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Abstract

Inconsistencies between different information sources
may arise because of statements that are inaccurate, al-
beit not completely false. In such scenarios, the most
natural way to restore consistency is often to interpret
assertions in a more flexible way, i.e. to enlarge (or re-
lax) their meaning. As this process inherently requires
extra-logical information about the meaning of atoms,
extensions of classical merging operators are needed.
In this paper, we introduce syntactic merging operators,
based on possibilistic logic, which employ background
knowledge about the similarity of atomic propositions
to appropriately relax propositional statements.

Introduction

Inconsistency is often encountered, especially in case of
multiple-source information. Common to most approaches
that have been proposed to cope with inconsistency is the
idea that some pieces of information are wrong, and thus
responsible for the inconsistency. In this view, consis-
tency should be recovered by removing incorrect pieces of
information. This may be done, for instance by dealing
with maximal consistent subsets, or by ignoring less en-
trenched propositions whose departure reestablishes consis-
tency. This intuition is at work in most of the approaches to
reasoning under inconsistency (Besnard and Hunter 1998),
or belief revision (Gérdenfors 1988).

Obviously it might be the case that certain information
is just wrong. However, there are inconsistency situations
where, in fact, all the pieces of information are (at least)
approximately right. This means that if we interpret each
statement in a sufficiently broad sense, inconsistency van-
ishes. Uncertainty in meaning is then the source of inconsis-
tency, rather than the presence of information that would be
“really” false.

Example 1 Consider a source Ky claiming that John lives
in Gainesville FL, while another source Ko claims that John
lives in the city of Atlanta GA. While these sources are
clearly in conflict, consistency can be restored by interpret-
ing their assertions more liberally. In particular, it is plausi-
ble that the first source mistakingly assumed that John lives
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in Gainesville FL, whereas in fact John lives in Gainesville
GA, Gainesville TX or Gainesville VA, e.g. because of a hu-
man error or because of a default assumption in K, that
Gainesville means Gainesville FL. Similarly, the claim that
John lives in the city of Atlanta may be weakened to a claim
that John lives in the Atlanta Metropolitan Area, or even that
he lives in Atlanta’s combined statistical area (as defined by
the US Census Bureau). As Gainesville GA is located in
Atlanta’s combined statistical area, the most natural repair
would be to assume that John lives in Gainesville GA.

Being liberal in the interpretation of propositions may be
justified by slightly different reasons. Indeed a source may
provide statements that are somewhat too precise w.r.t. the
actual state of available information (e.g. some city called
Gainesville vs. Gainesville FL). In addition, sources are of-
ten heterogeneous in their use of categories for describing
reality, and they may make slightly different uses of the same
label (e.g. city of Atlanta vs. Atlanta Metropolitan Area).
Lastly, information may also evolve with time or space. In
practice, this requires to have some background knowledge
about similarities between interpretations, or between atoms
of the language. This point of view is reminiscent of a pro-
posal in (Wahlster 1980), where the author allows for vague-
ness in dialogues, and acknowledges the idea that two agents
may use the same word with a slightly different meaning
(e.g. “a room being quite large” does not, perhaps, refer ex-
actly to the same space for a customer and for a hotel man-
ager).

The idea of introducing a similarity relation between in-
terpretations has been little studied, even if it received a be-
ginning of attention in the early work of (Ruspini 1991),
where approximate entailment is defined as “p approxi-
mately entails ¢” iff every model of p is similar to a model of
q. This idea can be contrasted with non-monotonic reason-
ing, where “if p, generally ¢” iff the most plausible models
of p are also models of ¢ (Kraus, Lehmann, and Magidor
1990), i.e. in the former case the set of models of ¢ is ex-
panded, whereas in the latter case the set of models of p is
restricted. The use of a similarity relation between inter-
pretations, which was also discussed from a belief revision
point of view in a short note by (Rodriguez, Garcia, and
Godo 1995), has recently been reconsidered, in a prelimi-
nary manner, by (Schockaert and Prade 2009) for merging
conflicting information.



