
Integrity Constraints in OWL

Jiao Tao1, Evren Sirin2, Jie Bao1, Deborah L. McGuinness1

1 Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
2 Clark & Parsia, LLC, Washington, DC 20001, USA

Abstract

In many data-centric semantic web applications, it is de-
sirable to use OWL to encode the Integrity Constraints
(IC) that must be satisfied by instance data. However,
challenges arise due to the Open World Assumption
(OWA) and the lack of a Unique Name Assumption
(UNA) in OWL’s standard semantics. In particular, con-
ditions that trigger constraint violations in systems us-
ing the Closed World Assumption (CWA), will generate
new inferences in standard OWL-based reasoning appli-
cations. In this paper, we present an alternative IC se-
mantics for OWL that allows applications to work with
the CWA and the weak UNA. Ontology modelers can
choose which OWL axioms to be interpreted with our
IC semantics. Thus application developers are able to
combine open world reasoning with closed world con-
straint validation in a flexible way. We also show that
IC validation can be reduced to query answering under
certain conditions. Finally, we describe our prototype
implementation based on the OWL reasoner Pellet.

Introduction

The Web Ontology Language (OWL) (Smith, Welty, and
McGuiness 2004; Motik, Patel-Schneider, and Grau 2009) is
an expressive ontology language based on Description Log-
ics (DL) (Baader et al. 2003) 1 with sound and complete
reasoning algorithms. The semantics of OWL addresses dis-
tributed knowledge representation scenarios where complete
knowledge about the domain cannot be assumed. Further,
the semantics has the following characteristics 2:

• the presence of the OWA: i.e., a statement cannot be in-
ferred to be false on the basis of failures to prove it.

• the absence of the UNA: i.e., two different names may
refer to the same object.

However, these characteristics can make it difficult to use
OWL for data validation purposes in real-world applications
where complete knowledge can be assumed for some or all
parts of the domain, as shown by the following examples.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Throughout the paper we use the terms OWL, OWL 2, and DL
interchangeably.

2Note that these characteristics do not just pertain to OWL.

Example 1. Suppose we have a KB K containing informa-
tion about products in a company’s inventory as follows:

K = {Product(p)}

One might add the following axiom to express the constraint
that “every product is produced by a producer”:

α : Product ⊑ ∃hasProducer.Producer

In this example, due to the OWA, not having a known pro-
ducer for p does not cause a logical inconsistency. There-
fore, we cannot use α to detect (or prevent) that a product is
added to the KB without the producer information.

Example 2. Suppose the inventory KB K looks like this:

K = {Product(p), hasProducer(p, m1),
hasProducer(p, m2)}

One might add the following axiom to express the constraint
“a product has at most one producer”:

α : Product ⊑ ≤ 1hasProducer.⊤

Since m1 and m2 are not explicitly defined to be differ-
ent, they will be inferred to be same due to the cardinality
restriction. However, in many cases, the intention to use the
above cardinality restriction is not to draw this inference, but
to detect an inconsistency. When the information about in-
stances are coming from multiple sources we cannot always
assume that explicit inequalities will be present.

Besides the examples above, we have also identified sev-
eral other requirements for ICs from the OWL community
through a user survey. We observed a need to use OWL as
an Integrity Constraint (IC) language using closed world se-
mantics. That is, we observed a desire to adopt the OWA
without the UNA for parts of the domain where incomplete
knowledge exists. Simultaneously, we would like to use
the Closed World Assumption (CWA)3 with the UNA oth-
erwise. This calls for the ability to combine the open world
reasoning of OWL with closed world constraint validation.

In this paper, we demonstrate how to extend OWL with
ICs. First, we describe an alternative IC semantics for OWL,
which enables developers to augment OWL ontologies with
IC axioms. Standard OWL axioms in the ontologies are
used to compute inferences with the open world semantics
and ICs are used to validate instance data with the closed

3With CWA, a statement is inferred to be false if it is not known
to be true, which is the opposite of OWA.

