Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

Space Efficient Evaluation of ASP Programs with Bounded Predicate Arities*

Thomas Eiter
Institute of Information Systems
Vienna University of Technology
Favoritenstraf3e 9-11, Vienna, Austria
eiter@kr.tuwien.ac.at

Abstract

Answer Set Programming (ASP) has been deployed in many
applications, thanks to the availability of efficient solvers.
Most programs encountered in practice have an important
property: Their predicate arities are bounded by a constant,
and in this case it is known that the relevant computations
can be done using polynomial space. However, all competi-
tive ASP systems rely on grounding, due to which they may
use exponential space for these programs. We present three
evaluation methods that respect the polynomial space bound
and a generic framework architecture for realization. Exper-
imental results for a prototype implementation indicate that
the methods are effective. They show not only benign space
consumption, but interestingly also good runtime compared to
some state of the art ASP solvers.

Introduction

In the recent years, Answer Set Programming (ASP) has
gained momentum as a novel paradigm for declarative prob-
lem solving. Its basic idea, to encode a problem into a non-
monotonic logic program, and to extract its solutions from
the answer sets (i.e., models) of this program (similar as in
SAT solving), has been successfully deployed to many areas
of applications. This is also because a number of efficient
ASP solvers are available (e.g., smodels, DLV, or clasp).
For example, given a graph GG, we can determine all cliques
in G of size k > 2 using the following simple ASP program.
The edges (u,v) are encoded via facts edge(u, v); the fol-
lowing rules determine relevant nodes and guess a clique:

node(X) «— edge(X,)
node(X) «— edge(_, X)
in(X) Vout(X) « node(X)

This guess is checked with three rules, where 1 < ¢ < j < k:

*This research has been partly supported by the Austrian Sci-
ence Fund (FWF) project P20840, by Regione Calabria and EU
under POR Calabria FESR 2007-2013 within the PIA project of
DLVSYSTEM s.r.l., and by MIUR under the PRIN project LoDeN.
Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Wolfgang Faber
Department of Mathematics
University of Calabria
Via Bucci, Rende, Italy
faber@mat.unical.it

Mushthofa Mushthofa
Institute of Information Systems
Vienna University of Technology

Favoritenstraf3e 9-11, Vienna, Austria
unintendedchoice@gmail.com

—in(Xy),in(Xsz), X1 # Xa,
not edge(X1, X2), not edge(Xo, X1)
ok — node(X1),...,node(Xg),in(X1),...,in(Xg),
Xy # Xoyoo Xo £ X oo X1 # X
«— not ok

(here rules with empty head act as constraints). The answer
sets of this program yield exactly the cliques of size > k.

However, when we evaluate this program on a state-of-
the-art ASP solver, the space consumption increases rapidly
with £ (that is, the number of distinct variables in the rules).
The reason is a grounding bottleneck identified in (Eiter et al.
2007): the solvers first construct an optimized subset of the
grounding of the input program (using explicit grounders, like
Lparse or GrinGo, or implicit ones like DLV); disjunction
(as above) or cyclic negation may prevent that this ground
program is small, and in fact it can be exponential.

On the other hand, as follows from results in (Eiter et al.
2007), for the above program the space explosion for growing
k can be avoided. This is because for programs in which the
predicate arities are bounded by a constant, deciding if some
answer set exists is in the polynomial hierarchy, thus feasible
in polynomial space (as is computing an answer set).

Eiter et al. (2007) sketched a method based on meta-
interpretation to evaluate programs with bounded predicate
arities in polynomial space; while intuitive, we have found
that in practice their approach, described in more detail in
(Mushthofa 2009), is very inefficient.

This motivates the search for alternative methods, and in
particular for ones that may help to improve current ASP
solvers. We tackle this and make the following contributions.

e We present three different methods for evaluating logic
programs with bounded predicate arities which work within
polynomial space. The first two methods handle head-cycle-
free (HCF) programs (Ben-Eliyahu and Dechter 1994), while
the third handles all disjunctive programs.

e We then provide a generic framework architecture for im-
plementing the methods. It builds on an abstract decomposi-
tion of the three methods into subtasks, some of which can be
handled by current ASP solvers or Prolog systems without in-
curring exponential space. As a show case, we implemented

BPA, which is a prototype that instantiates the framework
architecture using DLV and XSB as external solvers.

e Finally, we report the results of a benchmark experiment,
comparing the space and time usage of BPA against the ASP
solvers DLV and GrinGo/claspD on ASP programs with
bounded predicate arities (considering answer set existence).
Rather than purely random programs, we consider here pa-
rameterized programs like the one for clique above which
naturally increase the number of variables in rules. Results
from the experiment confirm the expectation that the three
methods are able to evaluate the test instances in polynomial
space, while DLV and GrinGo/claspD show exponential
space behavior. Interestingly, on many of the instances, BPA
also runs faster than the other two systems.