This paper further explores the use of similarity informa-
tion for merging conflicting sources. Our main aim is to
show how practical merging operators can be defined in a
syntactic way using the setting of possibilistic logic. The
paper is organized as follows. In the next section some im-
portant concepts from propositional merging and possibility
theory are recalled. Subsequently, a qualitative representa-
tion of similarity between atoms is proposed, after which
we study merging operators based on weakening of proposi-
tions for knowledge bases in conjunctive-normal form. We
then briefly describe a dual approach for propositions in
disjunctive-normal form. Finally, an overview of related
works is presented as well as our conclusions.

Background

We first review some standard approaches to merging propo-
sitional knowledge bases, before providing a short back-
ground on possibilistic logic.

Propositional merging

In the following, we consider a propositional language built
from a finite set of atoms A and the connectives V, A, —, —
in the usual way. An interpretation [ is defined as a subset of
A, where I |= a for an atom « iff @ € I. An interpretation
is said to be a model of a formula (resp. set of formulas) if it
satisfies that formula (resp. every formula in the set) in the
usual sense. We write [¢] to denote the set of all models of
a formula ¢. The set of all interpretations will be written as
W.

Let K1, ..., K, be propositional knowledge bases that are
individually consistent, and let C' be a set of integrity con-
straints. The purpose of a merging process is to find one
knowledge base IC which is consistent with the integrity con-
straints (i.e. [K] C [C]), and which integrates the infor-
mation from the knowledge bases K1, ..., K{,,. When these
knowledge bases are in conflict with each other or with the
integrity constraints, i.e. [K1]N...N[K,]N[C] = 0, some
of the assertions in the knowledge bases need to be ignored
or weakened to this end.

A common strategy is to define a pseudo-metric d on W,
and to define C semantically by

where Min(<, X) denotes the set of elements from X that

are minimal w.r.t. the preorder <, and Iy <(g,, . x,,) I2 for
I, I, e Wiff
f(}IGHII(ll d(Ila J)7 ey Jnel%ln d(Ilv ']))
< i .. i
< f<£§2 d(Iz, J),. ) pin d(I2,J))  (2)

with f an appropriate aggregation function, such as (refine-
ments of) the maximum or a (weighted) sum. This approach
to propositional merging is called the distance-based frame-
work, and is usually implemented using the Hamming dis-
tance dHam(Il,Ig) = |(Il \ Ig) U (IQ \ Il)| (Dalal 1988;
Revesz 1993; Lin 1996; Konieczny and Pino Pérez 2002).
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Another interesting view on propositional merging, pro-
posed in (Bloch and Lang 2002), is to weaken proposi-
tions using a logical counterpart of mathematical morphol-
ogy (Serra 1982). In particular, the dilation Dp(¢) of a for-
mula ¢ is defined by

[Dr(#)] ={I € WIB(I) N [9] # 0}

where B(I) C W is a set of interpretations that are related
to I in some way. Note that B, which is called the structur-
ing element, can be regarded as a relation on WW. Again
the Hamming distance is most commonly used, choosing
B(I) = {I' € W|dgam(I,I') < 1}. This particular
choice makes it straightforward to implement this operator
(see (Bloch and Lang 2002)). Unfortunately, it also reduces
dilation to a purely syntactical operation. An analogous re-
mark applies to the distance-based framework, noting that
distances and similarities are essentially equivalent. Again,
using the Hamming distance has important computational
and practical advantages, but does not allow to incorporate
available extra-logical information.

The two aforementioned approaches are very general,
and, from a formal point of view, our proposal can be related
to this setting, as we show below. Still our approach has a
particular ingredient in the form of extra-logical knowledge,
which provides it with a quite different flavor.

