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Abstract

The stable model semantics was recently generalized by
Ferraris, Lee and Lifschitz to the full first-order lan-
guage with a syntax translation approach that is very
similar to McCarthy’s circumscription. In this paper, we
investigate the decidability and undecidability of vari-
ous fragments of first-order language under both seman-
tics of stable models and circumscription. Some max-
imally decidable classes and undecidable classes are
identified. The results obtained in the paper show that
the boundaries between decidability and undecidability
for these two semantics are very different in spite of
the similarity of definition. Moreover, for all fragments
considered in the paper, decidability under the seman-
tics of circumscription coincides with that in classical
first-order logic. This seems rather counterintuitive due
to the second-order definition of circumscription and
the high undecidability of first-order circumscription.

Introduction
The stable model semantics was defined by (Gelfond and
Lifschitz 1988) to provide a declarative semantics for logic
programming with negation as failure. Answer set program-
ming was then proposed based on the stable model seman-
tics, and it has emerged as a flourishing paradigm of declar-
ative programming. Many answer set solvers have been de-
signed, and various combinatorial problems from different
areas have been solved by the techniques of answer set pro-
gramming (Gelfond 2008). On the other hand, it was sug-
gested by (Pearce 2008) that the stable model semantics
can be applied in a new method of non-monotonic reason-
ing, namely stable reasoning.

The earlier versions of the stable model semantics ap-
ply only for logic programs without functions or propo-
sitional languages, and most of them are based on the
grounding techniques. To increase the expressive power,
the stable model semantics was recently generalized to the
full first-order language (Ferraris, Lee, and Lifschitz 2007;
2010)1. Their approach is to find a suitable translation of
first-order formulas into a second-order language. This is
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1A different definition was given by (Lin and Zhou 2007).

similar to the semantics of circumscription (McCarthy 1980;
1986) where minimal models are employed.

Inference and satisfiability testing are two of the most im-
portant computational tasks in each logical system. Under
the stable model semantics, there is an effective procedure
to reduce the inference problem to the satisfiability prob-
lem (see Fact 1 and the remark on it in the next section). If
the formula to be inferred is just the negation of a negative
formula, there is a similar reduction for the circumscriptive
semantics (Lifschitz 1994). So, in this paper we will focus
our attention on the satisfiability problem. It is unrealistic
to consider this problem in the full first-order language. For
instance, it was proved in (Schlipf 1987) that the problem
of deciding whether an arbitrary first-order sentence has a
countable infinite minimal model is Σ1

2-complete over the
integers, and even the existence of infinite minimal models
is dependent upon the continuum hypothesis (Schlipf 1986).
Moreover, results obtained in this paper indicate that the sat-
isfiability problem for the stable model semantics may be
more difficult than that for circumscription. This forces us
to consider fragments of first-order language.

The purpose of this paper is to examine decidability of
various fragments of first-order language under the stable
model semantics and circumscription. As in the case of clas-
sical semantics, a fragment of first-order language is said to
be decidable under the semantics of stable models (or cir-
cumscription) if the problem whether there is a stable model
(or a minimal model respectively) for a sentence in it is de-
cidable. For circumscription, there have been many attempts
at finding fragments of first-order language in which the cir-
cumscription for every formula that is a second-order for-
mula is equivalent to a first-order formula (Lifschitz 1985;
Rabinov 1989; Kolaitis and Papadimitriou 1990). Then
semi-decidability of these fragments under circumscription
immediately follows from semi-decidability of first-order
logic. Our aim is quite different: we will give direct char-
acterizations of some decidable fragments and some unde-
cidable fragments. This can help us to clarify the boundary
of decidability and undecidability under circumscriptive se-
mantics. The same problem is also considered for the stable
model semantics. The fragments considered in the present
paper are standard prefix-vocabulary classes (or simply stan-
dard classes) which have be thoroughly studied in the clas-
sical first-order logic (Börger, Grädel, and Gurevich 1997).
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The main contributions of this paper are as follows:

• We obtain six standard classes which are maximally de-
cidable under the semantics of circumscription. We show
that the Rabin class is maximally decidable under the se-
mantics of stable models. It is also proved that the exis-
tential class with functions is semi-decidable and the exis-
tential class without functions is decidable under the sta-
ble model semantics.

