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Abstract

Large scale ontology applications require efficient and
robust description logic (DL) reasoning services. Ex-
pressive DLs usually have very high worst case com-
plexity while tractable DLs are restricted in terms of ex-
pressive power. This brings a new challenge: can users
use expressive DLs to build their ontologies and still
enjoy the efficient services as in tractable languages.
In this paper, we present a soundness preserving ap-
proximate reasoning framework for TBox reasoning
in OWL2-DL. The ontologies are encoded into EL++

with additional data structures. A tractable algorithm is
presented to classify such approximation by realizing
more and more inference patterns. Preliminary eval-
uation shows that our approach can classify existing
benchmarks in large scale efficiently with a high recall.

1 Introduction
Ontologies have been so phenomenally successful, as a
machine-understandable compilation of human knowledge,
that OWL2 (the second version of OWL) is recently stan-
dardized by W3C. As more and more large ontologies be-
come available (HermiT-Benchmark 2009), there is a press-
ing need for efficient and robust reasoning services.

Expressive Description Logics (DLs) (Baader et al. 2003)
have high worst case computational complexity. For ex-
ample, classification in the DL SROIQ (Horrocks, Kutz,
and Sattler 2006), the adjacent logic of OWL2-DL, is
N2EXPTIME-complete (Kazakov 2008). Mainstream rea-
soners for expressive DLs provide reasoning services based
on tableau (Horrocks, Kutz, and Sattler 2006) and hyper-
tableau (Motik, Shearer, and Horrocks 2009) algorithms.
Such model constructing algorithms classify an ontology,
in general, by iterating all necessary pairs of concepts, and
trying to construct a model of the ontology that violates
the subsumption relation between them (Kazakov 2009).
On the other hand, light-weight DLs can have very effi-
cient reasoning algorithms. For example, TBox reasoning
in EL++ (Baader, Brandt, and Lutz 2005), the logic under-
pinning of an OWL2 tractable profile OWL2-EL, is PTIME-
complete. However, their expressive power is limited.
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This brings a new challenge: can users use OWL2-DL
to build their ontologies and still enjoy the efficient rea-
soning as in tractable profiles? For example, the Founda-
tional Model of Anatomy ontology (FMA) , which is built
inALCOIF , beyond any tractable DLs, can hardly be clas-
sified by any mainstream DL reasoners (Motik, Shearer, and
Horrocks 2009). Given the current efforts of ontology con-
struction, it might not take long before many other FMA-like
(or even larger and more complicated) ontologies appear and
go beyond the capability of existing DL reasoners.

Approximation (Stuckenschmidt and van Harmelen 2002;
Groot, Stuckenschmidt, and Wache 2005; Hitzler and Vran-
decic 2005; Wache, Groot, and Stuckenschmidt 2005; Pan
and Thomas 2007) has been identified as a potential way
to reduce the complexity of ontology reasoning. How-
ever, many of these approximation approaches still rely on
the reasoners of the more expressive DLs (Groot, Stucken-
schmidt, and Wache 2005; Pan and Thomas 2007). Further-
more, most of the above approaches are on ABox reason-
ing and query answering. To the best of our knowledge,
the only approach on TBox reasoning is (Groot, Stucken-
schmidt, and Wache 2005), which presents an overview of
approximation approaches, including language weakening,
knowledge compilation and approximate deduction, as well
as investigating and reporting negative results of the approx-
imate deduction approach – the collapsing of concept ex-
pressions leads to many unnecessary approximation steps.

In this paper, we propose to combine the idea of language
weakening and approximate deduction into soundness pre-
serving approximation for TBox reasoning of very expres-
sive DLs. Our contributions are the following:

1. After an informative discussion of the technical chal-
lenges (Sec.2), we propose a syntactic language weak-
ening approach (Sec.3) to approximating an arbitrary
SROIQ TBox with a corresponding EL++ TBox and
additional data structures maintaining the complement
and cardinality information. It is shown that the proposed
approximation is in linear time (Lemmas 1, 2 and 3).