1443

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

world semantics. Our goal is to enable efficient data vali-
dation with OWL, especially in settings where OWL KBs
are integrated with relational databases and ICs are needed
to enforce the named individuals have some known values.
Then, we show that IC validation can be reduced to query
answering when the KB expressivity is within SRI or the
constraint expressivity is within SROI . The queries gen-
erated from ICs can be expressed with SPARQL, allowing
existing OWL reasoners to be used for IC validation easily.

Related Work

Research on integrating ICs with OWL has been conducted
in multiple directions. One approach to achieve this combi-
nation is to couple OWL with rule-based formalisms and to
express ICs as rules without heads (e.g., (Eiter et al. 2008;
Motik 2007)). With this approach, ontology developers have
to deal with both the rule language and the ontology lan-
guage (OWL) to model the domain.

ICs can also be expressed using the epistemic query lan-
guage EQL-Lite (Calvanese et al. 2007) where one can
pose epistemic FOL queries against standard FOL KBs. Al-
though the data complexity of answering EQL-Lite queries
in DL-Lite is LOGSPACE, it would require substantially
more effort to support EQL-Lite in DL KBs with full ex-
pressivity and the complexity results are still unknown.

Another approach is the epistemic extension of DLs
(Donini et al. 1998; Donini, Nardi, and Rosati 2002) where
ICs are represented as epistemic DL axioms and the satisfac-
tion of ICs is defined as epistemic axiom entailments. How-
ever, this approach adopts strict UNA which is not compati-
ble with OWL because standard OWL axioms can be used to
infer that two different names identify the same individual.
While existing research has focused on epistemic extensions
for the relatively inexpressive ALC, it is still not clear how
to combine epistemic logics with more expressive DLs.

The closest related work to ours is the approach that
reuses OWL as an IC language. One notable effort work
along this line is a proposal by Motik et al. (Motik, Hor-
rocks, and Sattler 2007) which is based on a minimal Her-
brand model semantics of OWL. Given an OWL KB K con-
sisting of a TBox and an ABox, and a constraint TBox, an
axiom in the constraint TBox is satisfied by K if all mini-
mal Herbrand models satisfy it. However, as shown in the
following cases, this approach may result in counterintuitive
results or a significant modeling burden.

First, unnamed individuals can satisfy constraints, which
is not desirable for closed world data validation.

Example 3. Consider a KB K that contains a product in-
stance p and its unknown producer, and a constraint α that
every product should have a known producer:
K = {A ≡ ∃hasProducer.Producer,

Product(p), A(p)}
α : Product ⊑ A

Since p has a producer in every minimal Herbrand model
of K, α is satisfied, even though the producer is unknown.

Second, if a constraint needs to be satisfied only by named
individuals, then a special concept O has to be added into
the original IC axiom, and every named individual should be

asserted as an instance of O. This adds a significant main-
tenance burden on ontology developers, in particular when
modification to the original TBox or ABox is not allowed or
too costly. Further, the next example shows that the intuition
behind the constraint may not be correctly captured.

Example 4. Suppose we have a KB K where there are two
possible producers for a product p and a constraint α:

K = {B ≡ ∃hasProducer.{m1, m2}, Product(p),
B(p), Producer(m1), Producer(m2),
O(p), O(m1), O(m2)}

α : Product ⊑ ∃hasProducer.(Producer⊓O)

The intuition behind the constraint α is that the producer
of every product should be known. Even though we do not
know the producer of p is m1 or m2, α is still satisfied by the
semantics of (Motik, Horrocks, and Sattler 2007) because in
every minimal Herbrand model p has a producer that is also
an instance of Producer and O.

Third, disjunctions and ICs may interact in unexpected
ways.

Example 5. Consider the following KB K where there are
two categories for products and a constraint α defined on
one of the categories:

K = {Product ⊑ Category1 ⊔ Category2,
Product(p)}

α : Category1 ⊑ ∃categoryType.⊤

Since we are not sure that p belongs to Category1, it is
reasonable to assume that the constraint will not apply to
p and it will not be violated. However, α is violated with
the (Motik, Horrocks, and Sattler 2007) semantics because
there is a minimal model where p belongs to Category1 but
it does not have a categoryType value.