Our results are rather unexpected, as in general, better
space behavior means worse run time. They show the poten-
tial of the three methods to improve the efficiency of existing
ASP systems, and to overcome the grounding bottleneck.

Proofs of the results are available in (Mushthofa 2009).

Preliminaries

We review some basic concepts in Answer Set Programming.

Syntax A rule r is an expression of the form:
ey

where k>0, n>m >0 and all a;,b; are function-free
first-order atoms. The set H(r) = {ai,...,ar} is the
head and B(r) = B*(r) U B~ (r) the body of r, where
BT (r) = {b1,...,by} is the positive body, and B~ (r) =
{not by, 41, ... ,not b, } the negative body. Rule r is a fact, if
n=0; normal, if k = 1; positive, if m = n; and definite Horn,
if k=1 An=m. Sometimes we denote r by H(r) — B(r);
moreover, we use not(a) = not a and not(not a) = a for an
atom a, and not(L) = {not(l) | I € L} for sets of literals.

An answer set program (simply, a program) P is a finite
set of rules of the form (1); it is normal, positive etc. if each
rule » € P is normal, positive etc. Throughout this paper,
we assume that P is safe, i.e., each rule r € P is safe, which
means that each variable X occurring in 7 also occurs in
BT (r). By F(P) we denote the set of all facts in P.

Answer Sets Let H Bp be the Herbrand base of P, i.e., the
set of all atoms with predicates and constants from P.

An interpretation w.r.t. P is any subset of [C HBp; I
satisfies a ground rule r, denoted I = r, ifft H(r) N1 # ()
whenever BT (r) C I and B~ (r) N I = () hold; [satisfies a
program P (is a model of P, written I |= P) iff I satisfies all
rules in grnd(P), where grnd(P) is the set of all instances
of rules in P with constants from P.

An answer set of a positive program P is any minimal
model of P w.r.t. set inclusion, The answer sets of an arbitrary
program P are the answer sets of the GL-reduct (Gelfond
and Lifschitz 1988) P! of P w.r.t. I, which is the positive
program obtained by deleting from grnd(P) all rules r such
that B~ (r) N I # () and B~ (r) from all other rules. The set
of all answer sets of P is denoted by AS(P).

The program P is said to be consistent if it has at least one
answer set (i.e., AS(P) # (), and inconsistent otherwise.

a1 V...Vag < by... by, notbyy1,...,n0tb,

304

The positive dependency graph of a program P is a di-
rected graph GT(P) whose nodes are the predicates occur-
ring in P and with all edges p; — p2 such that p; occurs in
H(r) and py in BT (r) for some rule r € P.

A program P is head-cycle-free (HCF) (Ben-Eliyahu and
Dechter 1994), iff G (P) has no cycle containing two dis-
tinct atoms from h(r) for some r € grnd(P). HCF programs
can be efficiently rewritten to normal programs using shift-
ing; for any rule r, let shift(r) = {a; — B(r),not(H(r) \
{a;}) | a; € H(r)}, and for any program P, shift(P) =
U,cp shift(r). Itis well-known (Ben-Eliyahu and Dechter
1994) that for every HCF program P, AS(shift(P))
AS(P); this equality does not hold for arbitrary programs.

Evaluation Methods

We propose three different methods for evaluating a program
‘P with bounded predicate arities, which stay in polynomial
space. The first two methods assume that P is normal or
HCF disjunctive (using shift(P)). For handling non-HCF
programs we propose a third method.

We begin by defining a positive version of a program,
which also drops all constraints. For a rule r, let pos(r)
H(r) « B*(r). For a program P, pos(P) = {pos(r) |
reP,H(r)#0}. pos(shift(P)) is definite Horn and has a
single answer set Sp. It is not hard to see that every answer
set of P is a subset of Sp.

