Suicide Risk Assessment via Temporal Psycholinguistic Modeling (Student Abstract)

Authors

  • Puneet Mathur University of Maryland College Park
  • Ramit Sawhney Netaji Subhas Institute of Technology
  • Rajiv Ratn Shah IIIT-Delhi

DOI:

https://doi.org/10.1609/aaai.v34i10.7209

Abstract

Social media platforms are increasingly being used for studying psycho-linguistic phenomenon to model expressions of suicidal intent in tweets. Most recent work in suicidal ideation detection doesn't leverage contextual psychological cues. In this work, we hypothesize that the contextual information embedded in the form of historical activities of users and homophily networks formed between like-minded individuals in Twitter can substantially improve existing techniques for automated identification of suicidal tweets. This premise is extensively tested to yield state of the art results as compared to linguistic only models, and the state-of-the-art model.

Downloads

Published

2020-04-03

How to Cite

Mathur, P., Sawhney, R., & Shah, R. R. (2020). Suicide Risk Assessment via Temporal Psycholinguistic Modeling (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 34(10), 13873-13874. https://doi.org/10.1609/aaai.v34i10.7209

Issue

Section

Student Abstract Track