2. We present soundness-guaranteed approximate deduction
rules to classify the approximated TBox (Sec.3). In con-
trast to the twisted trade-off between tractability and ex-
pressiveness, our approach compromises the complete-
ness of reasoning to yield large portion of logical con-
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sequences in polynomial time while imposing no restric-
tions on expressivity of the language used.

3. We present our implementations and preliminary evalua-
tions (Sec.4). Evaluation against a set of real world on-
tologies (HermiT-Benchmark 2009) suggested that, our
approach can (i) outperform existing OWL2-DL reason-
ers, and (ii) provide rather complete results with high re-
call (over 95% when complement approximated and over
99% when cardinality approximated).

All the proofs can be found in our technical report avail-
able at http://www.box.net/shared/nm913g22ie.

2 Technical Motivations
In DL SROIQ, concepts C, D can be inductively com-
posed with the following constructs: > | ⊥ | A | C u
D | ∃R.C | {a} | ¬C | ≥ nR.C | ∃R.Self , where > is
the top concept, ⊥ the bottom concept, A an atomic con-
cept, n an integer number, a an individual, ∃R.Self the
self-restriction and R a role that can be either an atomic
role r or the inverse of another role (R−). Convention-
ally, C t D,∀R.C and ≤ nR.C are used to abbreviate
¬(¬C u ¬D),¬∃R.¬C and ¬ ≥ (n + 1)R.C, respec-
tively. {a1, a2, . . . , an} can be regarded as abbreviation of
{a1}t{a2}t . . .t{an}. Without loss of generality, in what
follows, we assume all the concepts to be in their negation
normal forms (NNF. A concept is in NNF iff ¬ is applied
only to A, {a} or ∃R.Self . NNF of a given concept can
be computed in linear time (Hollunder, Nutt, and Schmidt-
Schauß 1990).) and use ~C to denote the NNF of ¬C. We
call >,⊥, A, {a} basic concepts. Given a TBox T , we use
CNT (RNT ) to denote the set of basic concepts (atomic
roles) in T . The EL family is dedicated for large TBox rea-
soning and has been widely applied in some of the largest
ontologies. EL++ supports > | ⊥ | A | C uD | ∃r.C | {a}.

Both SROIQ and EL++ support concept inclusions
(CIs, e.g. C v D) and role inclusions (RIs, e.g. r v s,
r1 ◦ . . . ◦ rn v s). SROIQ supports also other axioms
such asymmetric of roles. If C v D and D v C, we write
C ≡ D. If C is non-atomic, C v D is a general concept in-
clusion (GCI). For more details about syntax and semantics
of DLs, we refer the readers to (Baader et al. 2003).

A TBox is a set of concept and role axioms. TBox reason-
ing services include concept subsumption checking, concept
satisfiability checking (to check if a given concept is instan-
tiable ) and classification (to compute the concept hierar-
chy). For example, given the following TBox T1 (in ALC),
we can infer Koala v Herbivore.

Example 1 An example TBox T1.

• α1 : Koala v ∀eat.(∃partof.Eucalypt)
• α2 : Eucalypt v Plant
• α3 : Plant t ∃partof.P lant v V egeFood
• α4 : ∀eat.V egeFood v Herbivore

The tableau algorithm (Horrocks, Kutz, and Sattler 2006)
constructs a tableau as a graph in which each node x rep-
resents an individual and is labeled with a set of concepts

it must satisfy, each edge 〈x, y〉 represents a pair of indi-
viduals satisfying a role that labels the edge. Subsumption
checking C v D can be reduced to unsatisfiability checking
C u ¬D v ⊥. To test this, a tableau is initialised with a
single node labeled with C u ¬D, and is then expanded by
repeatedly applying the completion rules. One of the major
difficulties for tableau algorithms is the high degree of non-
determinism introduced by GCIs. For each GCI C v D
in the ontology, the algorithm generates a meta-constraint
¬C t D for each node of the tableau. This leads to an
exponential blowup of the search space. Some Absorption
techniques (Tsarkov, Horrocks, and Patel-Schneider 2007;
Tsarkov and Horrocks 2004) have been developed to deal
with GCIs. However, they can only be applied to a limited
pattern of GCIs; e.g., α4 can not be dealt with by any ab-
sorption optimisation.