In this paper, we present a new IC semantics for OWL that
can correctly capture the intended closed world constraint
semantics and thus overcomes the above issues.

Preliminaries

Description Logics SROIQ

In this section, we describe the syntax and semantics of the
Description Logic SROIQ (Horrocks, Kutz, and Sattler
2006), which provides the logical foundation of OWL 2.

Let NC , NR, NI be non-empty and pair-wise disjoint sets
of atomic concepts, atomic roles and named individuals re-
spectively. The SROIQ role R is an atomic role or its in-
verse R−. Concepts are defined inductively as follows:

C ← A | ¬C | C1 ⊓ C2 | ≥ nR.C | ∃R.Self | {a}

where A ∈ NC , a ∈ NI , C(i) a concept, R a role.

We use the following standard abbreviations for concept
descriptions: ⊥ = C⊓¬C,⊤ = ¬⊥, C⊔D = ¬(¬C⊓¬D),
≤ nR.C = ¬(≥ n+1 R.C), ∃R.C = (≥ 1 R.C), ∀R.C =
¬(∃R.¬C), {a1, . . . , an} = {a1} ⊔ · · · ⊔ {an}.

A SROIQ-interpretation I = (∆, ·I), where ∆ is the
domain, and .I is the interpretation function which maps
A ∈ NC to a subset of ∆, R ∈ NR to a subset of ∆×∆, a ∈
NI to an element of ∆. The interpretation can be extended

1444

to inverse roles and complex concepts as follows:

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}, (¬C)I = ∆ \ CI ,

(C ⊓D)I = CI ∩DI ,

(≥ nR.C)I = {x | #{y | 〈x, y〉 ∈ RI , y ∈ CI} ≥ n}

(∃R.Self)I = {x | 〈x, x〉 ∈ RI}, {a}I = {aI}.

where # denotes the cardinality of a set.
A SROIQ knowledge base K is a collection of TBox

(terminology) and RBox (role) SROIQ axioms which
are listed in Table 1, and Abox (assertion) axioms (C(a),
R(a, b), a = b, a 6= b) where their semantics is given by
encoding them as TBox axioms ({a} ⊑ C, {a} ⊑ ∃R.{b},
{a} ⊑ {b}, {a} ⊑ ¬{b}, resp.).

Type Axiom Condition on I
TBox C ⊑ D CI ⊆ DI

RBox

R1 ⊑ R2 RI
1 ⊆ RI

2

R1 . . . Rn ⊑ R RI
1 ◦ . . . ◦RI

n ⊆ RI

Ref(R) ∀x ∈ ∆ : 〈x, x〉 ∈ RI

Irr(R) ∀x ∈ ∆ : 〈x, x〉 6∈ RI

Dis(R1, R2) RI
1 ∩RI

2 = ∅

Table 1: Axiom satisfactions in the SROIQ-interpretation

We say that an interpretation I satisfies a SROIQ axiom
α, denoted I |= α if the corresponding condition on I in
Table 1 is satisfied. I is a model of K if it satisfies all the
axioms in K. We define Mod(K) to be the set of all models
of K. We say that K entails α, written as K |= α, if I |= α
for all models I ∈Mod(K).

Distinguished Conjunctive Query (DCQ)

We now describe the syntax and semantics of distinguished
conjunctive query (DCQ). Let NV be a non-empty set of
variable names disjoint from NI , NC , and NR. A query
atom is an ABox axiom where variables can be used in place
of individuals. Formally, it is defined as follows:

q ← C(x) | R(x, y) | ¬R(x, y) | x = y | x 6= y

where x, y ∈ NI ∪ NV , C is a concept, and R is a role. A
conjunctive query (CQ) is a conjunction of query atoms:

Q← q | Q1 ∧Q2

A DCQ is a CQ containing only distinguished variables.4

The semantics of DCQ is given in terms of interpretations
defined in the previous subsection We define an assignment
σ : NV → NI to be a mapping from the variables used in
the query to named individuals in the KB. We use σ(Q) to
denote the application of an assignment σ to a query Q such
that the variables in the query are replaced with individuals
according to the mapping. We say a KB K entails a DCQ
Q with an assignment σ, written as K |=σ Q, if:

K |=σ q iff K |= σ(q)

K |=σ Q1 ∧Q2 iff K |=σ Q1 and K |=σ Q2

We define the answers to a query, A(Q,K), to be the set
of all assignments for which the KB entails the query. That

4A distinguished variable can be mapped to only known indi-
viduals, i.e., an element from NI

is, A(Q,K) = {σ | K |=σ Q}. We say that a query is true
w.r.t. a KB, denoted K |= Q, if there is at least one answer
for the query, and false otherwise.

