
High-Quality Policies for the Canadian Traveler’s Problem

Patrick Eyerich and Thomas Keller and Malte Helmert
Albert-Ludwigs-Universität Freiburg

Institut für Informatik
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Abstract

We consider the stochastic variant of the Canadian Traveler’s
Problem, a path planning problem where adverse weather can
cause some roads to be untraversable. The agent does not
initially know which roads can be used. However, it knows
a probability distribution for the weather, and it can observe
the status of roads incident to its location. The objective is to
find a policy with low expected travel cost.

We introduce and compare several algorithms for the stochas-
tic CTP. Unlike the optimistic approach most commonly con-
sidered in the literature, the new approaches we propose take
uncertainty into account explicitly. We show that this prop-
erty enables them to generate policies of much higher quality
than the optimistic one, both theoretically and experimentally.

Introduction

The Canadian Traveler’s Problem (CTP) was introduced by
Papadimitriou and Yannakakis (1991) as a path planning
problem with imperfect information about the roadmap. It
has drawn considerable attention from researchers in AI
search (e. g., Nikolova and Karger 2008; Bnaya, Felner, and
Shimony 2009) and is closely related to navigation tasks in
uncertain terrain considered in the robotics literature (e. g.,
Koenig and Likhachev 2002; Ferguson, Stentz, and Thrun
2004). One practical application is outdoor navigation of
autonomous robots with the help of a rough map based on a
satellite image or a map constructed from previous scans of
the environment (Likhachev and Stentz 2006).

Informally, the objective in the CTP is to travel from the
initial location to some goal location on a road network
given as an undirected weighted graph. This is complicated
by the fact that certain roads may be impassable due to snow,
and the traversability of a road can only be observed from
the two incident locations. The weather remains static dur-
ing the agent’s traversal of the graph, so once a road has
been observed, its status is known with certainty. Hence,
the problem is fully deterministic apart from the initial state
uncertainty about which roads are usable.

Many variants of the CTP have been suggested. Pa-
padimitriou and Yannakakis (1991) describe adversarial and
stochastic settings. In the adversarial setting, the objective is
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to find a policy that minimizes the worst-case ratio between
the actual travel cost and optimal travel cost under perfect in-
formation. In the stochastic setting, the status of roads is de-
termined by independent random choices with known proba-
bilities, and the objective is to minimize expected travel cost
(with some subtleties discussed in the next section).

This paper deals with the stochastic CTP, which is the
most frequently considered version of the problem and has
itself spawned further variants. For example, Nikolova and
Karger (2008) describe an optimal algorithm for the stochas-
tic CTP on disjoint-path graphs and a recent paper by Bnaya,
Felner, and Shimony (2009) studies a variation of the CTP
where the status of a road may be sensed remotely, at a cost,
and the objective is to minimize the sum of travel cost and
sensing cost. A very similar problem to the stochastic CTP
where blocking probabilities are associated with graph ver-
tices rather than edges is discussed in the robot path plan-
ning community (e. g., Ferguson, Stentz, and Thrun 2004;
Likhachev and Stentz 2006).

Although many papers discuss the stochastic CTP, we
are not aware of any work that makes a significant attempt
at reasoning about the uncertainty that is an integral part
of the problem except for studies of special-case graphs
(Nikolova and Karger 2008) or instances with very low
amounts of uncertainty (Ferguson, Stentz, and Thrun 2004;
Likhachev and Stentz 2006). The predominant approach for
the general stochastic CTP and related problems is the opti-
mistic policy that always follows the shortest path that might
be traversable under the agent’s current information, no mat-
ter how likely it is for this path to be blocked at some point.

As our main contribution, we show that taking uncertainty
into account in the CTP leads to significant improvements
over optimism. On the theoretical side, we show that while
the optimistic policy can be arbitrarily worse than optimal,
probabilistic policies based on the UCT algorithm (Kocsis
and Szepesvári 2006) converge to the global optimum. On
the empirical side, we show the advantages of probabilistic
techniques over optimism on a range of benchmarks.

In the next section, we formalize the problem and dis-
cuss some basic properties. We then present four algorithms
for the CTP, including the common optimistic approach and
more sophisticated probabilistic techniques. This is fol-
lowed by a theoretical comparison of the approaches and an
empirical evaluation, after which we conclude.
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The Canadian Traveler’s Problem

An instance of the CTP is a 6-tuple I = 〈V, E, p, c, v0, v⋆〉,
where

• 〈V, E〉 is a connected undirected graph (roadmap) with
vertex set V (locations) and edge set E (roads),

• p : E → [0, 1) defines the blocking probabilities of roads,

• c : E → N0 defines the travel costs of roads, and

• v0, v⋆ ∈ V are the initial and goal locations.

Roads with blocking probability 0 are called guaranteed.
(We do not allow blocking probabilities of 1 because they
cause technical complications in several places, but they can
be equivalently modeled by omitting the respective roads.)

A weather for a CTP instance with roads E is a subset
W ⊆ E representing the roads that are traversable (not
blocked by snow) in that weather. Weather W is called good
if v0 and v⋆ remain connected when only using roads in W .
Otherwise, W is called bad.