Reasoning with EL++ is more efficient. Baader, Brandt
and Lutz (2005) present a set of completion rules (Table 1) to
compute, given a normalised EL++ TBox T , for each A ∈
CNT , a subsumer set S(A) ⊆ CNT∪{⊥} in which for each
B ∈ S(A), T |= A v B, and for each r ∈ RNT , a relation
set R(r) ⊆ CNT ×CNT in which for each (A,B) ∈ R(r),
T |= A v ∃r.B. Reasoning with rules R1-R8 is tractable.

Table 1: EL++ completion rules (no datatypes)

R1 If A ∈ S(X), A v B ∈ T and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R2
If A1, A2, . . . , An ∈ S(X),
A1 uA2 u . . . uAn v B ∈ T and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R3 If A ∈ S(X), A v ∃r.B ∈ T and (X,B) /∈ R(r)
then R(r) := R(r) ∪ {(X,B)}

R4
If (X,A) ∈ R(r) A′ ∈ S(A), ∃r.A′ v B ∈ T
and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R5 If (X,A) ∈ R(r), ⊥ ∈ S(A) and ⊥ /∈ S(X)
then S(X) := S(X) ∪ {⊥}

R6 If {a} ∈ S(X) ∩ S(A), X  R A, S(A) 6⊆ S(X)
then S(X) := S(X) ∪ S(A)

R7 If (X,A) ∈ R(r), r v s ∈ T and (X,A) 6∈ R(s)
then R(s) := R(s) ∪ {(X,A)}

R8
If (X,A) ∈ R(r1), (A,B) ∈ R(r2), r1 ◦ r2 ∈ T ,
and (X,B) 6∈ R(r3)
then R(r3) := R(r3) ∪ {(X,B)}

However, these rules cannot handle T1 because the ontology
is in a language beyond the EL++.

Groot et al. (2005) attempt to speed up concept unsatisfia-
bility checking via approximation. Given a concept C, they
construct a sequence ofC>i such thatC v . . . v C>1 v C>0 ,
and a sequence of C⊥i such that C⊥0 v C⊥1 v . . . C by re-
placing all existential restrictions (∃R.D) after i universal
quantifiers (∀) inside C with > and ⊥ respectively. Then
C is unsatisfiable (satisfiable) if some C>i (C⊥i ) is unsatis-
fiable (satisfiable), which is easier to check. This approach
has several limitations when applied to TBox reasoning: (i)
It only approximates the tested concept, but not the ontol-
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ogy, thus the complexity of the unsatisfiability checking is
not reduced. (ii) Similar to the Tableau algorithms, one has
to reduce concept subsumption C v D to unsatisfiability
of C u ¬D for each necessary pair of C, D. (iii) When
the test concept subsumption contains no existential restric-
tion, such as Koala v Herbivore, this approach can not
help. Hence, it does not help for classification (subsumption
checking among named concepts).

3 Approach
Different from Groot et al.’s approach, we approximate both
the ontology and the tested concept (if needed) by replac-
ing concept sub-expressions (role expressions) that are not
in the target DL, e.g. EL++, with atomic concepts (atomic
roles) and rewrite axioms accordingly (Sec 3.1). Then, addi-
tional data structures and completion rules (Sec 3.2 and Sec
3.3) are used to maintain and restore some semantic relations
among basic concepts, respectively.