Possibilistic logic

Given a possibility distribution! 7 on the set of all possible
interpretations W, the possibility II(¢), necessity N (¢) and
guaranteed possibility A(¢) of a formula ¢ are defined as

(¢) = pax m(I)
N(p) =1—TI(=¢)

Ag) = [nin, m(I)

min 1—x(/
Ie[-¢] @

A formula in possibilistic logic (Dubois and Prade 2004) is
a pair (¢, ) consisting of a classical logic formula ¢ and
a weight A € (0, 1] expressing either a lower bound on the
necessity N (¢), or on the guaranteed possibility A(¢) of
¢. The pair (¢, ) is called an N-formula in the first case
and a A-formula in the second case. To avoid confusion, we
will write (¢, A) in the case of A-formulas. Interpreted as
an N-formula, (¢, \) means that ¢ should be satisfied with
priority (or certainty) A. Thus, if ¢ is not satisfied by some
interpretation I, the desirability (or possibility) of I is upper
bounded by 1 — A. Similarly, the A-formula (¢, \) means
that the desirability (or possibility) of interpretations satis-
fying ¢ is at least A\. A set of N-formulas is called an N-
possibilistic logic base (or N-base), and a set of A-formulas
a A-possibilistic logic base (or A-base). Because of the de-
composability properties N (¢ A ¢) = min(N(¢), N(v))
and A(¢ V ¢) = min(A(¢), A(v))), it is always possible to

IRecall that a possibility distribution in a universe X is an X —
[0,1] mapping, used as a convenient way to encode a complete
ordering that models plausibility or preference.



represent /N- and A-bases as weighted sets of clauses, and
weighted sets of terms?® respectively.

An important feature of possibilistic logic is its ability to
cope with inconsistency. Given an N-base B, the A-cut B)
and strict A-cut B, are defined as

By = {¢il(¢i, i) € B, Xi > A}
By = {¢i](¢i, Ai) € B, Ai > A}

Then, the inconsistency level of B is defined as
inc(B) = max{\|B, is inconsistent}

where max () = 0 is assumed. Clearly, formulas in Bine(B)

are safe from inconsistency. For A-bases, we can define the
dual notion of the A-cut of N-bases

B = \/{4il(#i, \id € B.xi = A}
The satisfiability level of B is then defined as

sat(B) = max{\|B” is consistent}

Representing Similarity

Although conceptually any type of similarity relation be-
tween interpretations could be useful, in practice we will
focus on similarity relations that are induced by similarities
between atoms. This makes it feasible to derive interesting
syntactic operators, and has computational advantages, as
explicitly enumerating similarity relations in the universe of
interpretations V) = 24 would not be tractable.

Because in most application scenarios the exact strength
of such similarities cannot be quantified, we focus on a qual-
itative notion of similarity. More in particular, we assume
that for each atom a, a collection of k£ + 1 sets of atoms
X9 X1 ..., XF is available such that {a} = X0 C X! C
.. C X Zf Intuitively, the sets X }l contain those atoms that
are considered similar to a, adopting an increasingly more
tolerant notion of similarity. Note that we do not require
that X (’f is equal to the set of all atoms 4, as there can
be many pairs of atoms that cannot be considered similar,
even when a very weak notion of similarity is used. Simi-
larity information can be encoded explicitly by a domain ex-
pert. In many applications, however, such information can
be obtained automatically from readily available resources
such as taxonomies or, in the case of Example 1, geographic
gazetteers.

In the following, we tacitly assume that similarity is sym-
metric in the sense that b € X! iff a € X/, but we make
no further assumptions. In particular note that similarity is
not required to be transitive (b € X and ¢ € X} does not
require that c € X for any w).

Given this encoding of similarity between atoms, we can
define the (I-)expansion <A)l and (I-)contraction [A]l of a
set of atoms A, as

“'=U X

acA

[A]" = co(coA)!

2We use term to denote the conjunctive counterpart of a clause,
i.e. a conjunction of literals.