• Three standard classes are found to be maximally decid-
able for the circumscriptive semantics but undecidable un-
der the stable model semantics.

• Some standard classes undecidable under the semantics
of circumscription or the semantics of stable models are
identified.

The paper is organized as follows. In the next section we
review the semantics of circumscription and stable models
and fix notations. The prefix-vocabulary class and standard
class are also defined. Decidable and undecidable standard
classes under both semantics are examined in the third and
fourth sections, respectively. A set of maximally decidable
standard classes are presented in the fifth section.

Preliminaries
In this paper, vocabularies are finite sets of predicate con-
stants and function constants. Every constant (predicate or
function) is equipped with a natural number, its arity. The
logical symbols are defined as usual, including a countable
set of predicate variables and a countable set of individual
variables. Terms, formulas, and sentences of a vocabulary σ
(or shortly, σ-terms, σ-formulas, and σ-sentences) are built
from σ and variables in a standard way. The only thing that
may be special is that we treat ¬ϕ as a shorthand of ϕ→ ⊥.

Each structure A of vocabulary σ (or shortly, σ-structure
A) consists of a nonempty set A, the universe of A, of an
n-ary relation PA on A for each n-ary predicate constant P
in σ, of an n-ary function fA on A for each n-ary function
constant f in σ. For the sake of simplicity, we will omit
superscripts A in the relations and functions if no confusion
occurs. Let A be a σ-structure. An assignment in A is a
function α that maps each individual variable to an element
in A and that maps each n-ary predicate variable to an n-ary
relation on A. Given a σ-formula ϕ and an assignment α in
A, we write A |= ϕ[α] if α satisfies ϕ in A in the standard
way. Specially, if ϕ is a sentence, [α] may be dropped, and
A is said to be a model of ϕ, or in other words, A satisfies ϕ.

Circumscription
Let ϕ be a sentence of first-order logic and let P̄ be a tuple
(P1, . . . , Pk) of predicate constants. For each n-ary Pi we
introduce a new predicate variable XPi of arity n, and let X̄
be short for (XP1 , . . . , XPk

). Moreover, we write P̄ = X̄
for the conjunction of formulas ∀x̄(Pi(x̄) ↔ XPi

(x̄)) such
that i ≤ k, and write P̄ ≤ X̄ for the conjunction of for-
mulas ∀x̄(Pi(x̄) → XPi

(x̄)) such that i ≤ k. The cir-
cumscription CIRC(ϕ; P̄ ) for ϕ is defined to be the second-
order sentence ϕ ∧ ∀X̄(X̄ < P̄ → ¬ϕ(X̄)), where ϕ(X̄)
is the formula obtained from ϕ by substituting the variables

X̄ for the constants P̄ , and X̄ < P̄ short for the formula
(X̄ ≤ P̄ ) ∧ ¬(X̄ = P̄ ). If P̄ is just the tuple of all the
predicate constants occurring in ϕ, we will simply write
CIRC(ϕ). Finally, a structure A is called a minimal model
of ϕ if it is a model of CIRC(ϕ).

Stable Models
In a similar way, the stable model semantics is defined by
a syntax translation SM. Given a sentence ϕ, let SM(ϕ)
stand for the second-order sentence ϕ ∧ ∀X̄(X̄ < P̄ →
¬ϕ∗(X̄)),where P̄ lists all the predicate constants occurring
in ϕ, notations X̄ and X̄ < P̄ are the same as given above,
and ϕ∗(X̄) is defined recursively as follows:

• P (t̄)∗ = XP (t̄) if P is a predicate constant.

• ψ∗ = ψ if ψ is ⊥ or an equality.

• (ψ1 ◦ ψ2)∗ = (ψ∗1 ◦ ψ∗2) if ◦ ∈ {∧,∨}.
• (ψ1 → ψ2)∗ = (ψ1 → ψ2) ∧ (ψ∗1 → ψ∗2).

