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Abstract 
Dimensionality reduction plays an important role in many 
machine learning and pattern recognition tasks. In this paper, 
we present a novel dimensionality reduction algorithm 
called multilinear maximum distance embedding (M2DE), 
which includes three key components. To preserve the local 
geometry and discriminant information in the embedded 
space, M2DE utilizes a new objective function, which aims 
to maximize the distances between some particular pairs of 
data points, such as the distances between nearby points and 
the distances between data points from different classes. To 
make the mapping of new data points straightforward, and 
more importantly, to keep the natural tensor structure of 
high-order data, M2DE integrates multilinear techniques to 
learn the transformation matrices sequentially. To provide 
reasonable and stable embedding results, M2DE employs the 
L1-norm, which is more robust to outliers, to measure the 
dissimilarity between data points. Experiments on various 
datasets demonstrate that M2DE achieves good embedding 
results of high-order data for classification tasks. 

 Introduction   
Dimensionality reduction (DR) is one of the vital problems 
in machine learning and pattern recognition. Traditional 
DR techniques, such as principal component analysis (PCA) 
(Hotelling 1933) and linear discriminant analysis (LDA) 
(Fisher 1936), seek the linear transformation matrix to map 
high-dimensional data into low-dimensional feature space. 
However, if the original data hold the nonlinear structure, 
linear methods may ignore the subtleties of the data distri-
bution. Manifold learning, a kind of nonlinear DR tech-
niques based on the assumption that the high-dimensional 
input data lie on or close to an intrinsically smooth low-
dimensional manifold, received more and more attention 
recently. The representative manifold learning algorithms 
include isometric feature mapping (Isomap) (Tenenbaum, 
de Silva, & Langford 2000), locally linear embedding 
(LLE) (Roweis & Saul 2000), and Laplacian eigenmaps 
(LE) (Belkin & Niyogi 2001). Isomap is a global manifold 
learning method that aims to preserve the geometry at all 
scales by mapping nearby points on the manifold to nearby 
points in low-dimensional space, and faraway points to 
faraway points. In contrast with Isomap, LLE and LE as-
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sume that the global nonlinear structure can be uncovered 
by keeping all local structures of the dataset, and thus only 
attempt to preserve the local geometry. Following above 
algorithms, many manifold learning techniques have been 
developed, such as stochastic neighbor embedding (SNE) 
(Hinton & Roweis 2002), locally linear coordination (LLC) 
(Teh & Roweis 2002), semidefinite embedding (SDE) 
(Weinberger & Saul 2004), and maximum variance unfold-
ing (MVU) (Weinberger & Saul 2006). 
 In this paper, we propose a novel manifold learning al-
gorithm called multilinear maximum distance embedding 
(M2DE). Unlike most of the manifold learning techniques 
that attempt to preserve the distances or relationships be-
tween data points, M2DE uses a new objective function to 
maximize the distances between some particular pairs of 
data points. By maximizing the distances between nearby 
data points, the local nonlinear structure of the dataset can 
be flattened in the embedded space. By maximizing the 
distance between data points from different classes, the 
separability is well preserved after embedding. Unlike tra-
ditional methods that first unfold the input data to vectors 
even though the data are high-order tensors, M2DE directly 
works on tensor space and learns a series of transformation 
matrices using an iterative strategy. With the explicit func-
tion, the mapping of new data point becomes straightfor-
ward. Unlike existing manifold learning algorithms which 
measure the dissimilarity between data points using Frobe-
nius norm (F-norm, also known as L2-norm in the vector 
form operation), M2DE is formulated by L1-norm based 
optimization. As known, F-norm is more sensitive to out-
liers than L1-norm because the large squared errors domi-
nate the sum. Some recent work on DR also demonstrated 
that L1-norm based PCA can achieve better embedding 
results than the conventional F-norm based PCA (Huang & 
Ding 2008; Kwak 2008; Pang, Li, & Yuan 2010). In sum-
mary, the proposed algorithm has the following attractive 
characters: 
 1) By introducing a new objective function, M2DE not 
only keeps the nonlinear structure of the dataset but also 
maximizes the separability for classification task. 
 2) By integrating the multilinear techniques, M2DE 
overcomes the out-of-sample problem (Bengio et al. 2003). 
More importantly, if the data are high-order tensors, the 
intrinsic structure of data can be well preserved.  
 3) By utilizing the L1-norm to measure the dissimilarity 
between data points, M2DE is robust to outliers, and hence, 
shows more reasonable and stable embedding results. 
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Maximum Distance Embedding  
DR discovers the compact representation of original high-
dimensional observations. Mathematically, DR can be 
stated as follows: Given n data points x1, ..., xn in the high-
dimensional space D , find their low-dimensional repre-
sentations y1, ..., yn