In approximation, we only consider concepts correspond-
ing to the particular TBox in question. We use the no-
tion term to refer to these “interesting” concept expressions.
More precisely, a term is: (i) a concept expression on the
LHS or RHS of any CI, or (ii) the complement of a term, or
(iii) the syntactic sub-expression of a term.

In order to represent terms and role expressions that will
be used in EL++ reasoning, we assign names to them.

Definition 1 (Name Assignment) Given S a set of concept
expressions, E a set of role expressions, a name assign-
ment fn is a function that for each C ∈ S (R ∈ E),
fn(C) = C (fn(R) = R) if C is a basic concept (R is
atomic); otherwise, fn(C) (fn(R)) is a fresh name.

Names of some terms in T1 are illustrated in Table 2.

Table 2: Name Assignment
Term Name
∀eat.∃partof.Eucalypt C1

∃eat.∀partof.¬Eucalypt nC1

∀partof.¬Eucalypt C2

∃partof.Eucalypt nC2

Plant t ∃partof.P lant C3

¬Plant u ∀partof.¬Plant nC3

∀partof.¬Plant C4

∃partof.P lant nC4

∀eat.V egeFood C5

∃eat.¬V egeFood nC5

¬Plant nP lant
¬V egeFood nV egeFood

3.1 EL++ Approximation
Definition 2 (EL++ Transformation) Given a TBox T
and a name assignment fn, its EL++ transformation
Afn,EL++(T ) is a set of axiom T constructed as follows:

1. T is initialised as ∅.

2. for each C v D (C ≡ D) in T , T = T ∪ {fn(C) v
fn(D)} (T = T ∪ {fn(C) ≡ fn(D)}).

3. for each EL++ role axiom β ∈ T , add β[R/fn(R)] into T .
4. for each term C in T ,

(a) if C is of the form C1 u . . . u Cn, then T = T ∪
{fn(C) ≡ fn(C1) u . . . u fn(Cn)},

(b) if C is of the form ∃R.D, then T = T ∪ {fn(C) ≡
∃fn(R).fn(D)},

(c) otherwise T = T ∪ {fn(C) v >}.

We call this procedure an EL++ approximation.

Lemma 1 For a TBox T and a name assignment fn, let
Afn,EL++(T ) = T . We have T is an EL++ TBox and |T | ≤
nT +|T | where nT is the number of terms in T and |T | (|T |)
is the number of axioms in T (T ) .

With Table 2, some axioms from approximation of T1 are:

Example 2 TKoala ⊇ {Koala v C1, nC1 ≡ ∃eat.C2,
nC2 ≡ ∃partof.Eucalypt, α2, C3 v V egeFood, nC3 ≡
nP lant u C4, nC4 ≡ ∃partof.P lant, C5 v Herbivore,
nC5 ≡ ∃eat.nV egeFood}.

3.2 Complement-enriched EL++
C Approximation

In Example 2,Koala v Herbivore can not be inferred with
R1-R8 because the relations between a term and its comple-
ment, e.g. C1 and nC1, are lost. To solve this problem, we
maintain such relations in a separate complement table (CT),
and apply additional completion rule in reasoning.

Definition 3 (EL++
C Transformation)

Given a TBox T and a name assignment fn, its
complement-enriched EL++

C transformation Afn,EL++
C

(T )
is a pair (T,CT ) constructed as follows:

1. T = Afn,EL++(T ) (Ref. Def. 2).
2. CT is initialised as ∅.
3. for each term C in T , CT = CT ∪ {(fn(C), fn(~C))}.

We call this procedure an EL++
C approximation.

Proposition 2 (EL++
C Approximation) For a TBox T , let

Afn,EL++
C

(T ) = (T,CT ), we have:

1. T is an EL++ TBox
2. for each A ∈ CNT , there exists (A,B) ∈ CT
3. if (A,B) ∈ CT then A,B ∈ CNT and (B,A) ∈ CT

This indicates that, by Def.3, a TBox can be syntactically
transformed into an EL++ TBox with a table maintaining
complementary relations for all names in the EL++ TBox.