365

where the complement co is understood as set complement
w.rt. A. The set (A)" contains all atoms that are similar to

some atom in A, while [A]l contains those atoms that are
only similar to atoms in A.

Relaxing propositions in CNF

If the knowledge bases K7, ..., K, are in conjunctive-
normal form (CNF), their clauses can be relaxed by adding
additional disjuncts. Specifically, to weaken a positive lit-
eral a (i.e. an atom) we can replace it by the disjunction of
all atoms in X! for some [ € {1,...,k}, i.e. a is considered
“almost true” if an atom similar to a is true. To weaken a
negative literal —a, we can replace it by the negation of the
conjunction of atoms in X!, i.e. —a is considered “almost
true” if an atom similar to a is false. For the ease of pre-
sentation, we write a!) to denote \/ X, and a; to denote
A X We also write (—a)® for =(a()).

We can extend the notation .(!) to clauses by defining

(a1 V... Va,)® = agl) V..val

and to sets K of clauses by K = {aW|a € K}. No-

tice that the result KV is not independent of the syntactic
encoding of K.

Example 2 Let K1 = {a V b,—b}, Ky = {a,—b}, X!}
{a,a’} and X} = {b,b'}. Then clearly K| and K> are
semantically equivalent, while

KV ={avad vbvi,—bv-b'}

KV ={ava, -bv-b}

which are not semantically equivalent.

If desired, syntax-independence can always be obtained by
replacing a propositional knowledge base K by its prime
implicates, before applying the weakening operator .(!), Re-
call that a clause ~ is an implicate of K iff KX |= v, and a
prime implicate if furthermore for every other implicate ~/,
if ¥/ = « then also v = /. Clearly, if 7 is a prime im-
plicant, clauses that are equivalent to « are prime implicates
too. Therefore, let I'(K) be the (finite) set of prime impli-
cates of K in which no literals are repeated (e.g. clauses such
as a V a V b are excluded). This idea of enforcing syntax-
independence was proposed in (Bienvenu, Herzig, and Qi
2008), in the context of belief revision.

Given a propositional knowledge base K, we define the
associated NV -possibilistic logic base KV as

KN = {(a®,\)|a € T(K) and 1 € {0,....k}}  (3)

Where 1 = A\ > A1 > ... > Ag > 0, i.e. the unit interval
is used to attach certainty values to formulas in a purely ordi-
nal way, such that the more we weaken a formula, the higher
its priority or certainty becomes. In other words, although
we do not assume that the formulas in K are completely ac-
curate, we assume that we can make them accurate (albeit
less informative) by sufficiently weakening them. As the in-
tegrity constraints C' should not be weakened, the associated
N-possibilistic logic base CV" is given by

OV = {(a, M)l € T(C)} @



Example 3 Consider again the scenario from Example 1,
where we write aCity(x), aMA(x) and aCSA(x) to denote
that person x lives in Atlanta city, metropolitan area, and
combined statistical area respectively. We write nyCity(x),
nyMA(x) and nyCSA(x) to denote that x lives in New York
city, metropolitan area and combined statistical area, and
gFL(x), gGA(x), gTX(x) and gVA(x) to denote that x lives in
Gainesville FL, GA, TX, and VA respectively. Assume that
forall x

{aCity(x), aMA(x)}
XfCity(x)) = Xalcny(x) U {GCSA(X)}
Xorrpy = Xerre = {FL(x), gGA(x),gTX(x),gVA(x)}