d  with d  D, such that the essentials 
in original data can be captured according to some criteria. 
 The method proposed in this paper intends to capture 
both the manifold structure of the dataset and the discrimi-
nant information for classification task by maximizing the 
distances between nearby data points and the distances 
between data points from different classes simultaneously.  
 Figure 1 illustrates the idea behind the proposed maxi-
mum distance embedding (MDE). Figure 1(a) is the origi-
nal 2-D data from three classes. The data points within the 
same class are equally distributed on the manifold. Figure 
1(b) shows the 1-D embedding that only preserves the lo-
cal geometry. Although the manifold structure within each 
class is successfully described, some data points from class 
1 and class 2 are inseparable because the discriminant in-
formation is ignored in the embedding process. Figure 1(c) 
shows the 1-D embedding that only maximizes the discri-
minant information. Obviously, the local geometry of data-
set is seriously distorted, i.e., the embedded data points 
within the same class are not equally distributed any more. 
Figure 1(d) is the 1-D result of MDE. By maximizing the 
distances between nearby data points, the local geometry is 
preserved after embedding. Moreover, by maximizing the 
distances between data points from different classes, the 
discriminant information is well kept in the subspace. 
 Based on above consideration, we define the objective 
function for the proposed algorithm as follows: 

1 ,
max  ( ,..., ) ( ) ( , )l d

n ij ij i ji j
J w w dy y y y            (1) 

where d(yi,yj) is the distance metric to measure the dissimi-
larity between embedded data points yi and yj. l

ijw  and d
ijw  

are two weighting parameters. To emphasize the local de-
tails between data points xi and xj, we define l

ijw  as follows: 
2

1exp( ( , ) / )    if  ( ; ) or ( ; )
0                                  otherwise

i j j i i jl
ij

d O k O kw x x x x x x (2) 

where O(xi;k) denotes the set of k nearest neighbors of xi 
and 1  is a positive parameter. Clearly, by maximizing the 
distances between nearby points, the local nonlinear struc-
ture of the dataset can be flattened to the greatest extent 
and well displayed in the embedded low-dimensional space. 
Inheriting the assumption of local manifold learning tech-
niques, MDE can uncover the global nonlinear structure of 
the dataset by keeping all local geometries. Furthermore, 
we define d

ijw  to describe the discriminant information: 

2     if   and  belong to different classes
0      otherwise

i jd
ijw x x        (3) 

where 2  is a positive parameter. By maximizing the dis-
tance between data points from different classes, the sepa-
rability is well preserved in the embedded space.  

Multilinear Maximum Distance Embedding 
In this section, we present the multilinear formulation of 
proposed method. By integrating multilinear algebra into 
MDE, the out-of-sample problem (Bengio et al. 2003) and 
vectorization problem (Vasilescu & Terzopoulos 2003) can 
be effectively addressed. As known, the out-of-sample 
problem exists in most of the manifold learning algorithms, 
i.e., it is not possible to embed new data points without 
reconstructing the whole low-dimensional space. Further-
more, traditional manifold learning algorithms usually un-
fold input data to vectors before embedding, even though 
the data are naturally high-order tensors. This kind of vec-
torization increases the computational cost of data analysis 
and destroys the intrinsic structure of high-order data. 
 To tackle both out-of-sample and vectorization problems, 
multilinear algebra (Lathauwer 1997; Vasilescu & Terzo-
poulos 2003) has been introduced into DR, and then some 
multilinear based manifold learning techniques have been 
proposed (He, Cai, & Niyogi 2005; Dai & Yeung 2006; 
Liu, Liu, & Chan 2009). Inspired by previous work, we 
propose the multilinear maximum distance embedding 
(M2DE) algorithm. First we give the following definition 
from multilinear algebra. 
 Definition 1:  (mode-k product). The mode-k product of 
a tensor 1 2 NI I I  by a matrix k kJ IU , denoted 

