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Abstract 

This paper presents a computational framework for saliency 
maps. It employs the Earth Mover's Distance based on 
weighted-Histogram (EMD-wH) to measure the center-
surround difference, instead of the Difference-of-Gaussian 
(DoG) filter used by traditional models. In addition, the 
model employs not only the traditional features such as 
colors, intensity and orientation but also the local entropy 
which expresses the local complexity. The major advantage 
of combining the local entropy map is that it can detect the 
salient regions which are not complex regions. Also, it uses 
a general framework to integrate the feature dimensions 
instead of summing the features directly. This model 
considers both local and global salient information, in 
contrast to the existing models that consider only one or the 
other. Furthermore, the "large scale bias" and "central bias" 
hypotheses are used in this model to select the fixation 
locations in the saliency map of different scales. The 
performance of this model is assessed by comparing their 
saliency maps and human fixation density. The results from 
this model are finally compared to those from other bottom-
up models for reference. 

 Introduction 
The visual environment is an enormously rich source of 
information, and the viewer must select the information 
that is most relevant at any point in time. The process of 
selecting which of the information that is entering our eyes 
receives further processing therefore plays a central role in 
sensation, serving as the gatekeeper that controls access to 
our highly evolved visual information processing system 
(Itti & Koch 2001; Liversedge & Findlay 2000).  

Some stimuli are intrinsically conspicuous or salient in a 
given context. For example, a red dot in a field of green 
dots, automatically and involuntarily attracts attention. 
Saliency, which refers to the bottom–up attraction of 
attention arising from the contrast between the feature 
properties of an item and its surrounds, is independent of 
the nature of the particular task, and is primarily driven in a 
bottom-up manner, although it can be influenced by 
contextual, figure–ground effects. This suggests that 
saliency is computed in a pre-attentive manner across the 
entire visual field, most probably in terms of hierarchical 
centre-surround mechanisms in the early stages of 
biological vision (Itti & Koch 2001). Bottom-up saliency 
models specify early visual filters that quantify the visual 

conspicuity of each part of the scene in terms of the 
contrast between a feature and surrounds. These models 
suggest that low-level feature discontinuities represented in 
the saliency map can explain a significant part of where 
people look. 

There is a large body of literatures related to biological 
and theoretical models of attention. The model proposed 
by Itti et al. (Itti et al. 1998) (to which we will henceforth 
refer as the “Itti model”) is probably the most widely used 
computational model but it is not uncontroversial. For 
example, Draper and Lionelle (Draper & Lionelle 2005) 
show that the Itti model is not scale or rotation invariant, 
thus questioning the appropriateness of using the Itti model 
as the basis of computational object recognition systems.  

Overview and Contributions of the Proposed 
Model 
In this paper, a computational model is described, which is 
shown in Figure 1. 
 

Figure 1: The framework of the proposed model 
 

The major contribution of this model is five fold: first, 
we introduce the EMD based on weighted-Histogram 
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(EMD-wH) to measure the center-surround difference; 
second, we consider both local and global salient 
information, and combine them together to produce the 
saliency maps; third, we use the local entropy as a feature 
in the model; fourth, we propose a general framework to 
integrate the saliency maps of each feature dimension; fifth, 
we use the "large scale bias" and "central bias" hypotheses 
when we get the  master saliency map. 

Distance Metric between Center and 
Surround 

The Difference-of-Gaussian (DoG) filter is usually used to 
compute the center-surround difference. It tends to assign 
high saliency values to highly textured regions and it is 
sensitive to small changes since it is implemented as a 
pixel-by-pixel difference. 

Gao and Vasconcelos define bottom-up saliency of a 
point as the KL divergence between the histogram of the 
center region and the histogram of the surrounding region 
(Gao & Vasconcelos 2007). However, as a bin-by-bin 
dissimilarity measurement, the KL divergence has the 
major drawback that it accounts only for the 
correspondence between bins with the same index, and 
does not use information across bins. To avoid these 
disadvantages, we employ the EMD to compute the center-
surround difference. 