• (Qxψ)∗ = Qxψ∗ if Q ∈ {∀,∃}.
A structure A is called a stable model of ϕ if it is a model
of SM(ϕ). A sentence ψ is said to be a consequence of the
sentence ϕ under the stable model semantics (written ϕ �SM

ψ) if every stable model A of ϕ satisfies ψ, i.e. SM(ϕ) � ψ.
Herein, � denotes the classical inference relation. Notice
that SM(ϕ) � ψ iff SM(ϕ) � ¬¬ψ. By Proposition 2 of
(Ferraris, Lee, and Lifschitz 2010), we have following fact.

Fact 1. ϕ �SM ψ iff ϕ ∧ ¬ψ has no stable model.

Interestingly, this fact provide us an effective procedure
to reduce the validity of an inference to the satisfiability of a
formula under the stable models semantics.

Standard Classes
A stand prefix-vocabulary class (simply a standard class) in
this paper is slightly different from that in (Börger, Grädel,
and Gurevich 1997). Instead of omitting nullary function
constants and nullary predicate constants, we will consider
these symbols in our definition. Strings over the alphabet
{∀,∃} are called prefixes. A prefix set is said to be stan-
dard if either it is the set (abbreviated “all”) of all pre-
fixes, or else it can be expressed by a regular expression in
{(∀|ε), (∃|ε),∀∗,∃∗}∗, where ε stands for the empty prefix.
To simplify notations, we write ∀ for (∀|ε), and ∃ for (∃|ε).
Let Π and Π′ be two standard prefix sets, we say that Π dom-
inates Π′, symbolically Π ≥ Π′, if S′ is a subset of S, where
S and S′ are the prefix sets given by Π and Π′ respectively.

An arity sequence is a function that maps each natural
number to either a natural number or the first infinite ordi-
nal ω. For convenience, we write an arity sequence p as a
sequence (p0, p1, . . . ) where pi = p(i). A tail of zeros may
be omitted. An empty sequence will be denoted (0) rather
than (). And the sequence (ω, ω, . . . ) will be denoted “all”.
Let p and q be two arity sequences, we say p dominates q,
symbolically p ≥ q, if

∑
i≤j p(j) ≥

∑
i≤j q(j) for all i.

Let Π be a standard prefix set, and let p and f be two ar-
ity sequences. The standard class [Π, p, f ]= (or [Π, p, f ]) is
defined to be the class of prenex formulas ϕ of first-order
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logic with (or without) equality and such that (i) the quanti-
fier prefix of ϕ belongs to Π; (ii) for all n ≥ 0, ϕ has at most
p(n) predicate symbols of arity n and at most f(n) function
constants. Given two standard classes K and K′, we write
K ≥ K′ if (i) K allows equality iff so does K′, the prefix
set of K dominates that of K, and both arity sequences of
K dominate the corresponding arity sequence of K′ respec-
tively; or (ii) K coincides with K′ on the prefix set and both
arity sequences, and K′ allows equality whenever so does K.
Furthermore, we write K > K′ if K ≥ K′ and K 6= K′ hold.

Let K be a standard class. We say that K has the finite
model property if every satisfiable sentence ϕ ∈ K has a
finite model, and say K is decidable under the semantics of
stable models (or circumscription) if there is an algorithm
to decide whether or not there is a stable model (or minimal
model respectively) for a given sentence in K.

Decidability
In this section, we investigate the decidable fragments under
both the stable model and the circumscriptive semantics.

Given a fragment which has the finite model property,
we have that every sentence in this fragment has a minimal
model iff it is satisfiable. So, the finite model property of ev-
ery first-order fragment immediately implies its decidability
under the circumscriptive semantics. The following stan-
dard classes are decidable due to their finite model property
in classical logic (Börger, Grädel, and Gurevich 1997).

Fact 2. The following standard classes are decidable under
the circumscriptive semantics:

(1) [∃∗∀∗, all, (ω)]= (4) [∃∗∀∃∗, all, all]
(2) [∃∗∀2∃∗, all, (ω)] (5) [∃∗, all, all]=
(3) [all, (ω, ω), (ω, ω)]

In classical first-order logic, there are two standard classes
that have not the finite model property: [all, (ω, ω), (ω, 1)]
and [∃∗∀∃∗, all, (ω, 1)]=. It was proved by Routenberg
and Vinner that the monadic theory of the language with
unary predicates, equality and one unary function is decid-
able (Shelah 1975). By definitions of both semantics of sta-
ble models and circumscription, we have the following fact.