       Class 1
       Class 2
       Class 3

(a) original two-dimensional data

(c) one-dimensional embedding that maximizes discriminant 
information

(b) one-dimensional embedding that preserves local geometry

(d) one-dimensional embedding that considers both local 
geometry and discriminant information

Figure 1: Schematic illustration of the main idea behind MDE. 
(a) original 2-D data. (b) 1-D embedding that preserves the 
local geometry. (c) 1-D embedding that maximizes the discri-
minant information. (d) 1-D embedding by MDE, which con-
siders both local geometry and discriminant information.  
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by k U , is an (I1×...×Ik-1×Jk×Ik+1×...×IN)-tensor of which 
the entries are given by 

1 2 1 1 1 2 1 11( ) , 1,...,k
k k k N k k k N k kk

I
k i i i j i i i i i i i i j i k ki j JU U . 

 In general, the goal of multilinear DR can be described 
as follows. Given n data points 1, ..., n in the tensor 
space 1 2 NI I I . Without unfolding the input data points 
to I1×I2×...×IN-dimensional vectors, multilinear embedding 
methods seek to find N transformation matrices 

1[ ,..., ]  ( ,  1,..., )k k kI I I
k k k kk I I k NV v v  such that n low-

dimensional data points 1, ..., n in the subspace 
1 2 NI I I can be calculated by the multilinear transforma-

tion 1 1 2  ( 1,  ...,  ).T T
j j N N j nV V  

 Based on above definitions from multilinear algebra, we 
can formulate the objective function of M2DE as follows: 

1

1 ,
|

argmax  ( ,..., ) ( ) ( , )
N

k k

l d
N ij ij i ji j

J w w d
V

V V          (4) 

where 1 1 2  ( 1,  ...,  ).T T
i i N N i nV V   

L1-norm Optimization 
Generally, d(•,•) in Eq. (1) and (4) can be any distance me-
tric. Most of the manifold learning algorithms try to optim-
ize the objective functions based on different least-squares 
formulations, which are expressed by the F-norm. Howev-
er, it is known that the F-norm is sensitive to outliers since 
the large squared errors dominate the sum (Huang & Ding 
2008; Kwak 2008). In this paper, we utilize L1-norm in the 
objective function. Compared with F-norm, L1-norm is 
more robust to outliers. Some recent work on DR has al-
ready demonstrated that L1-norm based methods can effec-
tively reduce the negative influence of outliers and hence, 
achieve better embedding results (Huang & Ding 2008; 
Kwak 2008; Pang, Li, & Yuan 2010).  
 By embedding original data to the low-dimensional ten-
sor subspace, we expect to obtain a meaningful representa-
tion of original data with less sensitivity to the outliers. By 
employing the L1-norm, we can rewrite Eq. (4) as follows: 

1

1 1 1 1 ,
|

argmax ( ,..., ) ( ) || ( ) ||

. .  ,  1,...,
N

k k

k

l d T T
N ij ij i j N Ni j

T
k k I

J w w

st k N
V

V V V V

V V I
(5) 

The constraints in Eq. (5) are to ensure the orthonormality 
of the transformation matrices.  
 When N  2, it is difficult to find a global solution for 
such a high-order optimization problem. Instead, we use an 
iterative strategy to obtain a local solution. To introduce 
the iterative strategy, we will make use of the following 
definition and properties. 
 Definition 2:  (mode-k unfolding). The mode-k unfolding 
of a tensor 1 2 NI I I  (N  3) into a matrix 

k jj kI IkX , i.e., ,k
kX  is defined as: 

1 2, ...k N

k
i j i i iX , j = 

1
( ) ( ) ( )2 1( 1) NN

p m p o p Nm o mi I i , where p(m) is the mth ele-
ment of the sequence {k, k+1, …, N-1, N, 1, 2, …, k-1}. 