EMD Based on Weighted Histogram 
The Earth Mover’s Distance (EMD) was first introduced 
and used in some color and texture signature applications 
by Rubner et al. (Rubner et al. 2000).  

However, as a histogram-based method, the EMD may 
lose the spatial information encoded in the pixels. For 
example, as illustrated in Figure 2, the two center-
surrounding regions have the same EMD if we compute 
them directly by the traditional histogram.  However, we 
can easily see that the left image is more salient than the 
right one, this is because the contrast of the regions near 
the border between the center and the surround in the left is 
bigger than that in the right one. Therefore, the EMD based 
on weighted histogram (EMD_wH) is used in our model to 
reflect this difference. 

 

 
Figure 2: Illumination of the effect of EMD_wH 

 
The normalized weights of the pixels in the center 

region and surrounding region are defined as follows: 

 

 

where  denotes the distance from pixel i to the center of 
the center region, and  denotes the distance from pixel j 
to the outer border of the surrounding region. The 
histograms of the center and the surrounding region are 
computed with these weights. 

An Efficient Method to Compute EMD_wH 
The EMD equals the Wasserstein (Mallows) distance 

when the two distributions have equal masses (Levina & 
Bickel 2001). When we consider the two histograms, this 
requirement is exactly satisfied since the total mass of a 
histogram is always equal to 1. Therefore, when the ground 
distance in the EMD is defined as the L1 norm between 
bins, the EMD between these two histograms exactly 
equals the Wasserstein distance . Then we produce an 
efficient way to compute the Wasserstein distance. 

Bickel and colleague demonstrated the following 
equation (Bickel & Freedman 1981): 

 

where the  denotes the Wasserstein distance 
between P and Q with exponent 1, F and G are the 
cumulative distribution functions of P and Q, respectively, 
and  and  represent their respective inverse 
functions.  Thus, we can compute the EMD very efficiently. 
Let the two weighted histograms (256 bins)  and  
represent the center and the surrounding regions; then the 
EMD between them is computed as follows: 

 

Local and Global Saliency 

    
(a)                                  (b)                                   (c) 

Figure 3: Illustration of the effect of global information 
 
Although the saliency value at each location is essentially 
the local contrast in most traditional computation models, 
we cannot ignore the global information which represents 
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the context of the whole scene. For example, in Figure 3 
(a), the light blue dish should be more salient than red ones 
since there is only one of it. The light blue dish, however, 
appears less salient than the red ones if we only consider 
the local information, as shown in Figure 3 (b). 

Several models employ global information to detect the 
salient locations in a scene. For instance, the Bayesian 
modeling was proposed to detect the locations of visual 
attention (Torralba et al. 2006). In this statistical 
framework, the location of attention is found by computing 
the posterior probability , which is the 
probability of a certain location L being attended (A) in 
image I given a set of visual features f . By using Bayes' 
rule, we have: 

 

The first term of the right side of equation (5) 1/  is 
the task-irrelevant (bottom-up) component, and the second 
and the third term are task-relevant. In terms of the 
definition of the bottom-up saliency, objects are more 
salient only when they are sparser in the image. However, 
this modeling does not consider the local information. To 
achieve balance between global and local information, in 
our model we combine them as follows:  

where  denotes the value in the location 
x in the saliency map with feature f and scale s, 

 denotes the  map with the feature f 
and scale s, and  denotes the probability of feature f 
at scale s, which can be computed directly. The saliency 
maps of each feature dimension at each scale thus consider 
both local and global information. In this way, the saliency 
of objects remains low if they are not sparse in the image 
even if they have strong contrast with their surrounding 
region, as shown in Figure 3 (c). On the other hand, objects 
cannot be considered as salient only because they are 
sparse in the image; their local contrast must also be strong 
enough. 