Fact 3. The class [all, (ω, ω), (ω, 1)]= is decidable under
both the stable model semantics and circumscription.

Actually, under the stable model semantics, decidability
is not a consequence of the finite model property. In the
next section, we will see some fragments with finite model
property which are undecidable under the stable model se-
mantics. Below, we consider the decidability of the exis-
tential class under the stable model semantics. As we have
mentioned above, this class has the finite model property.

Theorem 1. Let ∃x̄ϕ ∈ [∃∗, all, all]= be a sentence that
has a stable model where x̄ = (x1, . . . , xp) and ϕ is quan-
tifier free. Then there must exist a first-order sentence in
[∃∗∀∗, all, all]= that is equivalent to SM(∃x̄ϕ).

Proof. (Sketch) We only consider the special case in which
ψ is built from one n-ary predicate P . A similar argument
with minor modifications can be applied to the general case.

Notice that, according to Lin’s transformation, we have
that SM(∃x̄ϕ(P )) is satisfiable iff CIRC(∃x̄ϕ∗(Q);Q) ∧
(X = Q) is satisfiable (Ferraris, Lee, and Lifschitz 2007).
So, it suffices to show that, for every existential sentence
∃x̄γ(x̄, P ), there is a first-order sentence in [∃∗∀∗, all, all]=
that is equivalent to CIRC(∃x̄γ(x̄, P );P ). This strengthens
Theorem 1 in (Kolaitis and Papadimitriou 1990).

Similar to the proof of the original theorem, we write γ
as a disjunction of formulas ψi (1 ≤ i ≤ m) for some m.
Then, CIRC(∃x̄γ(x̄, P );P ) is equivalent to a disjunction of
the following sentences

∃x̄ψi ∧ ∀X (X < P → ∀x̄¬γ(x̄, X)) (1)
where 1 ≤ i ≤ m. Let Ti be the set of term tuples t̄ such
that P (t̄) is a conjunct in ψi. Finally, we complete the proof
by show that (1) is equivalent to the following formula:

∃x̄

ψi ∧ ∀ȳ

(
P (ȳ)↔

∨
s̄∈Ti

(ȳ = s̄)

)
∧

∧
∅(S⊆Ti

∀z̄ϑS


(2)

where ȳ = (y1, . . . , yn) and z̄ = (z1, . . . , zp) are two se-
quences of pairwise distinct individual variables that have
no occurrence in ϕ, the notation ȳ = s̄ stands for the con-
junction of all equalities yi = si for 1 ≤ i ≤ n, and ϑS is a
formula obtained from ¬γ(z̄, X) by substituting the formula
P (t̄) ∧

∧
s̄∈S ¬(t̄ = s̄) for each atomic formula X(t̄).

A class of sentences is said to be semi-decidable under the
stable model semantics if there is a deterministic algorithm
such that, for each formula in this class, the algorithm halts
with the result “yes” if it has no stable model, otherwise the
algorithm does not halt or halts with “no”.

The semi-decidability of the existential class immediately
follows from the semi-decidability of first-order logic.
Corollary 2. The class [∃∗, all, all]= is semi-decidable un-
der the stable model semantics.

In the proof of Theorem 1, for every sentence without
occurrences of function constants with arity ≥ 1, we can
find an equivalent sentence of first-order logic in the class
[∃∗∀∗, all, (0)]=. Ramsey showed that the classical satisfi-
ability problem for this class is decidable (Börger, Grädel,
and Gurevich 1997). Hence, we have the following result.
Corollary 3. The class [∃∗, all, (ω)]= is decidable under
the stable model semantics.

Undecidability
In this section, we address ourselves to undecidable frag-
ments under the stable model semantics and circumscrip-
tion.