For a program P, let De f (P) be the set of all definite Horn
rules in P and let Dp be the single answer set of Def(P).
Here, every answer set is a superset of Dp.

Lemma 1 Every A € AS(P) satisfies Dp C A C Sp.

HCF programs

In this section, we assume that the input program P is HCF
and has been transformed into an equivalent normal program
by shifting. The following lemma is crucial.

Lemma 2 (Locality lemma) Let P be any logic program
and P’ C P. An answer set A of P’ is also an answer set of
P if and only if for each rule v € P it holds that A = r.

This lemma suggests the approach we take for comput-
ing an answer set of a HCF logic program: compute “lo-
cal answer sets”, i.e., the answer sets of certain subsets of
the program, and then check whether each of the answer
set is indeed a “global answer set”, i.e., answer set of the
original program, by checking whether it satisfies the pro-
gram. We perform this check by forming its constraint ver-
sion cons(P) = { « B(r),not(H(r)) | r € P}, for
which the following proposition is easily shown.

Proposition 3 For an interpretation I and program P, it
holds that I |= P iff cons(P) U I is consistent.

The methods use certain subsets of a ground program that
include exactly one defining rule for each atom in a given set.

Definition 1 Given a program P and an interpretation A,
R C grnd(P) is a single rule definition program of P w.r.1.
Aiff (i) F(P) C R, (ii) for every a € A, there is exactly one
rule v € R such that H(r) = {a}, and (iii) for each rule
reR, H(r) C A H(r) # 0, and BT (r) C A.

Method 1. Assume P is a normal program. The main
idea is to compute local answer sets by considering smallest
sized subsets of grnd(P) which might produce an answer
set A of P. As any such A satisfies A C Sp, intuitively
we can obtain A by considering subsets of grnd(P) such
that the set of head atoms in the rules yield Sp, which is a
single rule definition program of P w.r.t. Sp, which we call
minimal guess of P, Rp. Clearly, as |Rp| = |Sp| and Sp is
polynomially bounded, we can conclude that every minimal
guess of P is also polynomially bounded. We obtain the
following result.

Proposition 4 Let P be a normal program. Then for every
A € AS(P) there exists some minimal guess Rp of P such
that A € AS(Rp).

Method 2. The main idea of this method is as follows.
As any (local) answer set A of P satisfies Dp C A C Sp (cf.
Lemma 1), we may find A by iterating over the interpretations
A satisfying that condition, and checking for minimality. To
prove minimality of A, we need to find a set of ground rules
P’ such that A is an answer set of P’. To this end, we define
a single rule program Rp 4 of P w.r.t. A to be a supporting
minimal guess of P w.rt. A iff for each rule r € Rp 4,
{n | not n € B (r)} N A = 0. Since |[Rp a| = |4],
A C Sp and Sp is polynomially bounded if P has bounded
predicate arities, we conclude that the supporting minimal
guesses of P for any A are also polynomially bounded.

If no supporting minimal guesses of P w.r.t. A exist, we
can safely conclude that A is not an answer set of P. If a
supporting minimal guess Rp 4 of P w.r.t. A exists, the min-
imality of A can be proved by showing that A is an answer
set of Rp 4. To this end, we us the following concepts.

Definition 2 For an atom a = p(ty,...,1l), let 7(a) =
P (t1,...,tx), where p' is a new predicate symbol. We extend
this function to literals as w(not a) = not w(a), to sets of
literals as ©(S) = {n(a) | a € S}, to rules as w(r) =
H(r) « B*(r),m(B~(r)) and to programs as 7(R) =
{n(r) | » € R}. Furthermore, for a set of atoms S, let
7(S) = {« nota,m(a) | a € S}

We can show the following result:

Lemma 5 7(Rp 4) Un(A)UT(A) is consistent iff A is an
answer set of Rp 4.

General programs

For non-HCF disjunctive programs, the property that each
answer set A of a program P is computable from a subset
of grnd(’P) that has size |A| no longer holds. E.g., for P =
{a < b; b — a; bV a}, no subset yields the answer set
{a,b}. Thus, the strategy above (using one rule per atom)
is not applicable, and it is a priori unclear how many rules
are needed. In fact, the complexity results in (Eiter et al.
2007) imply that the number can be exponential (unless the
polynomial hierarchy collapses to ¥4, which is not expected).