The algorithmic problem considered in this paper is that
of computing a good policy for a CTP instance. As usual
for problems of acting under uncertainty, policies can be
represented as mappings from belief states to actions. It
is important to note that while the agent interacts with the
environment, its knowledge about road traversability grows
monotonically because the weather does not change dynam-
ically. Hence, CTP instances are deterministic POMDPs,
i. e., POMDPs where the only source of uncertainty is in-
complete information about the initial state (Littman 1996;
Bonet 2009). Deterministic POMDPs are less complex than
general POMDPs in that they always have a finite set of
reachable belief states.

In the case of the CTP, a belief state can be represented by
the agent’s current location on the roadmap and a partition
of the roads into three disjoint sets: the roads known to be
traversable, the roads known to be blocked, and the unknown
roads (those for which the agent does not have any informa-
tion). Hence, the number of belief states for a CTP instance
with roadmap 〈V, E〉 is bounded by |V | · 3|E|.

To illustrate the random choices of the environment and
decision steps of the agent that define the belief space of the
problem, the following description shows how a particular
run (a single interaction of the agent with the environment)
on instance I under policy π proceeds:

• Initially, the environment randomly chooses a weather W
by independently marking each road e as blocked with
probability p(e) and as traversable otherwise. The prob-
lem instance is revealed to the agent, but the randomly
chosen weather is not. The agent is initially located at v0.

• At every decision step, all weather information for the
agent’s current location v is revealed, i. e., the agent ob-
serves which of the roads incident to v are blocked.

• If the current agent location v is the goal location, the run
is finished. Otherwise, the agent moves to a new location
according to its policy. It may only move to locations that
are connected to v by a road e which is traversable under
the weather W . This incurs a cost of c(e).

• The cost of the run, denoted by cost(I, W, π), is the sum
over all costs incurred by the agent’s movements.

We are interested in policies of expected low cost, i. e.,
policies that tend to incur a low cost on a typical run. It is
tempting to define the cost of a policy simply as the expected
value for cost(I, W, π), where the expectation is with re-
spect to the random choice of weather (and possibly further
randomization performed by the policy). However, observe
that in case of bad weather it is not possible to complete a
run, which is most naturally modeled as infinite cost for that
run. This implies that if there is a nonzero chance of bad
weather (which is the case iff there exists no path from v0 to
v⋆ consisting only of guaranteed roads) the expected cost of
all policies would be infinite under this definition.

Fortunately, this problem is easy to avoid by instead defin-
ing the cost of the policy as the expected cost for all runs
with good weather, replacing the prior probabilities for the
weather by the posterior probabilities under the condition
that the weather is good. It is not hard to prove that chang-
ing the probabilities in this fashion does not affect a ratio-
nal agent’s decisions. (Put shortly, the important argument
is that it is always rational for the agent to assume that the
weather is good, because the cost of a run in bad weather is
infinite in any case, regardless of the agent’s behavior.)

We thus define the cost of a policy π for instance I as

cost(I, π) =
∑

W⊆E

P (W ) · cost(I, W, π), (1)

where P (W ) is the conditional probability that weather W
is chosen given that some good weather is chosen.

Due to the exponential number of possible weathers, it is
usually impractical to compute the cost of a given policy π
according to Eq. 1. In our empirical experiments we will
estimate cost(I, π) by sampling.

Reasonable Policies and Upper Bound. Finding op-
timal policies for the CTP is difficult. Papadimitriou and
Yannakakis (1991) showed that the problem is contained in
PSPACE and #P-hard, and so far, optimal solutions could
only be generated for instances of trivial size. For example,
Zeisberger (2005) describes one optimal approach using a
dedicated solver and one optimal approach using a generic
POMDP solver, neither of which scales to instances with
more than 15 unknown roads.

However, it is not difficult to provide upper bounds on
the optimal cost, and to find policies that meet these upper
bounds. Let N be the number of locations of a given in-
stance. We can divide each run into phases where a new
phase begins whenever the agent visits some previously un-
visited location for the first time. With N locations, there
can be at most N − 1 such phases in a run. Within a phase
that starts at location v and ends at location v′, the agent only
traverses roads on the known subgraph, i. e., the graph con-
sisting of only those roads the agent knows to be traversable,
by the definition of phases. (New information can only be
obtained when reaching a previously unvisited location, end-
ing the phase.)

We can then demand that movements within a phase are
performed on shortest paths of the known subgraph. We
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call policies that satisfy this requirement reasonable. At the
start of the n-th phase, n distinct location have been visited,
and hence at most n roads can be traversed by a reasonable
policy until a new location is reached, ending the phase. We
can thus bound the total number of movements in the run
by

∑N−1
i=1 i = 1

2 (N − 1)N , so that the cost of a reasonable

policy in good weather is bounded by 1
2 (N − 1)NC, where

C is the maximal cost of all roads.

Policies for the CTP

We describe four algorithms to compute policies for the
CTP. The first of these, the optimistic algorithm, ignores the
blocking probabilities in its movement decisions, while the
other three take them into account. We will use the same
names to refer to the algorithms that compute the policies
and the policies themselves. For example, applying the op-
timistic algorithm to a CTP instance results in the optimistic
policy for the given instance.