1
XaCity(x) =

Now consider the following two knowledge bases:
K, = {aCity(john) \V aCity(mary)}
Ky = {gFL(john), nyCity(mary)}
and assume that the integrity constraints C encode avail-
able geographic knowledge, e.g. gGA(x) — aCSA(z) and
—(aCity(x) AnyCity(x)). We obtain:
K{V = {(aCity(john) V aCity(mary), Ao ), (aCity(john)
V aMA(john) V aCity(mary) V aMA(mary), A1),
(aCity(john) V aMA(john) V aCSA(john)
V aCity(mary) V aMA(mary) V aCSA(mary), \2) }
KLY = {(gFL(john), \o), (nyCity(mary), Xo), (gFL(john)v
gGA(john) Vv gTX(john) V gFL(john), \1),
(nyCity(mary) V nyMA(mary), \1), (gFL(john)
V gGA(john) V gTX(john) V gFL(john), \2),
(nyCity(mary) \ nyMA(mary) V nyCSA(mary), A2)}
Note that (KN UKZY),, is logically equivalent to K1 U Ko,
hence it is sufficiently informative to cover all we know, but it
will not be consistent with the integrity constraints. On the
other hand, (KN U K{V),, is logically much weaker than

what is expressed by the sources, but it is in agreement with
the integrity constraints.

Restoring consistency using \-cuts

The possibilistic representation of the initial knowledge
bases, defined by (3), enables us to adopt standard tech-
niques for merging inconsistent possibilistic knowledge
bases (e.g. (Benferhat and Sossai 2006; Hunter and Liu
2008)). In particular, we may define the result of the merg-
ing process in terms of A-cuts of the possibilistic knowledge
bases. The following proposition provides a semantic char-
acterization of such merging operators.

Proposition 1 Let K be a propositional knowledge base.
For an interpretation I, the following two claims are equiv-
alent (0 <1 < k):

I Te (KM
2. There exists a J € [K] such that [I]' C J C (I)".

The condition [7]' € J C (I)" may be interpreted as .J being
similar to . In this view, the propositional knowledge base
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(K™N),, is such that its models are exactly those interpreta-
tions that are similar to some model of K. Thus, restoring
consistency by taking appropriate A-cuts of the possibilistic
bases KV is effectively in line with the idea of similarity-
based merging. Note that the procedure of forcing syntax-
independence using prime implicates is essential in this re-
sult.

To see the relationship between relaxing propositions,
as defined above, and the morpho-logical approach from
(Bloch and Lang 2002), let us define B!, for I € W and
1€{0,....,k},as

(&)

Note that the relation B’ can be interpreted as a similarity
relation on the set of interpretations, where [ acts as a toler-
ance parameter. Proposition 1 teaches us that for every set
of clauses K, viewed as a conjunction:

(AK2)= (utp10)

In other words, the weakening operator .(") introduced above
essentially corresponds to logical dilation D pg:, in the spe-
cific case that the structuring element is defined as (5). The
approach can also be linked to the distance-based frame-
work, using d = d; in (2), with

BY(I)={Jew|I]' cJc (D}

di(I,J) =min{l € N|[I]' € J C ()"} (6)
if 1" € J € (I)*, and dy(I,J) = k + 1 otherwise. It
is easy to show that dy(I,J) = 0iff I = J. Note, how-
ever, that d; is not symmetric (which is not essential in
the distance-based framework). In the particular case where
f = max in (2), and where (KN U...UKNUCN"),, is con-
sistent (i.e. inconsistencies can actually be repaired by suf-
ficiently weakening each of the knowledge bases), it holds
that

Min(< (k.. k., [C]) = (K U..UKY UCYN )y

where o = inc(K{N U...U KN UCN"). Note that when

(KNU...UKNUCN"),, is not consistent, we should con-
clude that inconsistencies were not caused by inaccuracies
but by “real errors”, and fall back on standard techniques,
e.g. based on the Hamming distance.

Restoring consistency using preferred subtheories

Selecting from an N-base B those formulas whose certainty
degree is above inc(B) is a standard approach to deal with
conflicts. However, it is also rather coarse because it does
not discriminate between interpretations that satisfy most
of the remaining formulas (i.e. those with certainty at most
inc(B)) and interpretations that satisfy almost none of the
remaining formulas. A similar observation was made in
(Dubois and Prade 1997) for belief revision using possibilis-
tic logic, where it was proposed, as a refinement, to only
consider models of preferred subtheories of B in the sense
of (Brewka 1989). Specifically, B* = B, U ...U By is a
preferred subtheory of an N-base B = K" iff B, U...U B,
is a maximal consistent subset of By, for all [ € {0, ..., k}.