Feature Set: Local Entropy 
Traditional computational models usually employ the 
features such as colors, orientations, intensity and etc. It is 
clearly that the saliency regions are highlighted based on 
the image complexity by computing the centre-surround 
metric using these features. However, saliency not always 
be equated with complexity (Gao & Vasconcelos 2007). 
For example, Figure 4 shows two challenge images 
containing simple object in a complex background. They 
contain complex regions, consisting of clustered straw and 
crayons that are not terribly salient. On the contrary, the 

much less complex image regions containing the bird or 
the egg or just the blank appear to be significantly more 
salient.  
 

 
Figure 4: Challenging examples 

 
To handle this problem, we introduce local entropy 

(Kadir & Brady 2001) as a feature into our model for 
generating saliency map. Given a location x, local Shannon 
entropy is defined as: 

 

where Nx is the local neighborhood region of x,  is 
the probability of the pixel value  i in Nx. 
 

 
Figure 5: Feature saliency maps in variety scales 

 
Local entropy indicates the complexity or 

unpredictability of a local region. Regions corresponding 
to high signal complexity tend to have flatter distributions 
hence higher entropy and these regions are considered to 
be the salient region (Kadir & Brady 2001). 

Instead of using local entropy directly to measure the 
complexity of a region in an image and defining saliency 
as complexity (Kadir & Brady 2001), we use the local 
entropy to generate the saliency map by using the centre-
surround metric. In other words, we don’t care what the 
value of the local entropy of a region is; we only consider 
the difference of the local entropies between the region and 
its surround. For example, the regions of straw in the left 
image of Figure 4 have large local entropy, and the region 
of egg has a small one, see the fourth column of Figure 5. 
By using the EMD_wH, we can get the salient region in 
the local entropy saliency map related to the egg; see the 
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fifth column of Figure 5, while the other feature saliency 
maps fail to relate to the egg.  

Feature Integration 
There are mainly two types of feature integration models, 
those proposed by Itti & Koch and Li (called the “V1 
Model”), respectively. We here propose a more general 
model to integrate features.  

Itti’s Feature Integration Model and V1 Model 
Itti’s feature integration model was developed by Itti and 
Koch (Itti & Koch 2001; Itti et al. 1998; Walther & Koch 
2006). In this model, among all of the chosen features, 
saliency maps are generated by extracting the feature 
strength at several scales and combining them in a center-
surround approach that highlights the regions that stand out 
from their neighbors. Then, the individual feature saliency 
maps are summed to generate a master saliency map. We 
call this a summation model since all the feature maps are 
directly summed together. 

The primary visual cortex (V1) is the simplest, earliest 
cortical visual area. The V1 model is a biologically based 
model of the preattentive computational mechanisms in the 
primary visual cortex which was proposed and developed 
by Li (Li 2002; Koene & Zhaoping 2007), showing how 
V1 neural responses can create a saliency map that awards 
higher responses to more salient image locations. Each 
location evokes responses from multiple V1 cells that have 
overlapping receptive fields (RFs) covering this location; 
these V1 cells include many types, each tuned to one or 
more particular features. The saliency value of a location x 
is determined by the V1 cell with the greatest firing rate 
that responds to x. We refer to the cells tuned to more than 
one feature as feature conjunctive cells (Koene & 
Zhaoping 2007); e.g., there are cells that can respond to 
both color and orientation (we call them  cells). 
 

 
Figure 6: The difference between Itti model and V1 model. 
Figure adapt from (Koene & Zhaoping 2007). 
 

The key differences between the V1 model and the 
summation model are: first, that the V1 model does not 
sum the separate feature-based information, and second, 
that the summation model only includes the single features, 
whereas the V1 model includes combinations of features to 
which V1 cells are turned, as shown in Figure 6 (Koene & 
Zhaoping 2007) 

General Model of Feature Integration 
The summation model was shown to be problematic in 
some literatures (such as Riesenhuber & Poggio 1999). 
Theoretical investigations into possible pooling 
mechanisms for V1 complex cells support a maximum-like 
pooling mechanism.  

