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Abstract

Given a fixed hypothesis space, defined to model class struc-
ture in a particular domain of application, unknown un-
knowns (u.u.s) are data examples that form classes in the
feature space whose structure is not represented in a trained
model. Accordingly, this leads to incorrect class prediction
with high confidence, which represents one of the major
sources of blind spots in machine learning. Our method seeks
to reduce the structural mismatch between the training model
and that of the target space in a supervised way. We illumi-
nate further structure through cross-validation on a modified
training model, set up to mine and trap u.u.s in a marginal
training class, created from examples of a random sample of
the test set. Contrary to previous approaches, our method sim-
plifies the solution, as it does not rely on budgeted queries to
an Oracle whose outcomes inform adjustments to training.
In addition, our empirically results exhibit consistent perfor-
mance improvements over baselines, on both synthetic and
real-world data sets.

Introduction

Blind spots in classification tasks represent a major source
of algorithmic bias in machine learning, leading to errors,
unfairness, and other problems. Among the several forms
of blind spots, unknown unknowns (u.u.s) are commonly re-
ferred as data points that belong to classes that are not well
represented in a training model. As a result, classifiers often
give incorrect class membership predictions to this exam-
ples with high confidence (Attenberg, Ipeirotis, and Provost
2015; Lakkaraju et al. 2017). Different from the traditional
prediction errors, u.u.s arise due to the systematic struc-
tural mismatch between the trained model and the tar-
get space, i.e., given a fixed hypothesis space, we denote
examples of a given class that are not well represented in
the training data unknown unknowns. Recent work has ad-
dressed the algorithmic challenges to tackle this form of
“data blindness”, some of which rely on budgeted queries to
an oracle, whose outcomes guide adjustments in the training
model (Lakkaraju et al. 2017).
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The conceptual idea of a “class” is subject to the interpre-
tation of the observer. Moreover, different hypothesis spaces
will conceptually separate the feature space into different
classes. For instance, adding more features may impact the
ability to recognize further patterns, i.e., feature blindness.
In this work, we employ a working definition of an u.u. class
by making an assumption about their geometric structure.
That is, given a fixed hypothesis space, the u.u. classes form
separable clusters in the feature space, which make them dis-
tinguishable from known structures in the target space. This
definition is without loss of generality, as it allows for any
abstraction of conceptual blindness to examples.

Under the preceding assumption, a key component of our
approach consists of a Random Test Sampling and Cross-
Validation method, which illuminates further structure in the
target space through cross-validation on a modified training
model, which is set up to mine and trap u.u.s in a marginal
training class. Our method has proved its effectiveness in
identifying u.u.s on both synthetic and real-world data sets,
outperforming traditional approaches while bearing the sim-
plicity of its algorithmic design. Particularly, we assume no
presence of an oracle or human expert, which makes the
method feasible and scalable to real-world applications.

Framework Formulation

For convenience, we set our scope on multi-class classifica-
tion. Let M be the classifier. Let X = {X;, X5, -+, X, }
be the training set, where X; denotes a specific class of data
with a unique label. Let Y be the test set (as a representa-
tive of the target space), for which we assume the potential
existence of one or more u.u. classes. To detect the u.u.s,
we design a Random Test Sampling and Cross-Validation
(RTSCYV) framework, which consists of the following steps:

1. Random sampling phase: We randomly select a small
portion of the test data, denoted X, and add it to
the existing X as a new dummy (sample) class X.

In this way, we obtain a new training set X
{Xla X27 e 7Xm7Xs}-
. We perform an (m + 1)-fold cross-validation on X. We

then extract all the samples in X assigned to the sam-
ple class X and denote it X,,, which we expect to have



retained, mostly, u.u. examples in X.

Last, we add X, to the initial training set X and obtain
the final training set X = { X1, Xo, -+, X,,, X, }. Then,
we train an (m + 1)-class classifier M with this training
set and test the model on the test set Y.

To discover further u.u. classes, we repeat the process un-
til class X,, after cross-validation ends up empty.

Theoretical Intuition

The key to our approach lies on the successful disentangle-
ment of the u.u. class from the original training classes dur-
ing cross-validation, which exploits the potential assumption
that cross-validation is not only able to identify (Brodley and
Friedl 1999), but also to relabel the mislabeled data.

The theoretical intuition of our approach lies on the prop-
erty that the samples from the test set make up a high vari-
ance class, whose boundary encompasses all other classes.
Similarly to a hierarchical classification argument, exam-
ples that belong to known classes are likely placed in the
right classes due to the conciseness and specificity of the
representation. On the contrary, u.u.s are placed in the high-
variance all-encompassing class due to dissimilarity.

As a 2-dimensional illustration, Figure 1 shows a setting
where we consider three classes of samples from multivari-
ate Gaussian distribution. Note that the application of our
method have numerically isolated the u.u.s.

Our ongoing work aims to provide complete performance
guarantee based on properties of the feature space, such as
class separability, intra-class variance, and sample size.
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Figure 1: 2D example of a Bayesian decision boundary sep-
arating the original training classes (blue and orange) and
the sample class (green). Our methods identifies the green
samples outside the boundary as u.u.s.

Experimental Evaluation

We present experimental results on both synthetic and real-
world data sets. For the synthetic data, we generated 10
known classes and one u.u. class. We compare our approach
with a benchmark obtained by directly applying the “blind”
classification algorithm. In addition, we use classification
with probabilistic threshold (CPT) and clustering with side
information as baselines. We show results for Support Vec-
tor Machine (SVM) and K-Nearest-Neighbors (KNN).
Figure 2 plots classification performance as the standard
accuracy score, against class separability, measured by the
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Figure 2: Comparison with benchmark and baseline methods
against class separability measured by Silhouette score.

Class 1 Class 2 Class 3
Iris 1.0 (0.61) 0.81 (0.52) | 0.83 (0.60)
Wine 0.91 (0.62) | 0.85 (0.65) | 0.85(0.71)
Knowledge | 0.88 (0.64) | 0.92 (0.66) | 0.87 (0.63)

Table 1: Performance on real-world data sets. Bold scores
represent the classification accuracy after applying our
method, with the scores in parenthesis denoting the bench-
mark accuracy. Column label denotes the index of the class
omitted from the training set.

Silhouette score. Our method achieves a consistent perfor-
mance improvement over the benchmark score and other
baselines under different class separability levels. In par-
ticular, when the Silhouette score is low, our method could
achieve near-perfect structural reconstruction, indicating the
exhaustive identification of u.u.s.

We also illustrate the approach with real-world standard
classification benchmark data sets, Iris, Wine, and Knowl-
edge Modelling'. For each data set, we biased the training
set by removing one class of training samples while keeping
the test set unchanged. We show results for KNN classifica-
tion. Table 1 shows enhanced performance of the classifica-
tion tasks across all three data sets after applying our method
to identify unknown unknowns.
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