 Property 1: Given a tensor 1 2 NI I I  and the ma-
trices k kJ IU , l lJ IV (k  l), then 
( )  = ( )  = .k l l k k lU V V U U V  
 Property 2: If k

kX , then || ||  = || || .T T k
k k F k FU U X  

 Assume that V1, …, Vk-1, Vk+1, …, VN are fixed, we can 
obtain Vk by a greedy algorithm. First we compute 1

kv , i.e., 
the first column of matrix Vk. Eq. (5) now becomes: 

1

1 1
1,

1
1 1 1

1 1

argmax  ( ) ( ) || ( ) ||

                     | ( )( ) ( ) |
. .  ( ) 1

k

oo k

l d T k
k ij ij k iji j

n n I l d T k m
ij ij k iji j m

T
k k

J w w

w w
s t

v
v v X

v x
v v

 (6) 

where 1[( ) ,..., ( ) ]o k oo k o kI I Ik k k
ij ij ijX x x  is the mode-k 

unfolding of the tensor k
ij , i.e., k k

ij k ijX , and k
ij  

1 1 1 1 1 1( ) T T T T
i j k k k k N NV V V V . Here 1( )( ) ( )l d T k m

ij ij k ijw w v x  
is a scalar, and |•| denotes the absolute value operation. The 
second equality holds since , 0l d

ij ijw w  for any i and j. 
 We use 1 ( )k tv  to denote the value of 1

kv  after the tth itera-
tion. Then 1 ( 1)k tv  can be computed as follows: 

1 1 11

1 1 1

( )( )( )
( 1)

|| ( )( )( ) ||

oo k

oo k

n n I m l d k m
ij ij ij iji j m

k n n I m l d k m
ij ij ij iji j m

p t w w
t

p t w w

x
v

x
    (7) 

where ||•|| denotes the F-norm, and ( )m
ijp t  is the polarity 

function (Kwak 2008; Pang, Li, & Yuan 2010) defined as: 
11       if  ( )( ( )) ( ) 0( ) 1    otherwise

l d T k m
ij ij k ijm

ij
w w tp t v x           (8) 

 To prove the convergence of above iteration procedure, 
we only need to prove 1 1( ( 1)) ( ( ))k kJ t J tv v . First, we have: 

1 1
1 1 1

1
1 1 1

( ( 1)) ( 1)( )( ( 1)) ( )

                  ( )( )( ( 1)) ( )

oo k

oo k

n n I m l d T k m
k ij ij ij k iji j m

n n I m l d T k m
ij ij ij k iji j m

J t p t w w t

p t w w t

v v x

v x
 

The inequality results from the fact that ( 1)m
ijp t  is the 

optimal polarity corresponding to 1( )( ( 1)) ( )l d T k m
ij ij k ijw w tv x , 

i.e., 1( 1)( )( ( 1)) ( ) 0m l d T k m
ij ij ij k ijp t w w tv x  for any i, j, and m. 

But for ( )m
ijp t , 1( )( )( ( 1)) ( ) 0m l d T k m

ij ij ij k ijp t w w tv x  may happen. 

 Moreover, let 1 1 1( ) ( )( )( )oo k In n m l d k m
ij ij ij iji j mt p t w wq x , then: 

1 1
1 1 1

1

( ( 1)) ( )( )( ( 1)) ( )

( )                  ( ( 1)) ( ) ( ) || ( ) ||
|| ( ) ||

[ ( )] ( 1)                  || ( ) || [ ( )
|| ( ) || || ( 1) ||

oo kn n I m l d T k m
k ij ij ij k iji j m

T

T
k

T

J t p t w w t

tt t t t
t

t tt t
t t

v v x

qv q q q
q

q qq q
q q

1
1 1 1

1
1 1 1
1

( 1)]
|| ( 1) ||

                 ( )( )( ) ( ( ))

                  | ( )( ( )) ( ) |
                  ( ( ))

oo k

oo k

T

Tn n I m l d k m
ij ij ij ij ki j m

n n I l d T k m
ij ij k iji j m

k

t
t

p t w w t

w w t
J t

q
q

x v

v x
v
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The second inequality results from the fact that [q(t)]Tq(t-1) 
 ||q(t)||×||q(t-1)||, which is known as the Cauchy-Schwarz 

inequality. Therefore, the iteration procedure will finally 
converge and thus we can obtain a local optimal solution of 

1
kv  by updating it using Eq. (7) until 1 1( 1) ( )k kt tv v . 