All policies π computed by our algorithms can be de-
scribed in terms of greedy choices with respect to a cost
function Cπ for belief states. (We avoid the term value func-
tion commonly used in the MDP literature because values
are typically maximized, while costs are minimized. Of
course, minimizing Cπ is equivalent to maximizing −Cπ.)
When queried for the next move in belief state b, policy π
considers the costs Cπ(b′) for all successor belief states b′

of b and returns the movements that lead to a successor min-
imizing the sum of Cπ(b′) and the travel cost from b to b′.
To enforce reasonable policies, we define successors of b as
those belief states which can be reached through a shortest
path in the known subgraph that either ends at the goal or at
a location where the agent obtains new information. Once a
policy has committed to a movement sequence, no new cost
values are computed until the sequence has been completed.

The last approach we consider, UCT, does not actually in-
volve separate computations of Cπ(b′) for each successor.
Instead, it only computes Cπ(b), i. e., performs a computa-
tion for the current belief state, which produces cost esti-
mates for all successors as a side effect. We abstract from
this detail in the following discussion.

It is desirable for cost functions to accurately reflect the
actual expected cost to goal. In particular, a policy based
on the optimal cost function C∗ produces optimal behavior.
Therefore, we will theoretically compare policies in terms
of how accurately their cost functions approximate C∗.

Optimism

We begin with the simplest approach, the optimistic policy
(OMT). Optimism is a very common approach to the CTP
(e. g., Bnaya, Felner, and Shimony 2009) and to robotic mo-
tion planning in uncertain environments, where many papers
focus on efficient implementations of the optimistic policy
(e. g., Stentz 1994; Koenig and Likhachev 2002). Indeed, a
large number of papers on the CTP and related problems of
path planning with uncertainty consider the optimistic policy
to the exclusion of everything else, and hence it is a baseline
against which other approaches can be compared.

The optimistic policy is based on what is called the free
space assumption in the robotics literature: as long as it is
possible that a given road is traversable, we assume that it is
traversable. Formally, the optimistic cost function in belief
state b, COMT(b), is the distance from the agent location to
the goal in the optimistic roadmap for b, which is the graph
that includes all roads that are known to be traversable in
b or unknown in b. Finding shortest paths in the optimistic
roadmap is a standard shortest path problem without uncer-
tainty, and hence COMT(b) can be efficiently computed.

A sophisticated implementation of the optimistic policy
might use algorithms like D∗ Lite (Koenig and Likhachev
2002) to speed up distance computations, exploiting that
over the course of a run, an agent solves a sequence of sim-
ilar path planning problems, allowing reuse of information.
Since the focus of this work is on the quality of the policy,
which is not affected by how COMT is computed, our imple-
mentation simply uses Dijkstra’s algorithm.

Hindsight Optimization

The optimistic policy is indeed exceedingly optimistic: its
cost estimates are based on the minimum cost to goal in the
best possible weather given the agent’s knowledge. An al-
ternative approach that is less optimistic but still allows us
to reduce cost estimation to (a series of) shortest path com-
putations in regular graphs is hindsight optimization (HOP).

At each belief state, the hindsight optimization approach
performs a sequence of iterations called rollouts. The num-
ber of rollouts N is a parameter of the algorithm: more
rollouts require more time, but tend to produce more sta-
ble cost estimates. In each rollout, we first randomly gener-
ate a weather according to the blocking probabilities of the
CTP instance that is consistent with the agent’s knowledge
in the given belief state b. In other words, we randomly de-
termine the status of unknown roads using the correct proba-
bilities. If the resulting weather W is bad, the rollout counts
as failed. Otherwise, the rollout counts as successful and we
compute the distance from the agent’s location to the goal in
the subgraph of the roadmap that is traversable in W . The
hindsight optimization cost estimate CN

HOP(b) for N rollouts
is the average of the computed distances over all successful
rollouts.

An alternative and fairly descriptive name for hindsight
optimization is averaging over clairvoyance (Russell and
Norvig 1995). For each weather we consider, we assume
that the agent is “clairvoyant”, i. e., knows ahead of time
which roads are traversable and hence follows the shortest
goal path. Since we do not know the actual weather, we
average over several weathers through stochastic sampling.

As far as we know, policies based on hindsight optimiza-
tion have not previously been considered for the CTP. How-
ever, Bnaya et al. (2008) independently suggested essen-
tially the same idea for the sensing decisions in an algo-
rithm for the CTP with remote sensing. (Their movement
decisions are based on the optimistic policy, however.) In a
wider context, hindsight optimization has recently attracted
considerable interest in the stochastic planning community
(e. g., Yoon et al. 2008), where it has served as the basis of
some highly efficient planning systems. It has also been suc-
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cessfully used for dealing with hidden information in card
games, including the one-player game Klondike Solitaire
(Bjarnason, Fern, and Tadepalli 2009) and the two-party
games bridge (Ginsberg 1999) and Skat (Buro et al. 2009).