This boils down to selecting as many formulas with certainty
Ak as possible (without getting inconsistency), subsequently
adding as many formulas with certainty A\;_; as possible,
etc. Hence when I is a model of a preferred subtheory of B
then also I € [Bjyc(p)], but the converse does not hold in
general.

At the semantic level, we can refine the preference rela-
tion on interpretations induced by (6). Specifically, if neither
[1)' € J C (L) nor [I)' € J C (L) forany J € [K;],
we may still prefer I; over I if some model J € [K;] con-
tains most of the atoms in [I 1]l and only few atoms outside

(I 2>l. Formally, this intuition leads to the following preorder
<! on interpretations: I <! I" iff

VI € [K;].37 € [K]. [\ J ']\ J’
and J\ (I)' € J'\ (I}

Furthermore, let I <! I’ = Vi € {1,..,n}.I <! I’ and
I <'I'=1<"T'AN~(I'" <I). The following proposi-
tion allows us to relate this semantic refinement to maximal
consistent subsets, and thus to preferred subtheories.

Proposition 2 Let K; be a propositional knowledge base,
1 €{0,....,k} and let I and I' be two interpretations. Fur-
thermore, let F = {a|(a,N) € KN andI &= o} and
F' = {a|(a,N)) € KN and I' = }. It holds that F O F'
i1 <tr.

Let lex(<F, ..., <%) be the lexicographic extension of the
preorders <!, ie. (I,I') € lex(<k .., <) iff either
VI.I<'T"or3l.I <" I' AVl > 1.1 <" I'. The fol-
lowing characterization, which follows easily from Propo-
sition 2, allows us again to relate our similarity-based ap-
proach to the dilation operation and to the distance-based
framework; we omit the details.

Corollary 1 Assume that (KN U...UKN UCN"),, is con-
sistent. It holds that I is a model of a preferred subtheory of
KNU..UKNUCN iff I € Min(lex(<F, ..., <), [C]).
Example 4 Consider again the knowledge bases K1 and
Ko from Example 3. Let K = (KN U KY UCN )y,
(KN UKNucN Jine(k NukNUc~*y- Then K is logically
equivalent to CU{gGA(john), nyCity(mary)V nyMA(mary)V
nyCSA(mary)} (noting among others that gGA(john) —
aCSA(john)). However, the most natural result would be
K' = C U {gGA(john), nyCity(mary)} as there is no reason
to doubt that Mary lives in New York city. If we define the
result of the merging process as the union of the preferred
subtheories of KI¥ U K2 U C, we indeed find a knowledge
base which is equivalent to K', since the only preferred sub-
theory of KN U K&V U CN" is given by

{gFL(john) vV gGA(john)\ gTX(john) V gFL(john),
aCity(john) V aMA(john) vV aCSA(john)
V aCity(mary) vV aMA(mary)V aCSA(mary),
nyCity(mary), nyCity(mary) V nyMA(mary),
nyCity(mary) \V nyMA(mary) V nyCSA(mary)} U C
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Relaxing propositions in DNF

A dual approach to relaxing propositions can be developed
for propositions in disjunctive-normal form (DNF). Due to
reasons of space, and the analogy with the CNF-case, we
only present the main ideas. A conjunction of literals can
be weakened by removing all literals which are similar to
literals that do not appear in that conjunction. Formally, if
A and B are sets of atoms and v = A ., a A \, o5 —b, we

define 7O as
7@ = /\ a /\ )
ac[A]! be[B]!