Let ϕ be a first-order formula, let P1, . . . , Pn be the set of
all predicates occurring in ϕwhere Pi is of ki-ary. We define
ϕ̃ to be the conjunction of ϕ and the following formula∧

1≤i≤n

∀x1 · · · ∀xki
(Pi(x1, . . . , xki

) ∨ P̃i(x1, . . . , xki
)),

where P̃1, . . . , P̃n are pairwise distinct and each P̃i is a ki-
ary predicate constant that does not occur in ϕ. The follow-
ing proposition can be easily obtained.
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Lemma 4. A first-order sentence ϕ is satisfiable iff ϕ̃ has a
minimal model iff ϕ̃ has a stable model.

A first-order formula is said to be in universal implica-
tional normal form, if it is a prenex formula involving only
universal first-order quantifiers, and the quantifier-free part
of it is a conjunction of rules in the following form

γ1 ∧ · · · ∧ γm → γm+1 ∨ · · · ∨ γn

where γi (1 ≤ i ≤ n) are atomic formulas and 1 ≤ m ≤ n.

Lemma 5. For every first-order sentence ϕ in universal im-
plicational normal form, SM(ϕ) is equivalent to CIRC(ϕ).

Proof. By the definition.

Let n be a positive integer to denote the number of tile
types and let H,V be two binary relations on Zn. A domino
system is a triple D = (n,H, V ). We say D tiles the grid
N × N if there is a tiling τ : N × N → Zn such that for
all i, j ∈ N: (i) if τ(i, j) = k and τ(i + 1, j) = l then
(k, l) ∈ H; and (ii) if τ(i, j) = k and τ(i, j + 1) = l
then (k, l) ∈ V . The domino problem is defined as follows:
Given a domino systemD, doesD tile N×N? It was proved
in (Berger 1966) that the domino problem is undecidable.

Theorem 6. The class [∀2, (0, 0, 1), (0, 1)] is undecidable
under both the stable model and circumscriptive semantics.

Proof. (Sketch) Let P be a binary predicate and s a unary
function symbol. Given a domino system D = (n,H, V ),
let us first construct a class of formulas from D as follows:∨
0≤k≤n

P (xk, xk) ∧
∧

0≤k<l≤n

¬(P (xk, xk) ∧ P (xl, xl)) (3)

∨
1≤k≤n

P (x, yk) ∧
∧

1≤k<l≤n

¬(P (x, yk) ∧ P (x, yl)) (4)

∧
(k,l)6∈H

¬(P (x, yk+1) ∧ P (xn+1, yl+1)) (5)

∧
(k,l) 6∈V

¬(P (x, yk+1) ∧ P (x, yl+n+2)) (6)

where tk stands for the term obtained from t by applying the
function symbol s exactly k times if t is a term. Then, we de-
fine φ = ∀x∀y((3)∧(P (x, x)∧P (y, y)→ (4)∧(5)∧(6))).
Clearly, φ is a sentence in the class [∀2, (0, 0, 1), (0, 1)].
Now we claim thatD tiles N×N iff φ has a minimal model.

For the direction of “if”, we assume that A is a minimal
model of φ. Consequently, A is a model of (3), which im-
plies: (i) there is an element a0 ∈ A such that a0 ∈ P ; (ii)
for k > 0 and 1 ≤ i ≤ n, ak(n+1) ∈ P and ak(n+1)+i 6∈ P ,
where, for each m ∈ N, am is defined to be the element ob-
tained from a0 by applying the function sA exactlym times.
Now we define a function τ : N × N → Zn as follows:
τ(i, j) = k iff (ai, aj+k+1) ∈ P . By property (ii) men-
tioned above and (4), τ is well-defined. And by (5) and (6),
we can conclude that τ is a tiling of D that tiles N× N.

For the converse direction, suppose τ is a tiling of D that
tiles N× N. Let σ be the vocabulary of φ, and let A be a σ-
structure with universe N defined as follows: (i) for all i ∈

N, s(i) = i+1; (ii)P consists of pair (i·(n+1), i·(n+1)) for
each i ∈ N and of ordered pair (i ·(n+1), j ·(n+1)+k+1)
for each ordered pair (i, j) ∈ N2 such that τ(i, j) = k. It is
easy to check that A is a minimal model of φ. So the class
[∀2, (0, 0, 1), (0, 1)] is undecidable under circumscription.

