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Abstract

Reinforcement learning algorithms are sensitive to hyper-
parameters and require tuning and tweaking for specific en-
vironments for improving performance. Ensembles of rein-
forcement learning models on the other hand are known to
be much more robust and stable. However, training multiple
models independently on an environment suffers from high
sample complexity. We present here a methodology to cre-
ate multiple models from a single training instance that can
be used in an ensemble through directed perturbation of the
model parameters at regular intervals. This allows training a
single model that converges to several local minima during
the optimization process as a result of the perturbation. By
saving the model parameters at each such instance, we obtain
multiple policies during training that are ensembled during
evaluation. We evaluate our approach on challenging discrete
and continuous control tasks and also discuss various ensem-
bling strategies. Our framework is substantially sample effi-
cient, computationally inexpensive and is seen to outperform
state of the art (SOTA) approaches

Introduction

Traditionally, the idea of using ensembles in reinforce-
ment learning settings is associated with combining multi-
ple value functions or policies from different models. These
models could be the same algorithm trained across different
hyper-parameter settings or different algorithms altogether.
Training multiple such models is an approach that cannot
be used in practice owing to high sample complexity and
computational cost. Our work tackles the above drawbacks
by learning multiple models from a single training instance
through directed perturbation of model parameters at regular
intervals. We leverage the theory of cyclical learning rates
(Loshchilov and Hutter 2016) for this purpose. When the
model parameters are perturbed using larger learning rates,
the directed motion along the gradient step prevents the op-
timizer from settling in any sharp basins and moves into the
general vicinity of the local minima. Lowering the learning
rates at such an instance leads the optimizer to converge to
some final local minima. We leverage the diversity of the
policies learned at these different local minima for the en-
semble.
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ERLP

ERLP results in an ensemble of diverse policies obtained
from a single training instance. In a traditional ensemble set-
ting, if each agent requires /N number of samples and the
computational expense for training a single agent is C, then
training M agents independently requires M x N samples
and M x C in computational cost. If trained in parallel, only
N samples are required, but the computational cost remains
at M x C. Though training multiple agents in parallel is
a sound solution to tackle sample complexity, it is computa-
tionally expensive and limits the diversity among the learned
policies, since every policy observes the same state at each
instance.

Our approach saves policies during training at periodic in-
tervals when the learning rate anneals to a small value and
ensembles them during evaluation time. ERLP requires only
N number of samples, the computational expense is C, and
yet we obtain M models for the ensemble. Since the poli-
cies have been saved at different local minima, the policies
are diverse in nature.

Learning policies

To learn multiple policies from a single training instance, we
perturb the parameters of the model along the gradient di-
rection at regular intervals . For learning M models, we split
the training process into M different training cycles wherein
each cycle the model starts at a high learning rate and an-
neals to a small value. The large learning rate is significant
as it provides energy to the policy to escape the local minima
and the small learning rate traps it into a well behaved local
minima.

Diversity of Policies

We establish more concretely the diversity of the individual
policies, by understanding the action distribution for each
policy across states. We compute the KL divergence be-
tween the policies based on the action distribution across
a number of states. The greater the KL divergence between
the policies, the more diverse the policies are. From Fig-
ure 2, we can observe that, the ERLP policies are diverse in
nature and have a gradual decrease in the diversity as new
models are formed. Conversely, for the baseline models, the
KL divergence between the independently trained policies
is extremely large. The policies did not have much overlap



in the action space and hence ensemble techniques such as
majority voting were unable to find a good action, thereby
resulting in a poor ensemble. We can hence conclude that
ERLP is able to generate policies with sufficient diversity
for a good ensemble.

Ensemble techniques

Depending on the complexity of the action space, discrete
or continuous, there are multiple strategies to ensemble the
m policies in the environment. For discrete action space en-
vironments, we propose using majority voting over the ac-
tions from the policies. For continuous action space, we pro-
pose four methodologies, averaging, binning, density-based
selection, and selection through elimination.

Experiments and Results

We consider the Breakout environment from the Atari 2600
game suite and Half Cheetah from Mujoco (Todorov, Erez,
and Tassa 2012). We conduct our experiments on the fol-
lowing algorithms, A2C (Mnih et al. 2016), ACER (Wang
et al. 2016), DDPG (Lillicrap et al. 2017), SAC (Schulman
et al. 2017) and TRPO (Schulman et al. 2015). We compare
the training and evaluation performance of ERLP with the
normal training and three baseline ensemble methods, re-
spectively. The first baseline ensemble strategy, B1, ensem-
bles policies trained from the same algorithm. Strategy B2,
ensembles policies trained from different algorithms and fi-
nally, B3, uses policies that are obtained through random
perturbation of the model parameters at regular intervals.
ERLP performance during training is atleast at par or bet-
ter than the baseline as shown in Figure 1. The evaluation
results using ERLP is better than the three baselines and in
many cases, outperforms the state-of-the-art (SOTA) results,
as shown in Figure 2 (SOTA score in Breakout is 681.9,
ERLP score is 815).
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Figure 1: Comparison of training performance between
ERLP and Baseline. Top : (Left) Breakout using A2C ,
(Right) Half Cheetah using DDPG , Bottom : Half Cheetah
using TRPO , (Right) Half Cheetah using SAC

Conclusion

In this paper, we introduce ERLP, a framework to ensemble
multiple policies obtained from a single training instance.
ERLP outperforms the three baseline methods in complex
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Figure 2: Top : (Left) KL Divergence between ERLP poli-
cies for Breakout using A2C (Right) KL Divergence be-
tween independently trained policies used in baseline, B1,
for Breakout using A2C. Bottom : (Left) Comparison be-
tween ERLP and baseline ensembles for Half Cheetah us-
ing SAC. The ensemble strategy used is Binning (Right)
Comparison between ERLP and baseline ensembles B1 for
Breakout using A2C

environments having discrete and continuous action spaces.
We show our results using various reinforcement learning
algorithms and therefore claim that it is not limited to its
performance in any particular setting and can be used with
any new and upcoming algorithms.
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