To evaluate non-HCF programs, the approach we use pro-
ceeds in two main steps: (i) Generate sufficiently many can-
didate models of P; by Lemma 1, we may use models I of
P such that Dp C I C Sp. (ii) For each candidate I of P
of step (i), we check whether [is the minimal model of the

305

GL-reduct P!; the answer sets of P are those I for which the
check succeeds. We next discuss these two steps in detail.

Generating models Consider the set PTp = Sp \ Dp.
We can generate models I of P satisfying Dp C I C Sp,
using the following program (where o is a fresh atom):

G={aVad |a€PTp}UDpUcons(P).

Intuitively, {aVa' | a € PTp}U Dp represents a “guess” of
all interpretations / such that Dp C I C Sp, while cons(P)
enforces that [satisfies P (cf. Proposition 3).

However, since G contains atoms having disjunctive defi-
nitions, evaluating such a program using current ASP solvers
(like DLV) may consume exponential space. To avoid
this problem, we split P into Small(P) = {r € P |
|grnd(r)| < B(P)}, where B(P) is a polynomial bound
w.r.t. the size of P (e.g., that rules have at most k variables)
and Big(P) =P \ Small(P).

We perform a two-step computation: (1) generate can-
didate models with guessing rules as in G, but using only
cons(Small(P)) instead of cons(P); (2) check these can-
didate models using the rules in Big(P). Formally, if
I = AN Sp for an answer set A of Gp = {aVd | a €
PTp} U Dp Ucons(Small(P)), then Dp C I C Sp and
I = Small(P). If the program I U cons(Big(P)) is consis-
tent, I must satisfy I = Small(P) U Big(P) = P.

Minimality checking To show that [is a minimal model
of P! (hence an answer set), we can proceed by enumerating
the proper subsets I’ of I and ensure that no I’ satisfies P'.
The following proposition shows the strategy to perform this.
Proposition 6 cons(shift(w(P))Un(I)U I is consistent
iff I' satisfies PL.

Evaluation Framework

In this section, we propose a framework for efficiently eval-
uating a program with bounded predicate arities using the
three methods proposed in the previous section. The pro-
posed methods involve subtasks, such as checking the con-
sistency of a program, which can be efficiently (i.e., with-
out requiring exponential space) performed using current
ASP solvers (see (Drescher et al. 2008; Leone et al. 2006;
Simons, Niemeld, and Soininen 2002) for examples).

The following main goals of the framework architecture
are (1) to decompose the evaluation of a logic program with
bounded predicate arities into simpler subtasks, and (2) to al-
low the use of current ASP solvers for efficiently performing
these subtasks. Figure 1 shows an overview of the framework
architecture and the relationship between its components.
The main components are the Controller, which coordinates
the evaluation process performed by the other components
and managing input and output operations, and the Method-
Selector, analyzing the input program to determine (using a
heuristics) which method to apply for HCF programs.

Each of the three evaluation methods is implemented in the
framework components EvalMethod1, EvalMethod2, and
EvalDisjunctive. Each of the methods is then decomposed
into subtasks (some of them re-used). SubSetGen gener-
ates subsets of the ground input program (without generat-
ing the full ground program), from which minimal guesses

are created in Method 1 and supporting minimal guesses in
Method 2. ModelGen generates models A of a program P
as answer set candidates, by iterating over the interpretations
satisfying the condition in Lemma 1 and checking whether
they satisfy A = P. These models are used in Method 2 to
generate candidate answer sets and in the method for general
programs to generate the answer set candidates.

The ModelChecker determines whether I = P. This is
required in Method 1 to filter out the local answer sets which
are not global answer sets (cf. Lemma 2). The MinChecker
checks the minimality of a model I for a program P using
Proposition 6. The ASVerifier decides whether an interpre-
tation A is an answer set of P exploiting Lemma 5.