IC Semantics

There has been a significant amount of research to de-
fine the semantics of ICs for relational databases, deductive
databases, and knowledge representation systems in general.
There are several proposals based on KB consistency or KB
entailment. Against these approaches, Reiter (Reiter 1988)
argued that ICs are epistemic in nature and are about “what
the knowledge base knows”. He proposed that ICs should
be epistemic first-order queries that will be asked against a
standard KB that does not contain epistemic axioms.

We agree with Reiter’s assessment of the epistemic nature
of ICs. We believe this is an appropriate semantics for ICs.
We will now describe an alternative IC semantics for OWL
axioms, which is similar to how the semantics of epistemic
DL ALCK (Donini et al. 1998) and MKNF DL ALCKNF

(Donini, Nardi, and Rosati 2002) are defined. Then, we dis-
cuss how our IC semantics addresses the issues explained in
the introduction and the related work sections, and how it
enables OWL to be an IC language.

Formalization

We define IC-interpretation as a pair I,U where I is a
SROIQ interpretation defined over the domain ∆I and U
is a set of SROIQ interpretations. The IC-interpretation
function .I,U maps concepts to a subset of ∆, roles to a sub-
set of ∆×∆ and individuals to an element of ∆ as follows:

CI,U = {xI | x ∈ NI s.t. ∀J ∈ U , xJ ∈ CJ }

RI,U = {〈xI , yI〉 | x, y ∈ NI s.t.

∀J ∈ U , 〈xJ , yJ 〉 ∈ RJ }

where C is an atomic concept and R is a role. According to
this definition, CI,U is the interpretation of named individ-
uals that are instances of C in every (conventional) interpre-
tation from U . RI,U can be understood similarly.

IC-interpretation I,U is extended to inverse roles and
complex concepts as follows:

(R−)I,U = {〈xI , yI〉 | 〈yI , xI〉 ∈ RI,U},

(C ⊓D)I,U = CI,U ∩DI,U , (¬C)I,U = NI \ CI,U ,

(≥ nR.C)I,U = {xI | x ∈ NI s.t.

#{yI | 〈xI , yI〉 ∈ RI,U and yI ∈ CI,U} ≥ n},

(∃R.Self)I,U = {xI | x ∈ NI s.t. 〈xI , xI〉 ∈ RI,U},

{a}I,U = {aI}.

We can see that the IC-interpretation I,U is using the
closed-world assumption. For example, the elements of
CI,U are the interpretation of named individuals that should
be in the interpretation set of CI for all I ∈ U . Any named
individual that can not be proven to be an instance of C is
assumed to be an instance of ¬C since (¬C)I,U is the com-
plement of CI,U w.r.t. NI .

Note that, although the IC interpretations have some
similarities to the epistemic interpretations of ALCK and

1445

Type Axiom Condition on I,U
TBox C ⊑ D CI,U ⊆ DI,U

RBox

R1 ⊑ R2 RI,U
1 ⊆ RI,U

2

R1 . . . Rn ⊑ R RI,U
1 ◦ . . . ◦RI,U

n ⊆ RI,U

Ref(R) ∀x ∈ NI : 〈xI,U , xI,U〉 ∈ RI,U

Irr(R) ∀x ∈ NI : 〈xI,U , xI,U〉 6∈ RI,U

Dis(R1, R2) RI,U
1 ∩RI,U

2 = ∅

Table 2: Axiom satisfactions in the IC-interpretation

ALCKNF (Donini et al. 1998; Donini, Nardi, and Rosati
2002), there are some important differences. First, the IC
interpretation in our approach is applicable to any SROIQ
DL KB while the expressivity of DLs in (Donini et al. 1998;
Donini, Nardi, and Rosati 2002) is limited to ALC. Second,
inALCK andALCKNF (Donini et al. 1998; Donini, Nardi,
and Rosati 2002), strict UNA is used by the interpretations
which is not the case in IC interpretations.