Here, we use a more general framework for Feature 
Integration. A feature set is generated first, which includes 
all the features we want to analyze the image for, such as 
colors, orientations, intensity, etc. We can extract any 
features in the feature set to obtain particular subsets. Each 
feature dimension is generated by combining the features 
in one feature subset using Minkowski Summation (MS) 
(To et al. 2008) as (8); see Figure7 (a). All the feature 
dimensions are then used generate the saliency map by 
using a Winner-Take-All (WTA) approach, see Figure7 (b).  
 

      
      (a)                                               (b)  

Figure 7: Overview illustration of proposed framework and 
feature dimension generation.   
 

Note that there are no intensity-tuned or entropy-tuned 
cells, to the best of our knowledge. However, these 
features are effective in computer vision, so we use them 
all the same, but apply a weight of 0.6 and 0.4 to them, 
respectively, see (10) and (11).  

We employ MS of each feature in a given feature subset 
as a feature dimension in our model. The jth feature 
dimension  is produced by combining features in the 
feature subset  using MS, as follows:  

 

where  is a single feature belongs to , n is the number 
of features in , and m is the Minkowski exponent. Clearly 

, i.e., MS will consider all the responses 
from each single feature and biasd towards the larger one. 
In our model, we set m = 2.8. The “MAX” operation is 
then used as the “WTA” mechanism to generate the 
saliency map from the feature dimensions. 

It is obvious that the Itti model is a particular case of this 
general model, in which only one feature dimension is 
considered, which includes the orientation, color and 
intensity, and the Minkowski power is set to m=1.   
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We select three feature dimensions as follows:  
) 
 
 

where the  denotes Minkowski summation. 

Biased Competition 
According to biased competition theory, attentional 
selection operates in parallel by biasing an underlying 
competition between multiple objects in the visual field 
toward one object or another at a particular location or with 
a particular feature (Desimone and J. Duncan 1995; Deco 
& Rolls 2005). In our model, “large scale bias” and 
“central bias” hypotheses are used as biased competition 
schemes when we get the master saliency map. 

Large Scale Bias 
A visual system works under a certain scale at one time. 
For example, in a large scale, one may perceive a football 
field as an object, but in a smaller scale it is very likely that 
a player on the field, or even a football will be popped out 
as an object.  Draper and Lionelle proposed a model called 
SAFE (Draper & Lionelle 2005). Unlike those in the Itti 
model, saliency maps in SAFE are not combined across 
scales within a feature dimension. Instead, saliency maps 
are combined across dimensions within each scale, 
producing a pyramid of saliency maps. In other words, 
SAFE treats every scale independently and equally.  

Intuitively, however, we are more likely to capture the 
large object than a small one if they have similar saliency 
values in their own scale. Therefore, we assume “large 
scale bias” in attention tasks. We employ following 
equation  to determine the most suitable scale for attention: 

 

where the function  denotes the largest value 
in the saliency map of scale s, and  is the weight of scale 
s.  increases as the scale gets larger as discussed above, 
and it is set to be an exponential function of the scale s: 

, where the bias parameter  is set to be 1.1 in our 
model. That means that the weight of a larger scale is 1.1 
times that of the next smaller one. 

Central Bias 
When people view images, they have a tendency to look 
more frequently around the center of the image (Tatler 
2007).  

Avraham and Lindenbaum  experimented with many 
different image sets, and all the results show the preference 
for the center (Avraham & Lindenbaum 2010). In order to 
simulate this central bias, our model employs a two-

dimension anisotropic Gaussian function with standard 
deviations :  

 

where ( ) denotes the center of image. We set
, and , where  and 

 denote the height and the width of the image at 
scale s, respectively. Then the central bias function is used 
as weighted sum with the saliency maps in each scale to 
produce the final saliency maps in each scale 

, and we set w=0.5. 