Despite these successes, the approach has well-known
theoretical weaknesses: it often converges to a suboptimal
policy as the number of rollouts approaches infinity. Frank
and Basin (2001) give an example of this for the game of
bridge, and Russell and Norvig (1995) describe a very sim-
ple MDP where HOP fails. In the next section, we give an
example of the suboptimality of the HOP policy for the CTP.

Optimistic Rollout

The assumption of clairvoyance is the Achilles heel of the
hindsight optimization approach. Our next algorithm, opti-
mistic rollout (ORO), addresses this issue by modifying how
each rollout is performed. The optimistic rollout approach
computes its cost function CN

ORO in the same way as hind-
sight optimization, by performing a sequence of N rollouts
and averaging over cost estimates for successful rollouts.

The difference between the two algorithms is in how the
cost estimates of a rollout are computed: in a successful
rollout with weather W , rather than using the clairvoyant
goal distance, ORO simulates the optimistic policy on W
and uses the cost of the resulting run as the rollout cost.
Hence, in each rollout the agent follows a shortest path in
the optimistic graph until it reaches the goal or a road which
is blocked in W . In the latter case, it recomputes the opti-
mistic distances based on the new information and follows
a new path, iterating in this fashion until it reaches the goal.
The total distance traveled then serves as the rollout cost.
(We remark that Bnaya, Felner, and Shimony, 2009, inde-
pendently suggested essentially the same estimation method
in their FSSN Single-step VOI algorithm for the CTP with
remote sensing, although they only use it for sensing deci-
sions and use the optimistic policy for movement decisions.)

Clearly, optimistic rollout is only one representative of a
family of policy rollout algorithms, as any policy could be
used in place of the optimistic policy OMT. We choose OMT
because it offers a good trade-off between speed and quality.

UCT

The final approach we consider is the UCT algorithm (Koc-
sis and Szepesvári 2006). UCT, which stands for upper con-
fidence bounds applied to trees, is a state-of-the-art algo-
rithm for many problems of acting under uncertainty, includ-
ing playing Klondike solitaire (Bjarnason, Fern, and Tade-
palli 2009), which like the CTP is a single-agent problem
where the only source of uncertainty is incomplete informa-
tion about the probabilistically selected initial state.

Similar to the previous algorithms, UCT performs N roll-
outs, where N is a parameter. As in the ORO algorithm,
each UCT rollout computes an actual run from the agent lo-
cation to the goal for the given weather, without using infor-
mation that is hidden to the agent, and uses the average cost
of successful rollouts as the overall cost estimate CN

UCT(b).
The difference between UCT and ORO is in how the agent’s
movements during each rollout are determined. While each
rollout is independent in ORO, this is not the case in UCT.

Throughout the following description, let b be the be-
lief state on which UCT is queried. A belief sequence
σ = 〈b, b1, . . . , bi〉 is a sequence of belief states that de-
scribes a possible partial rollout starting from b. We define

• Rk(σ): the number of rollouts among the first k rollouts
for belief state b that start with sequence σ, and

• Ck(σ): the average travel cost to complete these Rk(σ)
rollouts from σ, i. e., the average cost that is incurred on
these rollouts from the end of σ to the goal.

Each UCT rollout starts from belief sequence 〈b〉 and iter-
atively adds successor belief states until the goal is reached.
Let ρ be an unfinished belief sequence for the (k+1)-th roll-
out which ends in belief state bi. We must describe how UCT
picks the next belief state among the successors b′1, . . . , b

′
m

of bi. Let ρi be the sequence 〈ρ; b′i〉, i. e., ρ extended with
b′i. UCT favors successors that led to low cost in previous

rollouts (where Ck(ρi) is low) and have been rarely tried in
previous rollouts (where Rk(ρi) is low). To balance these
criteria, which is the classical trade-off between exploita-
tion and exploration, it picks a candidate ρi maximizing the

UCT formula B

√

log Rk(ρ)
Rk(ρi)

− cost(ρ, ρi) − Ck(ρi), where

cost(ρ, ρi) is the travel cost from ρ to ρi and B > 0 is a bias
parameter of which more will be said shortly. If Rk(ρi) = 0,
the value of the formula is considered to be ∞, so that the
first m rollouts starting with ρ visit each successor once. The
UCT formula is designed to select each successor arbitrarily
often given sufficiently many visits of ρ, yet successors that
have been unpromising in the past are chosen increasingly
more rarely over time.

Blind vs. Optimistic UCT. Note that the UCT algorithm
as described so far does not take into account any problem-
specific information that would bias the rollouts towards the
goal. We call the resulting approach blind UCT (UCTB).
Our experimental results will show that UCTB does not per-
form very well on the CTP; it would require a prohibitively
large number of rollouts to converge to a good policy. How-
ever, it is possible to slightly modify the basic UCT algo-
rithm to provide it with some guidance towards the goal.
Specifically, we implemented the following two modifica-
tions that result in the optimistic UCT approach (UCTO):

• When extending a partial rollout ρ which has several un-
visited successors, break ties in favor of successors with
low COMT value.

• When evaluating the UCT formula, define Rk(σ) and
Ck(σ) as if there had been M additional rollouts for each
successor ρi, each with cost COMT(b′i), where M is an-
other algorithm parameter.