Example 3 The EL++
C approximation of T1 in Exam-

ple 1 is (TKoala, CTKoala), where TKoala is the same
as in Example 2, and CTKoala contains pairs such as
(C1, nC1), (C2, nC2), (C3, nC3), (C4, nC4), (C5, nC5),
(Plant, nP lant), (V egeFood, nV egeFood), etc.
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Lemma 3 For any TBox T and (T,CT ) its EL++
C approx-

imation, if T contains nT terms, then |T | ≤ nT + |T | and
|CT | = nT , where |T |(|T |) is the number of axioms in
T (T ) and |CT | is the number of pairs in CT .

Given an EL++
C transformation (T,CT ), we normalise

axioms of form C v D1 u . . .uDn into C v D1, . . . , C v
Dn, and recursively normalise role chain r1 ◦ . . . ◦ rn v s
with n > 2 into r1 ◦ . . . ◦ rn−1 v u and u ◦ rn v s. Be-
cause C, Di are basic concepts, this procedure can be done
in linear time. In the following, we assume T to be always
normalised. For convenience, we use a complement function
fc : CNT 7→ CNT as: for each A ∈ CNT , fc(A) = B
such that (A,B) ∈ CT .

To utilize the complementary relations inCT , we propose
additional completion rules (Table 3) to EL++.

Table 3: Complement completion rules

R9 If A,B ∈ S(X), A = fc(B) and ⊥ /∈ S(X)
then S(X) := S(X) ∪ {⊥}

R10 If A ∈ S(B) and fc(B) /∈ S(fc(A))
then S(fc(A)) := S(fc(A)) ∪ {fc(B)}

R11
If A1 u . . . uAi u . . . uAn v ⊥, A1, . . . , Ai−1,
Ai+1, . . . , An ∈ S(X) and fc(Ai) /∈ S(X)
then S(X) := S(X) ∪ {fc(Ai)}

R9 realises axiom Au~A v ⊥. R10 realises A v
B →~A v~B. R11 builds up the relations between con-
juncts of a conjunction, e.g. A uB v ⊥ implies A v~B.

Now we can infer Koala v Herbivore as follows:

• α2→nC2 v nC4→R10C4 v C2→nC3 v C2

• C3 v V egeFood→R10nV egeFood v nC3

• nV egeFood v nC3, nC3 v C2→nV egeFood v
C2→nC5 v nC1→R10C1 v C5→Koala v Herbivore
The inferences with→R10 are enabled by R10.

3.3 Cardinality-enriched EL++
CQ Approximation

In Def.3 we extend the EL++ transformation to support the
¬ construct. It is a natural question to ask whether it is pos-
sible to approximate even more non-EL++ constructs, e.g.
cardinality, into EL++? In EL++

C approximation, a concept
constructed by≥ can only be represented as a fresh name. In
this way, X v ⊥ can not be entailed from T4 in Example 4.

Example 4 T4 = {X v≥ 4r.A,X v≤ 2s.B,A v B, r v
s}. X v ⊥ should be entailed.

This subsumption requires the relations among the filler
concepts (e.g. A), the role (e.g. r) and the cardinality values
(e.g 4). We maintain such relations in a cardinality table
(QT ) whose elements are tuples (A, r, n), where A denotes
the filler , r the role and n the cardinality value.