 Based on the obtained 1
kv , we can compute the remain-

ing vectors 2,  ..., kI
k kv v  of matrix Vk by a greedy method. 

First, we initialize the data matrix  1( )k k
ij ijX X  for i, j = 1, ..., 

n. Then we update it as follows: 
1( ) ( ) (( ) ( ) )     1,..., 1k r k r r r T k r

ij ij k k ij kr IX X v v X       (9) 

Finally, we iteratively calculate 1r
kv  by the following Eq. 

(10) and Eq. (11) until the result converges.  
1

1 1 11
1

1 1 1

( )( )(( ) )
( 1)

|| ( )( )(( ) ) ||

oo k

oo k

n n I m l d k r m
ij ij ij iji j mr

k n n I m l d k r m
ij ij ij iji j m

p t w w
t

p t w w

x
v

x
 (10) 

1 11       if  ( )( ( )) (( ) ) 0( ) 1    otherwise
l d r T k r m
ij ij k ijm

ij
w w tp t v x     (11) 

 By employing above procedure, the orthonormality of 
Vk is guaranteed: From Eq. (10), we know that 1r

kv  is a 
linear combination of 1(( ) )k r m

ijx , i.e., a linear combination of 
the columns from 1( )k r

ijX . To prove that 1r
kv  and r

kv  are 
perpendicular, i.e., 1( ) 0r T r

k kv v , we only need to show that 
1( ) ( )r T k r T

k ijv X 0 , where T0  is the zero vector with the 
length 1,

N
oo o k I . Consider Eq. (9), we have the following: 

1( ) ( ) ( ) (( ) (( ) ( ) ))
                    ( ) ( ) ( ) (( ) ( ) )
                    ( ) ( ) ( ) ( )

r T k r r T k r r r T k r
ij ij ijk k k k

r T k r r T r r T k r
ij ijk k k k

r T k r r T k r T
ij ijk k

v X v X v v X
v X v v v X
v X v X 0

 

The third equality results from the property that 
( ) 1r T r

k kv v , i.e., r
kv  is a unit vector, which can be observed 

from Eq. (10). Actually, Eq. (9) can be viewed as a Gram-
Schmidt process, which is used to eliminate the relevance 
between different columns of the transformation matrix Vk. 
 Till now, we have already shown how to obtain the 
transformation matrix Vk when V1, …, Vk-1, Vk+1, …, VN 
are fixed. The iterative strategy can then be presented. First 
we fix V2, …, VN, and obtain V1. Then we fix V1, V3, …, 
VN, and obtain V2. The rest can be deduced by analogy. At 
last we fix V1, V2, …, VN-1, and obtain VN. Repeat above 
steps until the whole algorithm converges. Algorithm 1 
describes the detailed procedure of M2DE. 
 To analyze the computational cost of M2DE, we simply 
assume that the sample tensors and embedded tensors are 
of uniform size in each order, respectively, i.e., 

1 NI I I  and 1 NI I I . In the training process, 
the time cost of M2DE is 2

1 2( )N
max maxO n NI I T T . Gener-

ally, the algorithm will converge within a few iterations. 
To embed a new data point , we use the transformation 

1 1
T T

N NV V . So the test time cost is 1
1( ( ) )N i N i

iO I I . 
The space needed to store transformation matrices is ( )NI I . 

Experiments 
In this section, we evaluate the proposed method using 
pattern recognition tasks on USPS digit database (Hull 
1994) and Honda/UCSD video database (Lee et al. 2005). 
Images in USPS database are second-order tensors, and 
videos in Honda/UCSD database are third-order tensors. 
 The recognition process composes of three steps. First, 
the subspace is calculated from the training dataset. Second, 
for the image database, the test images are embedded into 
d-dimensional subspace (vector-based methods) or (d×d)-
dimensional tensor subspace (tensor based methods); for 
video database, the test data are embedded into (d1×d2×d3)-
dimensional tensor subspace. Finally, the k nearest neigh-
bor algorithm is applied to low-dimensional subspace for 
classification. In all experiments, we empirically set Tmax1 
= 10, Tmax2 = 5, and 1 2 5. For F-norm based multili-
near DR algorithms, we set iteration number Tmax = 10. 