These modifications guide early rollouts towards promis-
ing parts of the belief space while not affecting the behavior
in the limit. Similar extensions to UCT have shown great
success in the game of Go (Gelly and Silver 2007).

In our experiments, we used a value of M = 20, which
was determined empirically. We obtained comparable re-
sults for other values in the range 5–80, but significantly
worse performance for M = 0 or M = 1.
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The cost function used for the additional “virtual” roll-
outs (in our case COMT) is somewhat reminiscent of heuris-
tic functions for deterministic search problems, and the M
parameter plays a somewhat similar role to the weight pa-
rameter in the weighted A∗ search algorithm (Pearl 1984) in
the sense that it balances to what extent the algorithm relies
on heuristic information rather than information obtained by
search. However, unlike the weight parameter in weighted
A∗, our parameter M does not have a clear cut influence on
solution quality. As in deterministic search, it is an inter-
esting question how to trade off between the accuracy and
computation speed of the cost function used for the virtual
rollouts. For example, one might use the cost functions of
the HOP or ORO approaches instead of the optimistic cost.

Bias Parameter. To complete our discussion of UCT, we
describe how we choose the bias parameter B which bal-
ances exploration and exploitation. The analysis in the UCT
convergence proof by Kocsis and Szepesvári (2006) sug-
gests that B should be chosen in such a way that it grows
linearly with the optimal cost C∗(b). This is also desirable
because it means that the policy remains invariant when ap-
plying a scaling constant to the travel costs. As the optimal
cost is of course unavailable, we estimate it for the (k+1)-th
rollout by the average cost of the previous k rollouts. (This is
undefined for k = 0, but B does not affect the choices of the
first rollout anyway.) For the UCTO variant, we additionally
divide the bias by 10 to further encourage exploitation.

Theoretical Evaluation

We have introduced four different approaches for the CTP.
(We treat UCTB and UCTO as a single approach in this sec-
tion, as all results apply equally to both). What are their
strengths and weaknesses? How accurately do their cost
functions approximate the true cost C∗? Here we present
some formal answers to these questions. For space reasons,
we only provide proof sketches. We begin with a basic re-
sult:

Theorem 1 As the number of rollouts N approaches∞, the
HOP, ORO and UCT cost functions converge in probability.

Proof sketch: Individual HOP or ORO rollout costs are in-
dependent and identically-distributed bounded random vari-
ables, so the strong law of large numbers applies. (Bound-
edness follows from our discussion of reasonable policies.)

The UCT result is covered by the proof of Theorem 2.
Convergence of cost functions in probability implies con-

vergence of the induced policies with probability 1 for those
belief states which have a unique successor that minimizes
the cost function in the limit. If the minimizing successor is
not unique, the policy in the limit will randomly choose one
of the minimizers.

In the rest of this section, we denote the cost functions
to which the N -rollout cost functions converge with C∞

HOP,
C∞

ORO and C∞
UCT and consider the policies in the limit rather

than policies based on a finite number of rollouts. Theorem 1
ensures that these notions are well-defined.

To motivate the ideas underlying our main result, the ex-
ample instance in Fig. 1 illustrates the different pitfalls that

Figure 1: Example with pitfalls for OMT, HOP and ORO.
Edge labels p : w denote blocking probability p (omitted for
guaranteed roads, i. e., when p = 0) and travel cost w.

OMT, HOP and ORO fall prey to. We assume that ǫ is very
small and limit attention to runs where all roads with block-
ing probability ǫ are traversable and the road with blocking
probability 1 − ǫ is blocked.

The optimistic policy is led astray by the cheap but very
unlikely path that reaches v⋆ via v6. It would follow the path
v0–v5–v6–v5–v⋆, for a total cost of 170.

Hindsight optimization chooses wrongly because there is
a high probability of a cheap goal path via v1 and any of
the locations v2/v3/v4, but it is not clear which of these three
locations to enter. It would assign a cost of 100 to the v0–v⋆

choice, a cost close to 90 to the v0–v5 choice (due to path
v0–v5–v⋆) and a cost close to 75 (= 10+ (7

8 · 60 + 1
8 · 100))

to the v0–v1 choice, hence moving to v1 first. At v1 it would
realize the suboptimality of its choice and ultimately reach
the goal via path v0–v1–v0–v5–v⋆ at cost 110.

Optimistic rollout is fooled by the fact that OMT acts sub-
optimally in v5, giving rise to an exaggerated cost estimate
for v5. It would follow the path v0–v⋆ at cost 100.

Finally, UCT converges to the optimal policy, following
the path v0–v5–v⋆ at cost 90. This is a consequence of our
main result, which we now present.

Theorem 2 For all CTP instances I and belief states b:

COMT(b) ≤ C∞
HOP(b) ≤ C∞

UCT(b) = C∗(b) ≤ C∞
ORO(b),

where UCT refers to both policy variants. Moreover, there
are instances where all inequalities are strict and the ratio
between any two different cost functions is arbitrarily large.

