Shoreline: Data-Driven Threshold Estimation of Online Reserves of Cryptocurrency Trading Platforms (Student Abstract)

Authors

  • Xitong Zhang Michigan State University
  • He Zhu OceanEx Labs, BitOcean Global
  • Jiayu Zhou Michigan State University

DOI:

https://doi.org/10.1609/aaai.v34i10.7265

Abstract

With the proliferation of blockchain projects and applications, cryptocurrency exchanges, which provides exchange services among different types of cryptocurrencies, become pivotal platforms that allow customers to trade digital assets on different blockchains. Because of the anonymity and trustlessness nature of cryptocurrency, one major challenge of crypto-exchanges is asset safety, and all-time amount hacked from crypto-exchanges until 2018 is over $1.5 billion even with carefully maintained secure trading systems. The most critical vulnerability of crypto-exchanges is from the so-called hot wallet, which is used to store a certain portion of the total asset online of an exchange and programmatically sign transactions when a withdraw happens. It is important to develop network security mechanisms. However, the fact is that there is no guarantee that the system can defend all attacks. Thus, accurately controlling the available assets in the hot wallets becomes the key to minimize the risk of running an exchange. In this paper, we propose Shoreline, a deep learning-based threshold estimation framework that estimates the optimal threshold of hot wallets from historical wallet activities and dynamic trading networks.

Downloads

Published

2020-04-03

How to Cite

Zhang, X., Zhu, H., & Zhou, J. (2020). Shoreline: Data-Driven Threshold Estimation of Online Reserves of Cryptocurrency Trading Platforms (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 34(10), 13985-13986. https://doi.org/10.1609/aaai.v34i10.7265

Issue

Section

Student Abstract Track