USPS Digit Database 
The United State Postal Service (USPS) database (Hull 
1994) of hand written digital characters contains 11000 
normalized grayscale images of size 16×16, with 1100 
images for each of the ten classes: from 0 to 9.  
 In this database, we conduct three experiments. First we 
compare M2DE with other twelve typical DR algorithms: 
PCA, multilinear PCA (MPCA) (Lu, Plataniotis, & Venet-
sanopoulos 2008), L1-norm PCA (PCA-L1) (Kwak 2008), 

Algorithm 1 Multilinear Maximum Distance Embedding
Input: Training data 1

1, ..., NI I
n ; 

            Embedded low dimensions 1, , NI I ; 
            Parameters 1 , 2 ; Iteration numbers Tmax1, Tmax2.
Output: Transformation matrices 1 ( 1,..., )k kt I I

k k k NV V
initialize 0

kV  as arbitrary columnly orthogonal matrices;
for t1 = 1, ..., Tmax1 do  

for k = 1, ..., N do  
    1 1 1 1 1 1( )k T T T T

ij i j k k k k N NV V V V ;  
    k k

ij k ijX ;  
    for t2 = 1, ..., Tmax2 do  
        compute 1

2( )k tv  using Eq. (7) and Eq. (8);  
    end for  
    initialize 1( )k k

ij ijX X ;  
    for r = 1, ..., 1kI  do 
        compute 1( )k r

ijX  using Eq. (9); 
        for t = 1, ..., Tmax2 do  
            compute 1

2( )r
k tv  using Eq. (10) and Eq. (11);  

        end for  
    end for  
end for  

end for
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L1-norm tensor PCA (TPCA-L1) (Pang, Li, & Yuan 2010), 
LDA, multilinear LDA (MLDA) (Yan et al. 2007), locality 
preserving projections (LPP) (He & Niyogi 2003), tensor 
LPP (TLPP) (He, Cai, & Niyogi 2005), neighborhood pre-
serving embedding (NPE) (He et al. 2005), tensor NPE 
(TNPE) (Dai & Yeung 2006), IsoProjection (Cai, He, & 
Han 2007), and multilinear isometric embedding (MIE) 
(Liu, Liu, & Chan 2009). Here LPP and TLPP; NPE and 
TNPE; IsoProjection and MIE are linear and multilinear 
versions of three representative manifold learning algo-
rithms LE, LLE, and Isomap, respectively. We fix the 
neighborhood size k = 4. For each digit, 100 images are 
randomly selected for training and the remaining 1000 im-
ages are used for test. We repeat the experiment 10 times on 
different randomly selected training sets and calculate the 
average recognition accuracy.  
 Table 1 lists the best recognition results and correspond-
ing optimal reduced dimensions of all algorithms. For the 
same embedding strategy and objective function, L1-norm 
based algorithms such as PCA-L1 and TPCA-L1, get much 
better performance than F-norm based algorithm such as 
PCA and MPCA. For the same distance metric and objec-
tive function, multilinear algorithms such as TLPP and 
MIE, performs better than the linear algorithms such as 
LPP and IsoProjection on the second-order image data. For 
the same distance metric, algorithms that consider discri-
minative information such as LDA and MLDA, or consider 
manifold structure such as NPE and TNPE, achieve higher 
recognition accuracy than the algorithms that only consider 