Proof sketch: For UCTB, convergence to the optimal cost
function (and hence also to the optimal policy) follows
from a slight generalization of Theorem 6 of Kocsis and
Szepesvári (2006). The modifications to UCTB that give
rise to UCTO do not affect behavior in the limit as the al-
gorithm will eventually explore all branches an unbounded
number of times, independently of any initialization to the
Rk and Ck values, and the contribution of the initial Rk and
Ck values to the UCT formula converges to zero over time.

C∗(b) ≤ C∞
ORO(b) holds because each ORO rollout corre-

sponds to an actual run of the CTP instance under some pol-
icy (namely, the optimistic one), which cannot have a lower
expected cost than the optimal cost C∗.
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To prove COMT(b) ≤ C∞
HOP(b) ≤ C∗(b), let I be the given

instance with road set R and let Π be the set of all policies
for I. We can show that for the initial belief state b0:

COMT(b0) = min
π∈Π

min
W⊆R

cost(I, W, π)

C∞
HOP(b0) = E[min

π∈Π
cost(I, W, π)]

C∗(b0) = min
π∈Π

E[cost(I, W, π)]

where expected values are w.r.t. the random choice of (good)
weather W . The result for b0 follows from this by simple
arithmetic and readily generalizes to all belief states.

To show arbitrary separation between COMT, C∞
HOP, C∗

and C∞
ORO, we use augmented versions of the “pitfalls” for

the respective algorithms exemplified in Fig. 1.
A practical consequence of this theorem is that there are

many CTP instances on which the hindsight optimization
and optimistic rollout policies behave suboptimally no mat-
ter how many computing resources are available, i. e., they
have fundamental limitations rather than just practical lim-
itations caused by limited sampling. UCT does not share
these fundamental weaknesses, although we will see in the
next section that the blind version of UCT requires pro-
hibitively many samples to achieve good performance on
CTP instances of interesting size.

Experimental Evaluation

To evaluate the algorithms empirically, we performed ex-
periments on Delaunay graphs, following the example of
Bnaya, Felner, and Shimony (2009). For each algorithm and
benchmark graph, we performed 1000 runs to estimate the
true policy cost as defined in Eq. 1 with sufficient accuracy.

Main experiment. In our main experiment, we generated
ten small (20 locations, 49–52 roads), ten medium-sized (50
locations, 133–139 roads) and ten large (100 locations, 281–
287 roads) problem instances. All problem instances were
generated from random Delaunay graphs. Bnaya, Felner,
and Shimony (2009) argue that Delaunay graphs are reason-
able models for small-sized road networks. All roads can
potentially be blocked, with blocking probabilities chosen
uniformly and independently for each road from the range
[0, 1). Travel costs were generated independently for each
road by uniform choice from {1, . . . , 50}. Initial and goal
locations were set to be at “opposite ends” of the graph.

We evaluated all algorithms on these 30 benchmarks, us-
ing 10000 rollouts for the probabilistic algorithms. Table 1
shows the outcome of the experiment. The optimistic UCT
algorithm dominates, always providing the cheapest policies
except for three cases where the difference between UCTO
and the best performance is below 1, which is not statisti-
cally significant. In addition to UCTO, the HOP and ORO
algorithms also significantly outperform the optimistic ap-
proach, clearly demonstrating the benefit of taking uncer-
tainty into account for the CTP. These overall results nicely
complement our theoretical results. We conjecture that for
some of the graphs where the UCTO policy significantly
outperforms the other policies, it reaches a solution quality
that is unobtainable for HOP and ORO in the limit.

