Sci. 70(4):555–569.
Farach, M.; Kannan, S.; and Warnow, T. 1995. A robust model for
finding optimal evolutionary trees. Algorithmica 13:155–179.
Guo, J. 2009. A more effective linear kernelization for Cluster
Editing. Theor. Comput. Sci. 410(8-10):718–726.
Hartigan, J. 1985. Statistical theory in clustering. J. Classifi.
2(1):63–76.
Křivánek, M., and Morávek, J. 1986. NP-hard problems in
hierarchical-tree clustering. Acta Informatica 23(3):311–323.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Algorithms.
Oxford University Press.
Rahmann, S.; Wittkop, T.; Baumbach, J.; Martin, M.; Truß, A.;
and Böcker, S. 2007. Exact and heuristic algorithms for weighted
cluster editing. In Proc. 6th CSB, 391–401. Imperial College Press.
van Zuylen, A., and Williamson, D. P. 2009. Deterministic piv-
oting algorithms for constrained ranking and clustering problems.
Mathematics of Operations Research 34:594–620.

462