Definition 4 (Cardinality-enriched EL++
CQ Transforma-

tion) Given a TBox T , a name assignment fn, let
Afn,EL++

C
(T ) = (T ′, CT ′), its cardinality-enriched EL++

CQ

transformation Afn,EL++
CQ

(T ) is a tuple (T,CT,QT ) con-
structed as follows:

1. T is initialised as T ′.

2. CT = CT ′.

3. QT is initialised as ∅.
4. for each term C that is of the form ≥ nR.D in T ,

(a) if n = 0, T = T ∪ {> v fn(C)}
(b) if n = 1, T = T ∪ {fn(C) ≡ ∃fn(R).fn(D)}
(c) otherwise, T = T ∪ {fn(C) ≡ fn(D)fn(R),n}, and

QT = QT ∪ {(fn(C), fn(R), n)}.
5. for each pair of names A and r, if there exist

(A, r, i1), (A, r, i2), . . . , (A, r, in) ∈ QT with i1 < i2 <
. . . < in, T = T ∪ {Ar,in v Ar,in−1 , . . . , Ar,i2 v
Ar,i1 , Ar,i1 v ∃r.A}

In step 4, fn(D)fn(R),n is a fresh name. For exam-
ple, nV egeFoodeat,3 for ≥ 3eat.¬V egeFood. Similarly,
≤ nR.D will be approximated via the approximation of its
complement≥ (n+1)R.D. In step 5, for each pair of name
assignment A, r in T , a subsumption chain is added into T
because ≥ inr.A v . . . v≥ i2r.A v≥ i1r.A v ∃r.A. We
call this procedure an EL++

CQ approximation.

Proposition 4 (EL++
CQ Approximation) For a TBox T , a

name assignment fn, letAfn,EL++
CQ

(T ) = (T,CT,QT ), we

have T an EL++ TBox.

This indicates that, by Def.4 a TBox can be syntactically
transformed into a tuple of an EL++ TBox, a complement
table and a cardinality table.

Now, in Example 4, T4 can be approximated into T4 ⊇
{X,v Y1, Y1 ≡ Ar,4, X v Y2, nY2 ≡ Bs,3, A v
B, r v s} with fn(≥ 4r.A) = Y1, fn(≤ 2s.B) = Y2

and fn(≥ 3s.B) = nY2, CT4 ⊇ {(Y1, nY1), (Y2, nY2)},
QT4 ⊇ {(A, r, 4), (B, s, 3)}.

Lemma 5 For any TBox T , let (T,CT,QT ) its EL++
CQ

transformation, if T contains nT terms, then |CNT | ≤
2× nT , |T | ≤ 3× nT + |T |, |CT | = nT and |QT | ≤ nT ,
where CNT is the number of basic concepts in T , |T |(|T |)
the number of axioms in T (T ), |CT | the number of pairs in
CT and |QT | the number of tuples in QT .

We further extend Table 3 with Table 4.
R12, in which r v∗ s if r = s or r v s ∈ T , realises

inference A v B,R v S, i ≥ j →≥ iR.A v≥ jS.B.
R13 is the extension of R4 and R14-16 are extensions of
R8. Now we can entail X v ⊥ in Example 4 as follows:

1. A v B, r v s→R12A
r,4 v Bs,3,

2. Ar,4 v Bs,3→X v nY2

3. X v nY2, X v Y2, (Y2, nY2) ∈ CT→R9X v ⊥
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Table 4: Cardinality completion rule

R12
If B ∈ S(A), (A, r, i), (B, s, j) ∈ QT , r v∗ s,
i ≥ j and Bj 6∈ S(Ai)
then S(Ai) := S(Ai) ∪ {Bj}

R13
If Ar,i ∈ S(X), A′ ∈ S(A), ∃r.A′ v B ∈ T
and B /∈ S(X)
then S(X) := S(X) ∪ {B}

R14
If Ar1,i ∈ S(X), (A,B) ∈ R(r2), r1 ◦ r2 ∈ T ,
and (X,B) 6∈ R(r3)
then R(r3) := R(r3) ∪ {(X,B)}

R15
If (X,A) ∈ R(r1), Br2,i ∈ S(A), r1 ◦ r2 ∈ T ,
and (X,B) 6∈ R(r3)
then R(r3) := R(r3) ∪ {(X,B)}

R16
If Ar1,i ∈ S(X), Br2,j ∈ S(A), r1 ◦ r2 ∈ T ,
and (X,B) 6∈ R(r3)
then R(r3) := R(r3) ∪ {(X,B)}

3.4 Reasoning Properties
In this subsection, we analyze the complexity of our approx-
imate reasoning approach.

Theorem 6 (Complexity) For any EL++
CQ transformation

(T,CT,QT ) (T normalised), TBox reasoning by R1-R16
will terminate in polynomial time w.r.t. |CNT |+|RNT |.