In our IC semantics, we want to adopt a weak form of
UNA; that is, two named individuals with different iden-
tifiers are assumed to be different by default unless their
equality is required to satisfy the axioms in the KB. This
idea is similar to minimal model semantics where equality
relation is treated as a congruence relation and minimized.

We formalize this notion of weak UNA by defining Min-
imal Equality (ME) models. We start by defining the ≺=

relation. Given two models I and J , we say J ≺= I if all
of the following conditions hold:

• For every concept C, J |= C(a) implies I |= C(a);

• For every role R, J |= R(a, b) implies I |= R(a, b);

• EJ ⊂ EI

where EI is the set of equality relations between named in-
dividuals (equality relations, for short) satisfied by I:

EI = {〈a, b〉 | a, b ∈ NI s.t. I |= a = b}

ModME(K) is the models of K with minimal equality
(ME) between named individuals. Formally, we define

ModME(K) =

{I ∈Mod(K) | ∄J ,J ∈Mod(K),J ≺= I}

It is easy to see that for every ME model I in ModME(K),
there is no model J of K such that EJ ⊂ EI . Two dif-
ferent named individuals are interpreted as equivalent in
I ∈ ModME(K) only if this equality is necessary to make
I being a model of K. For example, suppose we have the
axiom a = {b}⊔{c} inK. Then, ∀I ∈Mod(K), one of the
following three conditions hold: (1) aI = bI , aI 6= cI ; (2)
aI = cI , aI 6= bI ; (3) aI = bI = cI . If (1) or (2) holds,
then I ∈ ModME(K) because a has to be interpreted to
be equivalent to at least one of b and c to make I being a
model of K. Whereas for case (3), I /∈ ModME(K) since
the equality relations in I are not minimal.

The satisfaction of axiom α in an IC-interpretation I,U ,
denoted as I,U |= α, can be defined analogously as in con-
ventional interpretations. We give the definitions in Table 2
for completeness. Given a SROIQ KB K and a SROIQ
constraint α, the IC-satisfaction of α by K, i.e., K |=IC α,

is defined as:

K |=IC α iff ∀I ∈ U , I,U |= α, where U = ModME(K)

We define an extended KB as a pair 〈K, C〉 where K is
a SROIQ KB interpreted with standard semantics and C
is a set of SROIQ axioms interpreted with constraint se-
mantics. We say that 〈K, C〉 is valid if ∀α ∈ C,K |=IC α,
otherwise there is an IC violation.

Discussion

It is easy to verify that the IC semantics provides expected
results for the examples presented in the introduction and re-
lated work sections, and enables OWL to be an IC language.
In Example 1, we get an IC violation since the IC interpre-
tation of Product contains p but the IC interpretation of
(∃hasProducer.Producer) is empty. We also get an IC
violation for Example 2 because due to the weak UNA, m1

and m2 are interpreted as different individuals causing the
IC interpretation of (≤ 1hasProducer.⊤) to be empty. In
Example 3 and Example 4 there are also IC violations be-
cause the constraint requires the same named producer to
exist in every ME model of the KB which is not the case.
Since our IC semantics is targeted at named individuals, one
does not need to use the concept O as in Example 4. In
Example 5, the IC interpretation of Category1 is empty,
therefore the constraint does not apply to p and there is no
violation.

The following example shows how the weak UNA allows
the individuals that are not asserted to be equal to be treated
differently for constraint validation purposes.

Example 6. Consider a KB K and a constraint α:

K = {C(c), R(c, d1), R(c, d2), D(d1), D(d2)}

α : C ⊑≥ 2R.D

Individuals d1 and d2 are interpreted to be different in
every ME model. Therefore, the IC-interpretation of (≥
2R.D) includes c and the constraint α is satisfied by K.