These components can be implemented as series of com-
putations using either a Prolog engine or an ASP solver. In
particular, generating subsets of the ground programs in the
component SubsetGen can be efficiently performed using a
Prolog engine, using a simple program rewriting technique,
while ModelGen, ModelCheck, MinCheck and ASVeri-
fier are encodable as logic programs that can be efficiently
evaluated in polynomial space using existing ASP solvers.
Thus, we have two additional components: a PrologEngine
and an ASPSolver, which represent the abstraction of the
functionalities provided by an external Prolog engine, respec-
tively external ASP solver.

Implementation We have developed a prototype imple-
mentation, called BPA, of the framework architecture, using
DLV (Leone et al. 2006) and XSB (Sagonas, Swift, and War-
ren 1994) as external systems. BPA is written in C++ and
uses object-oriented data structures and design patterns re-
using some data structures of DLVHEX (Schindlauer 2006).
I/0O between BPA and DLV uses UNIX’s pipe mechanism,
for reading answer sets in a streaming mode. This is needed
to guarantee a polynomial space limit, as programs may have
exponentially many answer sets. I/O between BPA and XSB
uses XSB’s own C language library, which allows to create
XSB Prolog threads and execute Prolog queries on them.
For efficient evaluation, BPA exploits modular program
decomposition using strongly connected components (SCCs)
of the program dependency graph similar as in (Eiter, Gottlob,
and Mannila 1997; Oikarinen and Janhunen 2008). To avoid
storing the (possibly exponentially many) answer sets of the
components, they are evaluated using backtracking. Details
of the implementation are given in (Mushthofa 2009), the
source code is available at http://code.google.com/p/asbpa/.

Experiments
To test how BPA compares against current ASP solvers, we

performed experiments running BPA, DLV and claspD,!
measuring the time and space consumption of the systems.

Benchmark suite We considered six benchmark problems
of different nature, and report three representative here.

1. 2QBF. The first problem is deciding whether a quanti-
fied Boolean formula (QBF) & = 3XVY ¢ is true, where X
and Y are disjoint sets of propositional variables and ¢ is a
3DNF over X U'Y (this task is ¥5-complete in general).

"http://www.dlvsystem.com, http:/potassco.sourceforge.net/

306

We encode @ as a program (with bounded predicate arities)
containing a set of “guessing rules” for the X variables, and
a single constraint for checking the satisfaction of the Y
variables, based on predicates ¢; 3—;/3,¢ = 0, ..., 3 for clause
satisfaction. E.g., AXVY (21 A —xo Ayp) V (mx2 Ayp A —ys)
is encoded by the following rules

v(r1,0) V(1) « v(w2,0) Vu(ze,1)
— v(wy, X1),v(z2, X2), €1,2(X2, X1, Y1), c2.1 (X2, Y3, Y1)

plus all facts Ci73_i(b1, ba, bg), i=0,...,3, where (bl, ba, b3)
€ {0, 1} such that the clause 21 V- -V 2;V=z; 41 V- - -V =23
is satisfied by the assignment z; = by, 2o = bs, 23 = b3 (thus
7 facts per ¢; e.g. for i = 2, all but ¢z 1(0, 0, 1)).

2. ChainStratComp. The second problem selected is a
modification of the “strategic companies” problem (Cadoli,
Giovanardi, and Schaerf 1997; Leone et al. 2006), with
the restrictions reported in these papers (under which the
problem is X1’ -complete). To the usual conditions, we add
the following: given k companies cy, ..., ck, such that ¢;
controls ¢;41 for 1 < ¢ < k — 1, if ¢1, ca,...,cp—1 1S
strategic, then c; must also be strategic. The value of the
parameter k will vary and determines the size of the input
instances. To the encoding reported in (Leone et al. 2006),
we add the following rules for the new condition:

contr(C, X;) < controlled_by(C, X1, X2, X3), i € [1..3]
strat(Xy) < contr(Xq, X1), strat(X1), ...
contr(Xy, Xg—1), strat(Xp_1).

3. Clique. The third problem is deciding whether a graph
G = (V, E) contains a clique of size at least k. The encoding
used is the one reported in the Introduction.