Similarly, reasoning on the EL++ and EL++
C approxima-

tions also share the polynomial complexity. Note that, from
Lemmas 1, 3 and 5, the approximation is always linear. To
sum up, the approximation-reasoning approach is tractable.

With the approximation and corresponding rules, we can
compute concept subsumptions in an SROIQ TBox:

Theorem 7 (Concept Subsumption Checking) Given a
TBox T , its vocabulary VT and Afn,EL++

CQ
= (T,CT,QT ),

for any two concepts C and D constructed from VT , if
Afn,EL++

CQ
({C v >, D v >}) = (T ′, CT ′, QT ′), then

T |= C v D if fn(D) ∈ S(fn(C)) can be computed by
rules R1-R16 on (T ∪ T ′, CT ∪ CT ′, QT ∪QT ′).

The theorem indicates that our EL++
CQ approximate rea-

soning approach is soundness-preserving. This conclusion
holds similarly on EL++ and EL++

C approximate reasoning.
Furthermore, unsatisfiability checking of a concept C can

be reduced to entailment checking of C v ⊥; ontology in-
consistency checking can be reduced to entailment checking
of > v ⊥ or {a} v ⊥.

4 Evaluation
We implemented 3 versions of our approach, namely the
EL++, EL++

C and EL++
CQ approximate reasoning in the

REL reasoner, a component of our TrOWL reasoning in-
frastructure 1. To evaluate their performance in practice, we
compared with mainstream reasoners Pellet 2.0.0, FaCT++
1.3.0.1 and HermiT 1.1. All experiments were conducted in

1http://www.trowl.eu/

an environment of Windows XP SP3 with 2.66 GHz CPU
and 1G RAM allocated to JVM 1.6.0.07.

Following (Motik, Shearer, and Horrocks 2009), we ex-
amined the most difficult ontologies in the state-of-the-art
DL benchmark (HermiT-Benchmark 2009). To focus on
TBox reasoning, ABox axioms were removed with care2.
Most of the remaining TBoxes can be classified easily by
all the reasoners and completely by our EL++

C system. Re-
sults of the hard ones are shown in Table 5. We mainly con-
ducted the evaluations on EL++

C system. To show the effects
of complement-enriched approximate reasoning, we present
also the EL++ recall. For those TBoxes for which the
EL++
C approach was incomplete, we classified them again

with the EL++
CQ system. Each reasoner was given 10 min

to classify each ontology. We queried for subsumption re-
lations between named concepts (including owl:Thing and
owl:Nothing) and counted the numbers. Recall of REL was
computed against others to measure the completeness. Thus
the time figures include classification time, subsumption re-
trieval and counting time. Time unit is second.

Results illustrated in Table 5 show that, the efficiency of
REL reasoners is in general better than all other reasoners.
Even the slowest EL++

CQ system is faster than all main stream
reasoners. Also, REL is the only reasoner that can return
result on the FMA ontology.. With extension of the approx-
imation, higher and higher recall can be achieved. EL++

is quite incomplete on some ontologies. EL++
C approxima-

tion can significantly improve the recall on ontologies such
as Cyc and Tambis Full. With further extension to EL++

C
approximation, all the recalls are over 99% (except FMA).