Now we illustrate another point regarding disjunctions in
constraints.

Example 7. Suppose we have a KB K and a constraint α:

K = {C(a), (C1 ⊔ C2)(a)}

α : C ⊑ C1 ⊔ C2

Constraint α should be read as “every instance of C
should be either a known instance of C1 or a known in-
stance of C2”. Since we do not know for sure whether a
belongs to C1 or C2, α is expected to be violated by K. In-
deed, according to our semantics we get CI,U = {aI} and

(C1 ⊔ C2)
I,U = ∅. Therefore CI,U 6⊆ (C1 ⊔ C2)

I,U
and

we conclude that there is an IC violation.
If we want to represent the alternative constraint: “every

instance of C should be an instance of C1 or C2”, we can
define a new name C′ in the KB to substitute C1 ⊔ C2, thus
having the new KB K′ and constraint α′ as follows:

K′ = {C(a), (C1 ⊔ C2)(a), C′ ≡ C1 ⊔ C2}

α′ : C ⊑ C′

There is no IC violation in this version because now the dis-
junction is interpreted as standard OWL axioms. As these

1446

examples show, we can model the constraints to express dif-
ferent disjunctions in a flexible way.

IC Validation
Previously we defined that the extended KB 〈K, C〉 is valid if
every IC axiom in C is IC-satisfied by K. In this section, we
describe how to do IC validation, i.e., check IC-satisfaction
by translating constraint axioms to queries with the Nega-
tion As Failure (NAF) operator “not ”. We start by giving
the formal semantics for DCQnot , then describe the trans-
lation rules from IC axioms to DCQnot , and finally provide
a theorem showing that IC validation can be reduced to an-
swering DCQnot under certain conditions.

DCQnot

In the Preliminaries section, we introduced standard DCQ.
However, the expressivity of standard DCQ is not enough to
capture the closed world nature of the IC semantics. For this
reason, we add the not operator to DCQ to get DCQnot . The
syntax of DCQnot is defined as follows:

Q← q | Q1 ∧Q2 | not Q

The semantics of not is defined as:

K |=σ not Q iff ∄σ′ s.t. K |=σ′

σ(Q)

Recall that, assignment functions σ map variables only to
named individuals so a brute force way to check if a not
atom is entailed can be done by enumerating all possible
assignments and checking for entailment.

Translation Rules: from ICs to DCQnot

We now present the translation rules from IC axioms to
DCQnot . The translation rules are similar in spirit to the
Lloyd-Topor transformation (Lloyd 1987) but instead of
rules we generate DCQnot . The idea behind the translation
is to translate a constraint axiom into a query such that when
the constraint is violated, the KB entails the query.

The translation contains two operators: Tc for translating
concepts and T for translating axioms. Tc is a function that
takes a concept expression and a variable as input and re-
turns a DCQnot as the result:

Tc(Ca, x) := Ca(x)

Tc(¬C, x) := notTc(C, x)

Tc(C1 ⊓ C2, x) := Tc(C1, x) ∧ Tc(C2, x)

Tc(≥ nR.C, x) :=
∧

1≤i≤n

(R(x, yi) ∧ Tc(C, yi))
∧

1≤i<j≤n

not (yi = yj)

Tc(∃R.Self, x) := R(x, x)

Tc({a}, x) := (x = a)

where Ca is an atomic concept, C(i) is a concept, R is a role,
a is an individual, x is a variable, and y(i) is a fresh variable.

T is a function that maps a SROIQ axiom to a DCQnot

as follows:
T (C1 ⊑ C2) := Tc(C1, x) ∧ notTc(C2, x)

T (R1 ⊑ R2) := R1(x, y) ∧ not R2(x, y)

T (R1 . . . Rn ⊑ R) :=

R1(x, y1) ∧ . . . ∧Rn(yn−1, yn) ∧ not R(x, yn)

T (Ref(R)) := not R(x, x)

T (Irr(R)) := R(x, x)

T (Dis(R1, R2)) := R1(x, y) ∧R2(x, y)

where C(i) is a concept, R(i) is a role, x and y(i) are vari-
ables.