Experiment settings In our experiments, the problem to
resolve was whether a given input program is consistent, i.e.,
has an answer set. We used an Intel Xeon 64 bit quadcore at
3.00GHz 64-bit machine with 16 GB RAM running Open-
SUSE 11.0 with Linux kernel 2.6.25.20 SMP. We used DLV
(with option —n=1 for one answer set), release Oct/11/2007,
GrinGo 2.0.3 and claspD 1.1 (which outputs by default one
answer set). For every problem instance, we allowed a maxi-
mum of 2 hours (7200s) execution time and 2GB memory.
Test instances were randomly generated, with no attempt
to produce “hard” instances. However, “trivial” instances,
which have answer sets that are easily found or are trivially
shown to be inconsistent, were avoided. For each test prob-
lem, one instance was generated for a combination of values
of its parameters. In 2QBF, the parameters were the size of
the sets | X|, |Y| and the number of clauses k; 40 instances
were generated with | X | ranging from 5 to 22, |Y'| from 6 to
25 and k from 5 to 32. For ChainStratComp, the parameters
were the number of companies ¢, the number of products, p,
and the size of the “chain” rule, k. We generated 44 instances
with ¢ ranging from 4 to 10, p from 8 to 20, and &k from 5
to 15. The input graphs for Clique instances were randomly
generated with n nodes, where n ranged from 5 to 23. At
each node, 3 edges connecting the node to other (possibly
not distinct) nodes were randomly generated. From these
graphs, we then constructed a set of Clique instances, where

Memory (MB)

Memory (MB)

Memory (MB)

Figure 2: Space (left) and time (right) usage on 2QBF

Space usage on 2QBF

40

2000

1800

1600

1400

1200

1000

Time (s)

Time usage on 2QBF

DLV
GrinGofclaspD

BPA Method
BPA Method

Instances ordered by (i) the number of existential variables, (ii) the number of clauses

Figure 3: Space (left) and time (right) usage on ChainStratComp

10000 T T T
DIV
GrinGo/claspD
BPA Method 1
BPA Method 2
1000
100 1
100}]
P
5 10 15 20 25 30 35
Instances ordered by (i) the number of existential variables, (i) the number of clauses
Space usage on ChainStratComp
10000 - T T T T T
DLV
GrinGolclaspD]
BPA Method 3 -
1000 | 1
100 | k|

. .
0 5 10 15 20 25 30 35 40
Instances, ordered by (i) chain length, (ii) the number of companies

45

1800

1600

1400

1200

1000

Time (s)

800

600

400

Figure 4: Space (left) and time

Space usage on Clique
10000 T T T T

DLV
GrinGofclaspD -}

BPA Method 1
BPA Method 2

1000 ¢
100 |
NEBLBLESL % o
0 PEEEEE8E) a]
A A
s
5 10 15 20 25 30

Instances, ordered by (i) clique size, (i) the number of nodes

1000

Time usage on ChainStratComp

DLV]
GrinGorclaspD -
L[BPAMethod3 - & -

5
Instances, ordered by (i) chain length, (i) the number of companies

(right) usage on Clique

Time usage on Clique

900

800 P
700

600 - “‘ 1

Time (s)

00 [
300 | B

200

100

307

500

DLV
GrinGo/claspD

BPA Method 1
BPA Method 2

25 30
Instances, ordered by (i) clique size, (i) the number of nodes

the clique size k was chosen between n/2 to n/4. In total,
we generated 32 instances of Clique.

Results The general observation of the test results is that
BPA exhibited a polynomial growth for space consump-
tion, while DLV and claspD showed an exponential growth.
Rather unexpected, however, was that also the run time of
BPA showed a clear improvement in several cases. This came
as a surprise, as one would expect an increase in runtime as a
trade-off for space efficiency in our methods. Summarizing,
the results suggest that a more space-efficient evaluation of
logic programs with bounded predicate arities is feasible.

Note that in Figures 2—4 the graphs for space usage use
a logarithmic scale, while those for time usage use a linear
scale. Figure 2 shows the space and time usage on the 2QBF
instances. BPA, using either Method 1 or 2, could evaluate all
40 instances with relatively small space consumption (22-26
MB) compared to DLV and GrinGo/claspD, which exceeded
the 2GB limit for some instances.

Of the 44 instances of ChainStratComp, DLV completed
only 30 instances; it exceeded the 2GB limit for most of
the instances with parameter £ > 12 (length of the “chain-
query”). GrinGo/claspD completed all test instances (the
last barely, using 1951 MB of memory and running almost
1600s). BPA completed all test instances within less memory
and (in most cases) also faster.