Obviously, φ can be effectively translated to an equivalent
sentence in prenex implicational normal form. By Lemma
5, undecidability for the stable model case is obtained.

Theorem 7. The following classes are undecidable under
both the stable model and circumscriptive semantics.
(1) [∀∃∀, (0, ω, 2), (0)] (10) [∀, (0), (0, 2)]=
(2) [∀3∃, (0, ω, 2), (0)] (11) [∀, (0), (0, 0, 1)]=
(3) [∀∗∃, (0, 0, 2), (0)] (12) [∀2, (0, 2), (0, 0, 1)]
(4) [∀∃∀∗, (0, 0, 2), (0)] (13) [∀2∃, (0, ω, 2), (0)]=
(5) [∀∃∀∃∗, (0, 0, 2), (0)] (14) [∃∗∀2∃, (0, 0, 2), (0)]=
(6) [∀3∃∗, (0, 0, 2), (0)] (15) [∀2∃∗, (0, 0, 2), (0)]=
(7) [∀∃∗∀, (0, 0, 2), (0)] (16) [∀∃∀, (0, 0, 2), (ω)]
(8) [∃∗∀∃∀, (0, 0, 2), (0)] (17) [∀3∃, (0, 0, 2), (ω)]
(9) [∃∗∀3∃, (0, 0, 2), (0)] (18) [∀2∃, (0, 0, 2), (ω)]=

Proof. Notice that the following classes are undecidable in
first-order logic (Börger, Grädel, and Gurevich 1997):
〈1〉 [∀∃∀, (0, ω, 1), (0)] 〈10〉 [∀, (0), (0, 2)]=
〈2〉 [∀3∃, (0, ω, 1), (0)] 〈11〉 [∀, (0), (0, 0, 1)]=
〈3〉 [∀∗∃, (0, 0, 1), (0)] 〈12〉 [∀2, (0, 1), (0, 0, 1)]
〈4〉 [∀∃∀∗, (0, 0, 1), (0)] 〈13〉 [∀2∃, (0, ω, 1), (0)]=
〈5〉 [∀∃∀∃∗, (0, 0, 1), (0)] 〈14〉 [∃∗∀2∃, (0, 0, 1), (0)]=
〈6〉 [∀3∃∗, (0, 0, 1), (0)] 〈15〉 [∀2∃∗, (0, 0, 1), (0)]=
〈7〉 [∀∃∗∀, (0, 0, 1), (0)] 〈16〉 [∀∃∀, (0, 0, 1), (ω)]
〈8〉 [∃∗∀∃∀, (0, 0, 1), (0)] 〈17〉 [∀3∃, (0, 0, 1), (ω)]
〈9〉 [∃∗∀3∃, (0, 0, 1), (0)] 〈18〉 [∀2∃, (0, 0, 1), (ω)]=

For each i ≤ 18, by Lemma 4, it is not difficult to see
that the classical satisfiability of formulas in class 〈i〉 can be
reduced to the minimal-model existence of some formulas in
class (i). This implies the undecidability in circumscriptive
semantics. For the case of stable models, notice that there is
an effective algorithm to translate every first-order sentence
ϕ to a sentence ψ in the prenex implicational normal form
such that CIRC(ϕ) is equivalent to CIRC(ψ). By a similar
argument, we can also conclude that class (i) is undecidable
under the stable model semantics.

Now we give a method to eliminate equalities under the
stable model semantics. First, we define a syntax transla-
tion. Given an arbitrary formula ϕ, let ϕ̂ = ∀xE(x, x)∧λϕ,
where λϕ is the formula obtained from ϕ by substituting
¬¬E(t, t′) for each equality t = t′, and E is a special bi-
nary predicate constant that does not occur in ϕ.

Lemma 8. For every sentence ϕ of first-order logic, ϕ has
a stable model iff so does ϕ̂.

Proof. (Sketch) For the direction of “if”, assume A is a sta-
ble model of ϕ̂. First we show the claim that E must be
interpreted as the identity relation on A. Then, let B be a
structure obtained from A by omitting the relation EA, and
show B is a stable model of ϕ. For the converse direction,

378



let B be a stable model of ϕ, let EA be the identity relation
on B, and let A be the σ ∪ {E}-structure (B, EA). It is not
difficult to verify that A is a stable model of ϕ̂.

