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Abstract

This paper investigates the neural dynamics and gamma os-
cillation on a complex network with excitatory and inhibitory
neurons (E-I network), as such network is ubiquitous in the
brain. The system consists of a small-world network of neu-
rons, which are emulated by Izhikevich model. Moreover,
mixed Regular Spiking (RS) and Chattering (CH) neurons
are considered to imitate excitatory neurons, and Fast Spik-
ing (FS) neurons are used to mimic inhibitory neurons. Be-
sides, the relationship between synchronization and gamma
rhythm is explored by adjusting the critical parameters of our
model. Experiments visually demonstrate that the gamma os-
cillations are generated by synchronous behaviors of our neu-
ral network. We also discover that the Chattering(CH) excita-
tory neurons can make the system easier to synchronize.

Introduction
In recent years, artificial intelligence techniques directed by
neuroscience have attempted to closely mimic the cerebral
cortex, based on research of rich spatiotemporal neural dy-
namics, different spiking and bursting patterns and various
learning and memory rules (Hassabis et al. 2017). In partic-
ular, Spiking Neural Networks (SNNs) are considered as a
typical biologically inspired method based on the spatiotem-
poral dynamics of neural networks to mimic the information
transfer processing.

However, it is challenging for SNNs to efficiently perform
and accurately capture the biological properties, since most
such SNNs algorithms depend on the different variants of
Integrate-and-Fire (IF) neuron model which produces less
biophysical properties of neural networks (Wu et al. 2019).

The gamma rhythm occurs through synchronization be-
tween various spiking or bursting in neural circuits. Neu-
ral synchronization also plays a key role when transferring
and coding mechanisms in different regions of the cerebral
cortex. Therefore, it is of great importance to investigate
the processing of synchronization and gamma oscillation in
the brain. Learning more informative context of how mam-
malian neocortex mechanism is performing in information
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Figure 1: (Color online) Schematic presentation of the
proposed network architecture of excitatory and inhibitory
neurons.

processing and artificial intelligence is particularly impor-
tant.

In this work, the Izhikevich neuron model (Izhikevich
2003) is used to explore the gamma rhythm and the synchro-
nization transition of cortical neural network with both types
of excitatory and inhibitory neurons. In particular, excitatory
neurons are composed of hybrid Regular Spiking (RS) and
Chattering (CH) types neurons. We also focus on how the
synaptic coupling and the network properties would affect
the rhythm types, the synchronous states, and the relation-
ship between synchronization and the rhythm transition.

Methods
The Izhikevich model, as a core element, is used to simu-
late the individual dynamics of each neuron in an excitatory-
inhibitory balanced cortical neural network.

It can be expressed by a system of ordinary differential
equations as below:

dvi
dt

= 0.04v2i + 5vi + 140− ui + Iexti + Isyni +Dξi (1)

dui

dt
= ai(bivi − ui) (2)

if vi ≥ Vpeak(+30mV),

{
vi ← ci,
ui ← ui + di.

(3)

Isyni =
N∑

j=1,j �=i

gijwij(vj − vi) (4)
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Table 1: Parameter values used in our computations.

Values of Parameters

Types of neuron ai bi ci di

RegularSpiking(RS) 0.02 0.2 -65 8
Chattering(CH) 0.02 0.2 -50 2
FastSpiking(FS) 0.1 0.2 -65 8

Here, the neuron index is denoted by i, j = 1, 2, . . . , N
and the state of the i th neuron at time t is characterized
by two state variables: the membrane potential vi(t) (mV)
and the membrane recovery variable ui(t). While Iexti de-
scribes the external applied currents. Isyni accounts for the
total incoming synaptic currents into neuron i from neuron
j-s. The noise current Dξi represents the external or intrinsic
fluctuations of the neuron itself, where D refers to the inten-
sity of noise, ξi is a random process without time correc-
tion, and it is uniformly distributed on the interval [−1, 1].
On the basis of equation (3), Vpeak = +30 mV is the max-
imum membrane potential. Here, these three typical prop-
erties of neurons correspond to different values of param-
eter ai, bi, ci and di are clearly depicted in Table 1. The
Newman-Watts (NW) small-world network is considered as
the underlying structure. We performed the network simu-
lations with N = 1000 neurons. It is emphasizing that the
excitatory neurons contain two different types of neurons,
which are NRS and NCH , respectively, satisfying the con-
dition Ne = NRS +NCH = 800. While the FS neurons are
used to imitate the inhibitory neurons, and the number of FS
neurons is Ni = NFS = 200, as shown in Fig. 1.

Moreover, an improved method presented in (Golomb and
Rinzel 1993; 1994) is adopted as a global parameter to mea-
sure the synchronization degree of neural network.

Experimental Results and Conclusions
To study the synchronization and gamma oscillation tran-
sition, the number of CH neurons, the weights of synaptic
connections, the connection probability and the number of
nearest neighbors of each node in the small-network were
chosen as the control parameters. Figure 2 shows the evo-
lution of the synchronization degree S and the percentage
of γ band rhythm versus different parameters. Moreover, the
synchronization degree S as a function of the number of CH
neurons and different key parameters are plotted in Fig. 3.
Through the experiments, the network becomes more and
more synchronous, and then reaches a stable level by in-
creasing the coupling strength, the connection probability,
and the number of the nearest neighbor of the network. Be-
sides, the neural network with chattering neurons can arrive
synchronization easier than the fast spiking neurons, and it
is more susceptible to all the parameters. What is significant
is that the synchronous behaviors are in accordance with
the gamma oscillations. In addition, our results might give
significant implications to better understanding the informa-
tion processing, especially ameliorating the performance of
SNNs in artificial intelligence.
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Figure 2: The evolution of S and the percentage of γ band
rhythm versus different parameters. (a) NCH , (b) wexc, (c)
p, and (d) k.
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Figure 3: (Color online) S as a function of NCH and dif-
ferent key parameters. (a) S versus wexc and NCH , (b) S
versus p and NCH , and (c) S versus k and NCH .
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