Experimental Results  
Our experiments consist of two parts: first, we give 
qualitative comparison to prove the usefulness of the 
feature of local entropy; second, we compared the saliency 
maps generated by using our method to those generated by 
using the Itti model (saliencytoolbox, Walther & Koch 
2006), AIM (Bruce & Tsotsos 2009), and Esaliency 
(Avraham & Lindenbaum 2010) using images from a 
image set (Bruce & Tsotsos 2009).  

First, we need combine the saliency maps at all the 
scales to form a master saliency map, i.e. 

, where  is the weight of scale s 
which defined above. Then we can compare the master 
maps produced using the different methods.  

The master maps generated by AIM, Esaliency and our 
model should be normalized before comparison. First we 
employ the soft threshold shrink to process the master 
maps with setting the threshold as the average intensity of 
its master map for AIM and twice the average intensity for 
Esaliency and our model, respectively.  
 

 
Figure8: Comparisons to prove the usefulness of the local 
entropy
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Original Image                Itti Method                   AIM                      Esaliency              Our model    Human Fixation Density Map 

 
CC:                                       0.2284                      0.1256                       0.2193                      0.6179 
MI:                                       0.2581                       0.2638                      0.2630                      0.4596 

 
CC:                                        0.3696                      0.0885                       0.6009                     0.6830 
MI:                                        0.1718                       0.1778                      0.3375                     0.4752 

 
CC:                                         0.3819                     0.5452                       0.3525                      0.8240 
MI:                                         0.2253                      0.5428                      0.2050                      0.4341 

Figure 9: Qualitative and quantify comparison of the saliency map by using different models 
 

The experimental data includes 120 different color 
images and 120 corresponding human eye tracking density 
maps. The human eye tracking density maps depict the 
average extent to which each pixel location was sampled 
by human observers. 

We use the correlation coefficients (CC) and mutual 
information (MI) between the human fixation density map 
and the master saliency map produced using each method 
to compare the effects of each method. The correlation 
coefficient is a well-known metric to measure the strength 
of a linear relationship between two images. It is defined as: 

 

where and  represent the human fixation 
density map and the master saliency map, respectively; 

 is the covariance value between 
and ;  are the standard deviation for 

the and ,  respectively. 
Mutual Information (MI) has been widely used because 

of the robustness of MI to occlusion, noise, and its 
tolerance of nonlinear intensity relationships. The mutual 
information of and  (256 levels) is defined as: 

where denote the distribution of the grey levels of 
two images, respectively. And denotes the joint 

distribution of the two images’ gray levels . It is a 
measure of dependence between and . 
 

 
Table 1: The Mean, Standard Deviations and Median 
Number of CC and MI Which Simulate All 120 Images 

 
Figure 8 represents the comparisons to prove the 

usefulness of the local entropy. Figure 9 represents the 
master saliency maps using four different models. Also, it 
gives the CC and MI between human fixation density map 
and master saliency maps. Table 1 represents the mean, 
standard deviations and median number of 120 CC and MI 
obtained from all the images in the dataset, respectively. 

 

 
Figure 10: Performance comparison of different saliency 
models. 
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Performance comparison is also made as follow: the 
saliency maps produced by using all the four models and 
the human fixation density maps are binarized to show the 
top p percent salient locations, respectively. In our 
experiment, we set p =1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18 
and 20. In Figure 10, the curves denote the averaged true 
positive rate of each model with different p. 

Discussion and Future Works  
In this paper we introduced a computational model for 

saliency maps. The proposed model was compared both 
qualitatively and quantitatively to reference models. The 
proposed model outperforms the reference models in 
majority of cases based on the experimental results. 

Note that this model only considers four features, 
intensity, color, and orientation and local entropy. It would 
be possible to improve its performance by considering 
other visual features. However, how to choose the features 
and how to combine each feature dimension is an open 
question; to solve it we would need more evidence from 
neuroscience to demonstrate that there are particular 
feature tuned or conjunctive cells for these features.  
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