OMT HOP ORO UCTB UCTO

20-1 205.9±7 171.6±6 176.3±5 210.7±7 169.0±6

20-2 187.0±5 155.8±3 150.3±3 176.4±4 148.9±3

20-3 139.5±6 138.7±6 134.2±6 150.7±7 132.5±6

20-4 266.2±8 286.8±8 264.2±7 264.8±9 235.2±7

20-5 163.1±7 113.3±5 113.0±6 123.2±7 111.3±5

20-6 180.2±6 142.0±4 134.4±4 165.4±6 133.1±3

20-7 172.2±5 150.2±4 168.8±4 191.6±6 148.2±4

20-8 150.1±6 133.6±5 137.7±5 160.1±7 134.5±5

20-9 222.0±5 177.1±4 176.4±4 235.2±6 173.9±4

20-10 178.2±6 188.1±6 166.3±5 180.8±7 167.0±5

∅ C 186.5±2 165.7±2 162.2±2 185.9±2 155.4±2

∅ Trun 0.00 s 0.73 s 2.12 s 2.37 s 1.57 s

∅ Tdec 0.00 s 0.11 s 0.36 s 0.35 s 0.26 s

50-1 255.5±10 250.6±9 214.3±7 229.4±12 186.1±7

50-2 467.1±11 375.4±7 406.1±8 918.0±16 365.5±7

50-3 281.5±9 294.5±7 268.5±7 382.1±15 255.6±7

50-4 289.8±9 263.9±7 241.6±7 296.6±12 230.5±7

50-5 285.5±10 239.5±8 229.5±7 290.8±11 225.4±7

50-6 251.3±10 253.2±9 238.3±9 405.2±21 236.3±8

50-7 242.2±9 221.9±7 209.3±7 250.5±11 206.3±7

50-8 355.1±11 302.2±9 300.4±8 462.6±15 277.6±8

50-9 327.4±13 281.8±11 238.1±9 295.2±18 222.5±9

50-10 281.6±8 271.2±7 249.0±6 390.8±15 240.8±6

∅ C 303.7±3 275.4±3 259.5±3 392.1±6 244.7±2

∅ Trun 0.00 s 6.36 s 28.02 s 40.48 s 13.99 s

∅ Tdec 0.00 s 0.42 s 2.39 s 2.65 s 1.23 s

100-1 370.9±11 319.3±9 326.8±9 464.5±21 286.8±7

100-2 160.6±8 154.5±7 153.2±7 185.9±12 151.5±7

100-3 550.2±18 488.1±15 451.3±14 811.1±39 412.2±13

100-4 420.1±10 329.8±7 348.7±8 552.3±20 314.3±7

100-5 397.0±16 452.4±18 348.1±13 654.6±43 348.3±13

100-6 455.0±12 487.9±11 399.9±10 741.7±29 396.2±9

100-7 431.4±15 403.9±14 370.1±12 716.2±39 358.2±12

100-8 335.6±12 322.0±12 295.7±11 405.7±25 293.3±10

100-9 327.5±14 366.1±15 273.8±11 382.1±27 262.0±10

100-10 381.5±11 388.4±11 347.1±9 735.1±32 342.3±9

∅ C 383.0±5 371.3±4 331.5±4 564.9±10 316.5±3

∅ Trun 0.00 s 20.33 s 124.03 s 162.00 s 43.74 s

∅ Tdec 0.00 s 0.88 s 7.71 s 7.38 s 2.87 s

Table 1: Average travel costs with 95% confidence inter-
vals for 1000 runs on roadmaps with 20 (top), 50 (middle),
and 100 (bottom) locations. Best results on each graph are
highlighted in bold. In each block, the three last rows show
average travel cost (∅ C), average runtime per run (∅ Trun),
and average runtime per decision (∅ Tdec) for the ten graphs
in that block.

On average, the UCTO algorithm reduces the costs com-
pared to the optimistic policy by 16.7% on the small in-
stances, by 19.4% on the medium-sized instances, and by
17.4% on the large instances, a huge improvement. The
blind UCT algorithm does not fare well, converging too
slowly – a not unexpected result, as the initial rollouts of
UCTB have to reach the goal through random walks. The
poor performance of UCTB underlines that these bench-
marks are far from trivial.

While we want to emphasize policy quality, not runtime,
the table also provides some runtime results. They show
that in our implementation, UCTO is about twice as slow as
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Figure 2: Average travel cost as a function of rollout number
for benchmark instance 50-9.

HOP and three times as fast as ORO on the large graphs. In
absolute terms, UCTO on average requires 0.26 seconds per
decision on the smaller graphs, 1.23 seconds on the medium-
sized graphs, and 2.87 seconds on the large graphs. The per-
haps surprising speed advantage of UCTO over ORO can be
explained by the fact that (as indicated at the beginning of
the section on policies for the CTP) UCTO performs 10000
total rollouts per decision, while HOP and ORO perform
10000 rollouts for each successor belief state. UCTB is the
slowest algorithm by far because its rollouts tend to require
more steps to reach the goal and do not revisit previously
explored belief sequences to the same extent as UCTO.

Rollouts and Scalability. To analyze the speed of con-
vergence and scalability of the probabilistic algorithms, we
performed additional experiments on individual benchmarks
where we varied the rollout number in the range 10–100000.
Figure 2 shows the outcome for benchmark graph 50-9. We
see that apart from UCTB, the probabilistic algorithms al-
ready obtain a better quality than the optimistic policy with
only about 100 rollouts, which require very little compu-
tation. ORO and HOP begin to level off after about 1000
rollouts, where UCTO still continues to improve. The fig-
ure also shows that the eventual convergence of UCTB to an
optimal policy (shown in Theorem 2) is of limited practical
utility, as it would require a number of rollouts far beyond
what is feasible in practice.

To further evaluate the scalability of the algorithms, we
have also performed limited experiments on benchmarks
with up to 500 locations. These suggest that the advantage
of UCTO over the optimistic policy increases on larger in-
stances, although we do not have sufficient data to conclude
this with confidence. Runtime per decision grows slightly
faster than linearly in the problem size.

Remote Sensing. In our main experiment, we did not
compare to other algorithms than those discussed in this
paper because there is practically no work in the literature
that describes different policies for the CTP with a focus on
policy quality. The major exception to this is the paper by
Bnaya, Felner, and Shimony (BFS in the following), which
introduces and compares four algorithms for a slightly dif-
ferent problem, the CTP with remote sensing. In this CTP

variant, agents may sense the status of roads from a distance,
at a cost, and the objective is to minimize the total of travel
cost and sensing cost. The policies Always, Exp, and VOI
suggested by BFS make use of these capabilities and are
compared to the policy Never which never performs sens-
ing actions and is equivalent to the optimistic policy.