We were also interested in the scalability of our approach.
Based on Table 5 we chose the 3 easiest ontologies and en-
larged them by duplicating all the concept names ( but keep
the role names). Consequently, all the concept axioms were
duplicated. We classified these ontologies using REL-EL++

C
system, which has a nice balance between efficiency and
completeness (Ref. Table 5). It performed quite stable when
the quantity of data increased (Table 6). Due to the interac-
tions between duplications through role axioms, REL even
gained some recall on Wine ontology.

5 Discussions & Future Work
Approximate reasoning has been an important topic for on-
tology (KR) and AI research. On the one hand, expres-
sive DLs (such as those underpinning the standard Seman-
tic Web ontology languages) have high worst case compu-
tational complexity, making approximate reasoning an at-
tractive way to provide scalable and efficient reasoning ser-
vices (Pan and Thomas 2007). On the other hand, it has
been argued that (Groot, Stuckenschmidt, and Wache 2005)
while logic has always aimed at modelling idealized forms
of reasoning under idealized circumstances, this is not what
is required under the practical circumstances in knowledge-
based systems where we also need to consider (i) reason-
ing under time-pressure, (ii) reasoning with other limited re-

2ABox axioms involving individuals appearing in the TBox
were converted, e.g. a : C into {a} v C, a 6= b into {a} u {b} v
⊥, etc.. The others are removed.
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Table 5: Classification time (sec) of mainstream reasoners

Ontology T FaCT++ HermiT Pellet EL++ EL++
C EL++

CQ
recall time recall time recall

Biological Process 3.656 5.343 10.063 93.1% 1.11 100% - -
Cellular Component 5.872 8.077 16.966 91.9% 1.359 100% - -
GO 18.563 6.047 16.39 93.1% 4.203 100% - -
Cyc 25.531 16.853 142.89 1.2% 1.672 100% - -
FMA Constitutional e/o e/o e/o N/A 10.062 N/A 50.89 N/A
Tambis Full 0.375 1.063 1.343 7.2% 0.11 99.3% 0.203 100%
Wine 0.578 0.875 1.359 95.8% 0.078 96.8% 0.156 99.4%
DLP 0.219 61.948 98.024 100% 0.125 100% - -

Table 6: Comparison on duplicated TBox
Size FaCT++ HermiT Pellet EL++

C Recall
Tambis Full

5× 9.125 37.92 24.25 0.719 99.3%
10× 40.577 292.48 205.2 1.985 99.3%
20× e/o t/o t/o 5.671 N/A
30× e/o t/o t/o 11.624 N/A

Wine
5× 13.784 56.85 86.66 0.641 97.7%

10× 33.01 t/o t/o 2.188 97.9%
20× 243.496 t/o t/o 10.077 98.0%
30× t/o t/o t/o 27.529 N/A

DLP
5× t/o e/o e/o 3.39 N/A

10× t/o e/o e/o 20.827 N/A
20× t/o e/o e/o 142.305 N/A
30× t/o e/o e/o 450.6 N/A

sources besides time and (iii) reasoning that is not perfect
but instead good enough for given tasks.

In this paper, we address a long-lasting open problem; i.e,
effective and efficient approximate TBox reasoning. With
their negative results, Groot et al. concluded that traditional
approximation method by Cadoli and Schaerf (1995) is not
suited for ontology reasoning, and that new approximate
strategy are needed. In this paper, we propose to combine
the ideas of language weakening and approximate deduc-
tion to provide soundness preserving TBox reasoning for
expressive DLs. We apply our idea to approximate OWL2-
DL ontologies to EL++ ones; preliminary evaluation re-
sults showed that our approach performs effectively and ef-
ficiently on real world ontologies.

In the future we will investigate more approximation and
reasoning patterns. On the basis of this study, we will inves-
tigate the completeness as we discussed in Sec.3.4 and pos-
sible approximation to Horn SHIQ (Kazakov 2009). We
expect our work to build a bridge between expressive and
tractable ontology languages (such as that between OWL2-
DL and OWL2-EL).
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