The execution times in Figure 3 (right) show a clear advan-
tage for BPA over DLV and GrinGo/claspD, especially for
bigger instances where the effect of the exponential ground-
ing in DLV and GrinGo/claspD impacts. The triangle pattern
for BPA for the first instances is due to the instance ordering:
The runtime of BPA in these areas depends mostly on the
number of companies, while space and time consumption for
the other systems depend mostly on the chain length.

For Clique, DLV completed 17 of the 32 instances and
GrinGo/claspD 23, while BPA completed all 32 test in-
stances, for both Method 1 and 2. Moreover, for growing
instance size, BPA generally completed the evaluation also
faster than the other systems, with Method 1 slightly ahead
of Method 2; cf. Figure 4 (right). There, the missing data
points for DLV and GrinGo/claspD are due to time-outs.

Even if BPA shows a much better space consumption in-
crease than the other two systems, it still used a fairly large
amount of memory in some cases (up to more than 1 GB).
This is due to a memory leak of XSB in thread memory man-
agement, which is currently being worked on by the XSB
developers, hence BPA has potential for lighter memory use.

Conclusion

We have presented three methods to evaluate logic programs
with bounded predicate arities in polynomial space, and a
framework architecture to implement the methods utilizing
current ASP solvers and Prolog. Experimental results confirm
the expected space usage for a prototype implementation,
while ASP solvers show exponential space behavior.
Several issues remain for further work. One is to refine
and enhance the methods (e.g., more sophisticated pruning of
the subprograms visited, or generalizing Methods 1 and 2 to
non-HCF programs). Another issue is efficient computation

308

Input Program
o]

$ Methodselector

% EvalMethod1 % EvalMethod2 % EvalDisjunctive
% SubSetGen

% MinChecker

% ModelChecker % ModelGen % ASVerifier

i ——]
| I
External Prolog

PrologEngine ASPSolver
system

Figure 1: Framework architecture

Controller

Output ’—'ﬁ
Answer set!

External ASP
solver

of all answer sets (which is implicit e.g. in DLV’s non-ground
query answering). Finally, designing a tight integration of the
methods with current ASP solvers, and in connection with
this, to handle constructs like DLV’s weak constraints and
aggregates, or SMODELS’s cardinality constraints.

References

Ben-Eliyahu, R., and Dechter, R. 1994. Propositional semantics for
disjunctive logic programs. Ann. Math. Artif. Intell. 12:53-87.

Cadoli, M.; Giovanardi, A.; and Schaerf, M. 1997. Experimental
analysis of the computational cost of evaluating quantified boolean
formulae. In Proc. AI*IA °97, 207-218.

Drescher, C.; Gebser, M.; Grote, T.; Kaufmann, B.; Konig, A.;
Ostrowski, M.; and Schaub, T. 2008. Conflict-driven disjunctive
answer set solving. In Proc. KR’08, 422—432.

Eiter, T.; Faber, W.; Fink, M.; and Woltran, S. 2007. Complexity
results for answer set programming with bounded predicate arities
and implications. Ann. Math. Artif. Intell. 51(2-4):123-165.

Eiter, T.; Gottlob, G.; and Mannila, H. 1997. Disjunctive datalog.
ACM TODS 22:364-418.

Gelfond, M., and Lifschitz, V. 1988. The stable model semantics
for logic programming. In Proc. ICLP’88, 1070-1080.

Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri, S.; and
Scarcello, F. 2006. The DLV system for knowledge representation
and reasoning. ACM TOCL 7(3):499-562.

Mushthofa, M. 2009. Evaluation of answer set semantics for
programs with bounded predicate arities. MSc thesis, TU Vienna.
Oikarinen, E., and Janhunen, T. 2008. Achieving compositionality
of the stable model semantics for smodels programs. Theory Pract.
Log. Program. 8(5-6):717-761.

Sagonas, K.; Swift, T.; and Warren, D. S. 1994. XSB as an efficient
deductive database engine. In Proc. SIGMOD 94, 442-453.
Schindlauer, R. 2006. Answer-Set Programming for the Semantic
Web. Ph.D. Dissertation, TU Vienna.

Simons, P.; Niemeld, I.; and Soininen, T. 2002. Extending and
Implementing the Stable Model Semantics. A1J 138:181-234.