global linear structure such as PCA and MPCA. By inte-
grating mulilinear representation, discriminant information, 
manifold structure, and L1-norm optimization in a unified 
framework, M2DE outperforms all the other algorithms. 
 In the second experiment, we choose three multilinear 
DR algorithms that have comparatively better performance 
from the above twelve algorithms to compare with M2DE 
in detail. TPCA-L1 is an L1-norm based algorithm; MLDA 
is a discriminant algorithm; and TLPP is a manifold learn-
ing algorithm. We vary the neighborhood size k from 1 to 4 
and observe the performance of these algorithms in differ-
ent reduced dimensions (from 2×2 to 16×16). The results 
are given in Figure 2. M2DE shows stable and better per-
formance than TPCA-L1, MLDA, and TLPP in most of the 
reduced dimensions under various values of k. 
 To further demonstrate that the proposed algorithm is 
robust to the outliers, we conduct the following experiment. 
Among 1000 training images, 20 percent are selected and 
occluded with a square noise consisting of random black 
and white dots whose size is 4×4, located at a random posi-
tion. Similarly, 20 percent of 10000 test images are also 
occluded using the same way. We compare the classifica-
tion accuracy of M2DE, TPCA-L1, MLDA, and TLPP on 
the whole dataset with occluded images. The other settings 
are similar as those in the first experiment. The best aver-
age recognition accuracy and the corresponding optimal 
reduced dimensions of these four algorithms are shown in 
Table 2. Compared with the results in Table 1, the perfor-
mance of MLDA and TLPP degrades seriously since the 
large squared errors dominate the sum when the occluded 
images appear in the learning procedure. However, the 
performance of M2DE and TPCA-L1 are relatively robust 
because the L1-norm is less sensitive to the outliers. 

Honda/UCSD Video Database 
In this subsection, we use the first dataset of Honda/UCSD 
video database (Lee et al. 2005) to test the performance of 
proposed algorithm. This dataset contains 75 videos from 
20 human subjects. Each video sequence is recorded in an 
indoor environment at 15 frames per second, and each 
lasted for at least 15 seconds. The resolution of each video 
sequence is 640×480. In our experiment, the original vid-

Table 2: Comparison of recognition accuracy (%) as well as 
corresponding optimal reduced dimensions on USPS database 
with random noise 

Methods M2DE TPCA-L1 MLDA TLPP 
Recog. 92.1 90.8 87.6 86.7 
Dims 62 62 72 92 

 

Table 1: Comparison of recognition accuracy (%) as well as corresponding optimal reduced dimensions on USPS database 

Methods M2DE PCA-L1 TPCA-L1 PCA MPCA LDA MLDA LPP TLPP NPE TNPE IsoPro MIE
Recog. 93.3 90.5 91.8 82.9 87.4 89.1 91.8 85.2 91.0 87.6 91.2 88.3 91.5
Dims 52 54 62 29 122 20 62 38 132 22 62 27 82 

 

(a) k = 1                                 (b) k = 2  

(c) k = 3                                 (d) k = 4  

Figure 2: Recognition accuracy of M2DE, TPCA-L1, MLDA, 
and TLPP on USPS database with different neighborhood sizes
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eos are downsampled into 64×48 pixels. In order to collect 
more training and test data, we further cut each original 
video to several shorter ones of uniform length: 3 seconds, 
i.e., 45 frames. Therefore, the input data are third-order 
tensors of size 64×48×45. 
 We compare M2DE with the L1-norm based multilinear 
algorithm TPCA-L1 as well as five F-norm based multili-
near algorithms: MPCA, MLDA, TLPP, TNPE, and MIE. 
For each individual, we randomly select 10 videos, 5 for 
training and 5 for test. We fix the neighborhood size k = 4. 
Like previous experiments, we repeat the experiment 10 
times and calculate the average recognition accuracy. The 
recognition accuracy and the corresponding optimal re-
duced dimensions (d1×d2×d3) of these seven algorithms are 
reported in Table 3. By integrating L1-norm based optimi-
zation strategy into multilinear maximum distance embed-
ding procedure, M2DE gives good results on the naturally 
third-order video data. 

Conclusion 
This paper proposes a new DR algorithm called multilinear 
maximum distance embedding (M2DE). By maximizing 
the distances between nearby data points and the distances 
between data points from different classes, the nonlinear 
structure of the dataset is flattened and the discriminant 
information is well preserved. By taking the data in the 
high-order form as the input and explicitly learning the 
transformation matrices, the tensor structure of data is well 
kept and the embedding of new data points is straightfor-
ward. By employing the L1-norm to measure the dissimilar-
ity between data points, M2DE shows more stable embed-
ding results. Experiments on both image and video data-
bases demonstrate that M2DE outperforms most repre-
sentative DR techniques on classification tasks.  
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