Example 8. Given the constraint α in Example 1, applying
the above translation rules, we get:

T (α) := Product(x)∧

not (hasProducer(x, y) ∧ Producer(y))

Reducing IC Validation to DCQnot Answering

Previously we stated our goal to reduce the problem of IC
validation to query answering. However, the following ex-
ample shows that when both the KB and the constraints use
the full expressivity of SROIQ, we cannot use the query
translation approach in a straightforward way.

Example 9. Suppose we have a KB K and a constraint α:

K = {D(d), R(d, a), R(d, b), R(d, c), {a} ⊑ {b, c}}

α : D ⊑ ≤ 2R.⊤

In all models of K, a is either interpreted to be equivalent
to b or c. Therefore, in all interpretations d has less than
two R values satisfying the constraint. However, the query
translation will yield atoms in the form not (y1 = y2) which
will be true for any individual pair in this KB. As a result,
the answer set for this query will include d which incorrectly
indicates an IC violation. This is because of the interaction
between disjunctive (in)equality axioms inK and cardinality
restrictions in ICs: axiom ({a} ⊑ {b, c}) asserts disjunctive
equality between individuals, therefore the IC axiom con-
taining cardinality restrictions is satisfied in different ways
in different interpretations.

To avoid such interactions, we ca either prohibit cardi-
nality restrictions in ICs or prohibit disjunctive (in)equality
in KBs. In SROIQ, there are only three ways to in-
fer (in)equality between individuals: using (1) explicit
(in)equality axioms; (2) nominals (as seen above); and (3)
cardinality restrictions. Obviously, explicit ABox asser-
tions cannot be disjunctive so they are not problematic.
By excluding nominals and cardinality restrictions from
SROIQ, we get the DL SRI .

In Theorem 1, we show that IC validation via query an-
swering is sound and complete for the cases where the ex-
pressivity of the extended KB is either 〈SRI,SROIQ〉
or 〈SROIQ,SROI〉. Due to space limitations we only
present the main theorem here and refer the reader to the
technical report (Tao et al. 2010) for details.

Theorem 1. Given an extended KB 〈K, C〉 with expressiv-
ity 〈SRI ,SROIQ〉 (〈SROIQ,SROI〉 resp.), we have
K |=IC α iff K 6|= T (α) where α ∈ C.

Implementation

The most widely used query language on the Semantic Web
is SPARQL (Prud’hommeaux and Seaborne 2008) which al-
lows querying over OWL ontologies via OWL entailment
regimes. It is known that SPARQL has the same expres-
sive power as nonrecursive Datalog programs (Angles and

1447

Gutierrez 2008) and can express DCQnot . Therefore, based
on the results from the previous section, we can reduce IC
validation to SPARQL query answering if the KB is SRI or
the ICs do not contain cardinality restrictions.

In Table 3, we present a mapping M : Q → P from
a DCQnot Q to a SPARQL graph pattern P , such that
A(Q,K) will be equivalent to the result set obtained by eval-
uating P = M(Q) over the corresponding OWL ontology
using the OWL entailment. Note that, in our mapping we use
the NOT EXISTS pattern which is being added in SPARQL
1.15 and can also be encoded in SPARQL 1.0 using a com-
bination of other operators (Angles and Gutierrez 2008).

Q P =M(Q)
C(x) x rdf:type C

R(x, y) x R y

x = y x owl:sameAs y
x 6= y x owl:differentFrom y

Q1 ∧Q2 JOIN(M(Q1),M(Q2))
not Q NOT EXISTS(M(Q))

Table 3: Mapping DCQnot to SPARQL queries

The SPARQL representation of the query in Example 8
becomes:

ASK WHERE {

?x rdf:type Product.

NOT EXISTS{?x hasProducer ?y.

?y rdf:type Producer.}}

We have built a prototype IC validator6 by extending the
OWL 2 DL reasoner Pellet7. The prototype reads OWL IC
axioms, translates each IC first to a DCQnot and then to a
SPARQL query which is executed by the SPARQL engine in
Pellet where a non-empty result indicates a constraint viola-
tion. Since the translation algorithm is reasoner independent
this prototype can be used in conjunction with any OWL
reasoner that supports SPARQL query answering.