In our last experiment, we compare the OMT, HOP, ORO
and UCTO approaches to the four algorithms by BFS on the
CTP with remote sensing. (We do not consider UCTB due
to its bad performance in the main experiment.) For our ap-
proaches, we treat the CTP with remote sensing instances
as regular CTP instances. Thus, we compare policies that
attempt to make use of sensing capabilities intelligently to
ones that never perform remote sensing. We evaluate on 120
problem instances, a subset of the 200 instances used in the
original experiments by BFS. (The remaining 80 instances
were not available.) All instances have 50 locations and are
based on Delaunay graphs. Different from our main exper-
iments, in these roadmaps all roads have the same blocking
probability p, with 30 instances each for p = 0.1, p = 0.3,
p = 0.5, and p = 0.6. Similar to our stochastic algorithms,
the VOI algorithm introduced by BFS has a sampling size
parameter, which we set to 50 to keep the runtime of the
approach reasonable. (It should be noted, though, that the
implementation of BFS is not optimized with respect to run-
time, and no conclusions should be drawn from the compar-
atively large runtime of VOI.) The cost for sensing actions
was set to 5 in these experiments, one of three settings con-
sidered in the BFS paper.

The experimental results (Table 2) show that our never-
sensing policies are competitive with the best policies of
BFS and outperform them on the instances with larger
blocking probabilities. In fact, in this experiment the algo-
rithms that make use of sensing capabilities do not improve
over the never-sensing optimistic policy on average, differ-
ently from the results reported by BFS. We do not know
why this is the case and cannot rule out a bug. If there is
no bug, our results are likely more accurate since they con-
sider a much larger number of runs per algorithm (120000
compared to 200 in the paper by BFS).

Conclusion
We investigated the problem of finding high-quality poli-
cies for the stochastic version of the Canadian Traveler’s
problem. In addition to the optimistic approach commonly
considered in the CTP literature, we discussed three al-
gorithms which take into account blocking probabilities in
their decision-making process.

We studied the convergence properties of these algorithms
and proved a clear ordering between the underlying cost
functions. Experimentally, we showed that the new algo-
rithms, in particular our adaptation of UCT, offer significant
improvements over the optimistic approach. These improve-
ments are large enough to offer competitive performance to
state-of-the art approaches for the CTP with remote sensing
even when performing no sensing at all.

In the future, we want to examine if better initialization
procedures can further improve the convergence behavior of
our UCT-based algorithm. Furthermore, we intend to adapt
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OMT HOP ORO UCTO Never EXP VOI Always

p = 0.1 ∅ C 155.2±0.3 156.8±0.3 155.0±0.3 155.5±0.3 155.2±0.3 154.9±0.3 154.9±0.3 203.1±0.4

∅ Trun 0.00 s 5.12 s 12.31 s 2.85 s 0.00 s 0.05 s 15.88 s 0.00 s

∅ Tdec 0.00 s 0.54 s 1.38 s 0.32 s 0.00 s 0.00 s 0.86 s 0.00 s

p = 0.3 ∅ C 216.9±1.0 234.5±1.1 212.3±0.9 211.4±0.9 217.4±1.0 219.2±0.9 218.9±0.9 317.2±1.4

∅ Trun 0.00 s 5.03 s 13.66 s 7.38 s 0.01 s 0.06 s 26.77 s 0.00 s

∅ Tdec 0.00 s 0.35 s 1.22 s 0.64 s 0.00 s 0.00 s 1.08 s 0.00 s

p = 0.5 ∅ C 298.9±1.5 302.6±1.5 281.7±1.4 278.5±1.4 301.1±1.5 304.3±1.4 309.3±1.5 462.1±2.5

∅ Trun 0.00 s 3.23 s 6.25 s 6.30 s 0.01 s 0.07 s 38.60 s 0.00 s

∅ Tdec 0.00 s 0.19 s 0.47 s 0.46 s 0.00 s 0.00 s 1.21 s 0.00 s

p = 0.6 ∅ C 302.4±1.5 293.8±1.4 286.0±1.4 281.6±1.4 306.0±1.5 311.4±1.4 316.4±1.5 488.8±2.6

∅ Trun 0.00 s 2.55 s 4.11 s 3.00 s 0.01 s 0.07 s 39.19 s 0.00 s

∅ Tdec 0.00 s 0.17 s 0.30 s 0.21 s 0.00 s 0.00 s 1.24 s 0.00 s

Table 2: Results for the CTP with sensing benchmarks of Bnaya, Felner, and Shimony (2009) with fixed sensing cost of 5.
Notation as in Table 1. Our algorithms (left half) do not make use of the sensing capabilities, while the Always, EXP and VOI
algorithms do. Each block summarizes the results for 30 graphs where all roads are blocked with the same probability p, shown
in the first column. For each algorithm and graph, results are averaged over 1000 runs. OMT and Never implement the same
policy. The small but significant difference in policy quality appears to be due to a minor bug in the Never implementation.

our algorithms to related problems such as the CTP with re-
mote sensing and to more general problems such as proba-
bilistic planning.
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