Theorem 9. The following standard classes are undecid-
able under the stable model semantics.

(1) [∀, (0, 0, 1), (0, 2)] (4) [∃∗∀2∃, (0, 0, 3), (0)]
(2) [∀, (0, 0, 1), (0, 0, 1)] (5) [∀2∃, (0, 0, 3), (ω)]
(3) [∀2∃, (0, ω, 3), (0)] (6) [∀2∃∗, (0, 0, 3), (0)]

Proof. Immediate by Lemma 8 and Theorem 7.

Theorem 10. The class [∀3, (0, ω, 4), (0)] is undecidable
under the stable model semantics.

Proof. We prove the theorem by constructing formulas in
[∀3, (0, ω, 4), (0)] to express the domino problem. Given an
arbitrary domino system D = (n,H, V ), let φ = ∀x∀y∀zψ
where ψ is the conjunction of the following formulas:

¬succH(x, y) ∨ succH(x, y) (7)
¬succV (x, y) ∨ succV (x, y) (8)

(succH(x, y)→ okH(x)) ∧ (¬okH(x)→ okH(x)) (9)
(succV (x, y)→ okV (x)) ∧ (¬okV (x)→ okV (x)) (10)

succH(x, y) ∧ succV (x, z)→ D(y, z) (11)
succV (y, x) ∧ succH(z, x) ∧D(y, z)→ okD(y, z) (12)

¬okD(y, z) ∧D(y, z)→ okD(y, z) (13)∨
0≤k<n

Pk(x) ∧
∧

0≤k<l<n

¬(Pk(x) ∧ Pl(x)) (14)

∧
(k,l)6∈H

¬(succH(x, y) ∧ Pk(x) ∧ Pl(y)) (15)

∧
(k,l) 6∈V

¬(succV (x, y) ∧ Pk(x) ∧ Pl(y)) (16)

Herein, for 0 ≤ k < n, Pk are unary predicates; succH ,
succV , D and okD are binary predicates. It is clear that φ
is just a sentence in [∀3, (0, ω, 4), (0)]. Now our task is to
show that D tiles N× N iff φ has a stable model.

For the direction of “if”, we first assume A is a stable
model of φ, and then show the following statements are true:

1. For all a ∈ A, there is b ∈ A such that (a, b) ∈ succH .
2. For all a ∈ A, there is b ∈ A such that (a, b) ∈ succV .
3. For all a, b, c ∈ A, if (a, b) ∈ succH and (a, c) ∈ succV ,

then there exists d ∈ A such that (b, d) ∈ succV and that
(c, d) ∈ succH .

LetR be the set of order pairs (b, c) such that (a, b) ∈ succH

and (a, c) ∈ succV for some element a ∈ A. Let α be any
assignment in A which assigns R to XD and which assigns
QA to XQ for any other predicate Q in φ. It is obvious that
α satisfies φ∗(X̄) in A. Since A is a stable model of φ, we
can conclude that DA = R. Assume that there is an ordered
pair (b, c) such that, for any d ∈ A, order pairs (b, d) and
(c, d) don’t belong to succV and succH respectively. Let
β be an assignment that assigns D \ {(b, c)} to XokH

and
assigns QA to the other predicate variables XQ. It is easy to
see that β satisfies both X̄ < P̄ and φ∗(X̄) in A. But this

is impossible since A is a stable model of φ. So statement 3
must be true. Similarly, we can prove statements 1 and 2.

By statements 1–3, there are elements ai,j ∈ A (i, j ∈ N)
such that (ai,j , ai+1,j) ∈ succH and (ai,j , ai,j+1) ∈ succV

hold for all i, j ∈ N. Define τ : N × N → Zn as follows:
τ(i, j) = k iff ai,j ∈ Pk for all i, j ∈ N. Notice that A is
a model of (14). So, for each pair (i, j) there exists exactly
one k ∈ Zn such that ai,j ∈ Pk, which implies τ is both
well-defined and total. Moreover, since both (15) and (16)
are satisfied by A, we have that τ is a tiling for N× N.