We have used this prototype to validate ICs with several
large ontologies such as the LUBM dataset. For testing, we
removed several axioms from the LUBM ontology and de-
clared them as ICs instead. The dataset is logically consis-
tent but turning axioms into ICs caused some violations to
be detected. Since each constraint is turned into a separate
query there is no dependence between the validation time of
different constraints. We have not performed extensive per-
formance analysis for IC validation but as a simple compari-
son we compared the logical consistency checking time and
the IC validation time. For LUBM(5), which has 100K indi-
viduals and 800K ABox axioms, logical consistency check-
ing was on average 10 seconds whereas validating a single
IC took on average 2 seconds. The naive approach in our
prototype to execute each query separately would not scale
well as the number of ICs increase. However, there are many
improvement possibilities ranging from combining similar
queries into a single query to running multiple queries in
parallel.

5http://www.w3.org/TR/sparql11-query/#negation
6http://clarkparsia.com/pellet/oicv-0.1.2.zip
7http://clarkparsia.com/pellet

Conclusions and Future Work
We described an IC semantics for OWL axioms that can be
used for data validation purposes. Our IC semantics provide
intuitive results for various different use cases. We presented
translation rules from IC axioms to DCQnot , showing that IC
validation can be reduced to query answering when the KB
expressivity is SRI or when the constraint expressivity is
SROI . Our preliminary results with a prototype IC valida-
tor implementation show that existing OWL reasoners can
be used for IC validation efficiently with little effort. Us-
ing SPARQL queries for IC validation makes our approach
applicable to a wide range of reasoners. In the future, we
will look at the performance of IC validation in real-world
datasets and investigate IC validation algorithms for the full
expressivity of SROIQ.

References
Angles, R., and Gutierrez, C. 2008. The Expressive Power
of SPARQL. In Proc. ISWC2008, 114–129.

Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. 2003. The Description Logic Handbook:
Theory, Implementation and Applications.

Calvanese, D.; Giacomo, G. D.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. EQL-Lite: Effective First-Order Query
Processing in Description Logics. In Proc. IJCAI2007, 274–
279.

Donini, F. M.; Lenzerini, M.; Nardi, D.; Nutt, W.; and
Schaerf, A. 1998. An Epistemic Operator for Description
Logics. AI 100(1–2):225–274.

Donini, F. M.; Nardi, D.; and Rosati, R. 2002. Descrip-
tion Logics of Minimal Knowledge and Negation as Failure.
ACM Trans. Comput. Logic 3(2):177–225.

Eiter, T.; Ianni, G.; Lukasiewicz, T.; Schindlauer, R.; and
Tompits, H. 2008. Combining Answer Set Programming
with Description Logics for the Semantic Web. AI 172(12-
13):1495–1539.

Horrocks, I.; Kutz, O.; and Sattler, U. 2006. The Even More
Irresistible SROIQ. In Proc. KR2006, 57–67.

Lloyd, J. W. 1987. Foundations of Logic Programming.

Motik, B.; Horrocks, I.; and Sattler, U. 2007. Bridging
the Gap between OWL and Relational Databases. In Proc.
WWW2007, 807–816.

Motik, B.; Patel-Schneider, P. F.; and Grau, B. C. 2009.
OWL 2 Web Ontology Language Direct Semantics.

Motik, B. 2007. A Faithful Integration of Description Log-
ics with Logic Programming. In Proc. IJCAI2007, 477–482.

Prud’hommeaux, E., and Seaborne, A. 2008. SPARQL
Query Language for RDF.

Reiter, R. 1988. On Integrity Constraints. In Proc.
TARK1988, 97–111.

Smith, M. K.; Welty, C.; and McGuiness, D. 2004. OWL
Web Ontology Language Guide.

Tao, J.; Sirin, E.; Bao, J.; and McGuinness, D. 2010. In-
tegrity Constraints in OWL. Technical report, Dept. of Com-
puter Science, Rensselaer Polytechnic Institute, Troy, NY.

1448