Furthermore, we define (1 V ...\/%)® as 71@ V---V%@- The
intuition is that literals which are only similar to literals that
appear in the conjunction cannot correspond to borderline
cases.

Example 5 Assume that we have information about dif-
ferent snapshots of a given knowledge base, and let atom
P(a;) denote that object a had property P at time instant
i. Moreover, let Xﬁ’(ai) = {P(aj)|abs(j — i) < 1}. Intu-
itively, this means that when P(a;) is asserted, it is plausi-
ble that P(a;—1) or P(a;+1) also holds, even if =P (a;—_1)
and —P(a;y1) are believed, resp. because the knowledge
base was not up-to-date at time instant i — 1, or because in-
formation was added to the knowledge base at time instant
1 + 1, which was not yet valid. In this view, when we know
v = P(a1) A P(az) A P(as), the most certain conjunct is
7@ = P(ay).

Let 4" be a CNF-formula which is equivalent to the DNF-
formula -, then in general 4! is not equivalent to v©. In-
deed, the syntactic weakening operators . and .9 are based
on a different, albeit related intuition: while ~/ ! is obtained
by stretching the meaning of what is asserted by 7/, v© is
obtained by removing all pieces of information that may be
falsified by stretching the meaning of what is not asserted by
v (i.e. what may possibly be false).

We associate a A-possibilistic logic base K2 with K as
follows:

K2 = {(a®, pla € K and 1 € {0, ... k}}

where K is interpreted as a set of terms, and pop = 1 >
1 > ... > pg. Note that the less we weaken a formula, the
better to have it satisfied. Counterparts of Proposition 1 and
Proposition 2 can be derived, provided that care is taken to
enforce syntax-independence; we omit the details.

Related Work

As already discussed above, there are formal links be-
tween our approach and the distance-based framework from
(Konieczny and Pino Pérez 2002) and the morphological op-
erators from (Bloch and Lang 2002). However, due to their
generality, these existing works provide no special guidance
on how to use knowledge about the similarity of atoms.
There is almost no work that looks at restoring con-
sistency in logical settings by enlarging the set of mod-
els of propositions using an explicit notion of similarity,



apart from the early note by (Rodriguez, Garcia, and Godo
1995) already mentioned in the introduction. In the set-
ting of description logics, (Ovchinnikova, Wandmacher, and
Kiihnberger 2007) looks for overgeneralized concepts that
create inconsistency problems, and tighten or enlarge such
concepts in order to restore subconcept relations in a consis-
tent way. In (Condotta, Kaci, and Schwind 2008), the idea
of using similarities between atoms is used for the specific
case of merging networks of qualitative temporal and spatial
relations. If, e.g., a source claims that spatial regions a and
b are disjoint while another asserts that in fact a is a part of
b, the result of merging might be that a overlaps with b.

The present paper substantially advances the results pro-
vided in a recent short paper by the same authors (Schock-
aert and Prade 2009), where the central ideas were discussed
at the semantic level. In particular, the development of the
two dual views on syntactically encoding merging operators
based on similarity, and the corresponding characterization
results are new.

Conclusion

Our work originates from the observation that inconsisten-
cies often arise because propositions are understood too
strictly. In such a case, suitable merging operators can
only be implemented by using appropriate extra-logical in-
formation about the meaning of atoms. We have focused
specifically on using information about the similarity of
atoms to this end, which turns out to be sufficiently expres-
sive to allow interesting merging operators, while we can
still realistically assume that such information is available
in many applications (e.g. derived from taxonomies, geo-
graphic gazetteers, or domain experts). Using similarity in-
formation, we can associate a particular possibilistic knowl-
edge base with each information source, in which increas-
ingly weakened propositions receive an increasingly higher
certainty (or preference). This reflects the intuition that we
cannot always expect available information to be accurate,
while we insist that the truth is never far from this infor-
mation. This idea can be implemented in necessity and in
guaranteed-possibility based possibilistic knowledge bases,
which naturally corresponds to two dual forms of weaken-
ing. We have shown that well-known concepts in possibilis-
tic knowledge bases, viz. A-cuts and preferred subtheories,
then play a central role in implementing merging operators.
Still our proposal fully departs from existing merging ap-
proaches in the possibilistic setting.