For the converse direction, we assume that τ is a tiling of
D for N× N firstly. Let σ be the vocabulary of φ, and let A
be a σ-structure with the universe N× N such that

• succH = {((i, j), (i+ 1, j)) : i, j ∈ N};
• succV = {((i, j), (i, j + 1)) : i, j ∈ N};
• okH = okV = N× N;
• okD = D = {((i, j + 1), (i+ 1, j)) : i, j ∈ N};
• for all k ∈ Zn, Pk = {(i, j) : i, j ∈ N and τ(i, j) = k}.

It is easy to check that A is a model of φ. Let α be an assign-
ment in A. To obtain a contradiction, we assume that both
formulas φ∗(X̄) and X̄ < P̄ are satisfied by α in A. Since

∀x∀y(¬succH(x, y) ∨XsuccH
(x, y))

can be inferred from φ∗(X̄), any proper subset of succH

cannot be assigned to XsuccH
by α. As a consequence, it

must be held that α(XokH
) = N = okH . By similar argu-

ments, we can also show that relations succV , okV , D and
okD are assigned to variables XsuccV

, XokV
, XD and XokD

respectively. So, there is some k ∈ Zn such that α(XPk
) is

a proper subset of Pk. Consequently, there are i, j ∈ N such
that (i, j) does not belong to α(XPl

) for any l ∈ Zn. But
this is impossible since ∀x

∨
0≤l<nXPl

(x) is a consequence
of φ∗(X̄). Therefore, α does not satisfy both φ∗(X̄) and
X̄ < P̄ in A. Because the assignment α is arbitrary, A must
be a stable model of φ. And this completes the proof.

Remark. Theorems 9 and 10 show that the standard classes
[∃∗∀∃∗, all, all], [∃∗∀2∃∗, all, (ω)] and [∃∗∀∗, all, (ω)]=,
which are decidable under circumscription, are undecidable
under the semantics of stable models.

Maximally Decidable Standard Classes
If K is decidable under the stable model semantics (or cir-
cumscription), but every standard class K′ > K is not, then
we say K is maximally decidable for the stable model se-
mantics (or circumscription, respectively).

To obtain the exact boundary between decidability and
undecidability over standard classes, we have to identified
maximally decidable classes. It seems very difficult to find
all such classes, but by the results proved in previous sec-
tions, we have the following:
Corollary 11. The following classes are maximally decid-
able standard classes under the circumscriptive semantics:

(1) [∃∗∀∗, all, (ω)]= (4) [∃∗∀∃∗, all, all]
(2) [∃∗∀2∃∗, all, (ω)] (5) [∃∗, all, all]=
(3) [all, (ω, ω), (ω, ω)] (6) [all, (ω, ω), (ω, 1)]=
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Figure 1: The Classification of Decidable Standard Classes

Proof. Immediate by Fact 2, 3 and Theorems 6 and 7.

Corollary 12. The class [all, (ω, ω), (ω, 1)]= is a maxi-
mally decidable standard class under the stable model se-
mantics.

Proof. Immediate by Fact 3, Theorems 6, and the undecid-
ability of class (10) in Theorem 7.

Conclusion
This paper characterizes some decidable and undecidable
fragments of first-order language under the semantics of sta-
ble models and circumscription. A simple illustration of
these results is given in Figure 1. From it we can see that
the boundaries between decidability and undecidability un-
der the two semantics are very different. This is rather coun-
terintuitive due to the similarity of definitions for two seman-
tics. According the viewpoint of (Pearce 2008), stable model
= stable part + minimal model, that is, the stable model se-
mantics is obtained by introducing stabilization into the cir-
cumscriptive semantics. The difference between decidabil-
ity under these two semantics shows that the stabilization
indeed enhance the expressive power of language.

Another interesting point arises from a comparison be-
tween decidability under circumscription and decidability of
classical first-order logic. In spite of its second-order defini-
tion and high undecidability of the full first-order language,
decidability of all the fragments considered in the paper un-
der the semantics of circumscription coincides with that in
classical first-order logic. We guess that such a coincidence

comes from the finite model property of these fragments or
the manageable behavior of monadic second-order logic.
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