References

Benferhat, S., and Sossai, C. 2006. Reasoning with
multiple-source information in a possibilistic logic frame-
work. Information Fusion 7(1):80-96.

Besnard, P., and Hunter, A. 1998. Reasoning with actual and
potential contradictions. In Vol. II of the Handbook of De-
feasible Reasoning and Uncertainty Management Systems.
Kluwer Acad. Publ.

Bienvenu, M.; Herzig, A.; and Qi, G. 2008. Prime implicate-
based belief revision operators. In Proc. of the 18th Euro-
pean Conf. on Artificial Intelligence, 741-742.

368

Bloch, I., and Lang, J. 2002. Towards mathematical
morpho-logics. In Technologies for constructing intelligent
systems, 380. Physica-Verlag GmbH.

Brewka, G. 1989. Preferred subtheories: An extended logi-
cal framework for default reasoning. In Proc. of the 11th Int.
Joint Conf. on Artificial Intelligence, 1043-1048.

Condotta, J.-F.; Kaci, S.; and Schwind, N. 2008. A frame-
work for merging qualitative constraint networks. In Proc.
of the 21st International FLAIRS Conf., 586-591.

Dalal, M. 1988. Investigations into a theory of knowledge
base revision: preliminary report. In Proceedings of the 7th
National Conference on Artificial Intelligence, 475-479.

Dubois, D., and Prade, H. 1997. A synthetic view of belief
revision with uncertain inputs in the framework of possibil-
ity theory. International Journal of Approximate Reasoning
17(2-3):295 — 324.

Dubois, D., and Prade, H. 2004. Possibilistic logic: a ret-
rospective and prospective view. Fuzzy Sets and Systems
144(1):3 - 23.

Girdenfors, P. 1988. Knowledge in Flux. MIT Press.

Hunter, A., and Liu, W. 2008. A context-dependent algo-
rithm for merging uncertain information in possibility the-
ory. IEEFE Transactions on Systems, Man and Cybernetics,
Part A 38(6):1385-1397.

Konieczny, S., and Pino Pérez, R. 2002. Merging infor-
mation under constraints: a logical framework. Journal of
Logic and Computation 12(5):773-808.

Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmono-
tonic reasoning, preferential models and cumulative logics.
Artificial Intelligence 44(1-2):167-207.

Lin, J. 1996. Integration of weighted knowledge bases. Ar-
tificial Intelligence 83(2):363 — 378.

Ovchinnikova, E.; Wandmacher, T.; and Kiihnberger, K.-
U. 2007. Solving terminological inconsistency problems in
ontology design. Interoperability in Business Information
Systems 2(1):65-80.

Revesz, P. 1993. On the semantics of theory change: ar-
bitration between old and new information. In Proceedings
of the 12th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, 71-82.

Rodriguez, R.; Garcia, P.; and Godo, L. 1995. Relating
similarity-based models, counterfactuals and theory change.
In Proc. EUFIT’95,230-234.

Ruspini, E. 1991. On the semantics of fuzzy logic. Interna-
tional Journal of Approximate Reasoning 5:45-88.

Schockaert, S., and Prade, H. 2009. Merging Conflicting
Propositional Knowledge by Similarity. In Proceedings of
the 2009 21st IEEE International Conference on Tools with
Artificial Intelligence, 224-228.

Serra, J. 1982. Image Analysis and Mathematical Morphol-
ogy. Academic Press.

Wabhlster, W. 1980. Implementing fuzziness in dialogue sys-
tems. In Rieger, B., ed., Empirical Semantics. Brockmeyer,
Bochum.





