The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Streaming Batch Gradient Tracking for
Neural Network Training (Student Abstract)

Siyuan Huang,' Brian D. Hoskins,” Matthew W. Daniels,” Mark D. Stiles,” Gina C. Adam'*
'School of Engineering & Applied Science, George Washington University, Washington, DC, USA
Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA

Abstract

Faster and more energy efficient hardware accelerators are
critical for machine learning on very large datasets. The en-
ergy cost of performing vector-matrix multiplication and re-
peatedly moving neural network models in and out of mem-
ory motivates a search for alternative hardware and algo-
rithms. We propose to use streaming batch principal compo-
nent analysis (SBPCA) to compress batch data during train-
ing by using a rank-k approximation of the total batch up-
date. This approach yields comparable training performance
to minibatch gradient descent (MBGD) at the same batch size
while reducing overall memory and compute requirements.

Introduction

Recent assessment of the energy necessary to train deep net-
works highlights the high financial and environmental costs
associated with this fast growing field (Strubell, Ganesh, and
McCallum 2019). New hardware accelerators are needed for
efficient local and cloud computing (Ambrogio et al. 2018).

To accelerate training, research has increasingly focused
on variable learning rate methods that add additional hy-
perparameters to the training of neural networks. Though
these additional hyperarameters decrease the training time,
they double or triple the memory overhead compared to a
unit batch size stochastic gradient descent (SGD). These
approaches are nevertheless preferred over SGD, however,
since they can accelerate training on the rapidly fluctuating
gradient vector to provide a superior learning trajectory.

In our approach, we accelerate training and reduce over-
head by generating a stochastic low-rank approximation of
the gradient using streaming principal component analysis
(SPCA). SPCA was proposed by Oja in 1982(0Oja 1982), and
recent proposals combine SPCA with adaptive algorithms to
optimize the learning rate while using only a single pass over
the data (Henriksen and Ward 2019). (Burrello et al. 2019)
proposed a parallel implementation of streaming History-
PCA to save memory when backpropagating. SPCA remains
an active research area which is promising for edge com-
puting and other applications where memory usage is criti-
cal. To our knowledge, Hoskins et al. are first to use SPCA

*Correspondence: GinaAdam@ gwu.edu
Copyright (©) 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to compress batch gradients (Hoskins et al. 2019). Here we
propose the SBPCA training algorithm, which approximates
minibatch gradient descent with a slowly varying thin sin-
gular value decomposition of the overall gradient. Initial re-
sults show that SBPCA can accelerate training while reduc-
ing memory overhead and energy costs.

Method Details

In any SGD-derived method, the weights in a given layer are
updated as © < O — aVO where O is the weight matrix
trained for that layer, « is the learning rate, and VO is a
stochastic approximation of 9¢/0© over a batch B, with ¢
the loss function evaluated after the feedforward step.

We consider an alternative calculation of VO through
a streaming low rank approximation based on the Singu-
lar Value Decomposition (SVD). Using Algorithm 1, the
stochastic approximation is given by VO = XYAT where
X is the left singular matrix, o is the vector of singular
values, ¥ = diag(c), and A is the right singular matrix.
Restricting o to its top k singular values, the memory cost
of Algorithm 1 is m X k + k + n x k. We generally take
k < min{m,n} to approximate VO with efficient mem-
ory usage. Algorithm 1 updates this approximation using
a novel block-averaged bi-iterative implementation of Oja’s
rule, and uses QR decomposition to re-orthogonalize the sin-
gular vectors.

Algorithm 1 Streaming Batch PCA (SBPCA) Update
Require: o, X, Aand b
fori =1,2,...,B/bdo

X step: A step:
X ! iA 0; 2z
X =i+ e NG
X + QR(X) A< QR(A)
. io 61A © IiX
X-Asstep: 0 725 + 300 %
end for

Calculate VO = X - diag(o) - AT

The X matrix (and A respectively) is updated as X <
c¢X 4 (1—c)d where cis a convergence coefficient and d rep-
resents the block-averaged update of X over a minibatch of
the input data, represented as x (and J respectively), a matrix

CIFAR-10 CIFAR-100
0.8 |
z 0.6 o4t
g
=
g 0.4 0.2 .
0.2} 8
I O ol \ L]
200 0 100 200
T T T
2 | - g —
E 15} ety |
1 i B
iy
| | | | | |
0 100 200 0 100 200
Epoch Epoch
—— MBGD, B =128 ---- MBGD, B = 16
SBPCA, B =128 ----SBPCA, B =16

Figure 1: Comparative accuracy and loss for SBPCA and
MBGD for CIFAR-10 (rank & = 3) and CIFAR-100 (k =
30) for B € {16,128}, with b = B/4. SBPCA recreates the
loss minimum artifact in AlexNet present in MBGD.

with with rows b representing a subset of a minibatch of data
with block size b examples. We describe two approaches. In
the fixed version of Algorithm 1, we vary the convergence
coefficient from block to block as ¢; = /(i+ 1) while keep-
ing the block size b of the minibatch fixed. However, we find
that fixed values of b can lead to poor sampling of the space,
so we introduce an alternative version (SBPCA with vari-
able b or SBPCAV), adapted from Algorithm 1, with fixed
¢ = 1/2 (implementable in hardware as a single bit-shift)
but variable block size b; = 20~ with i the block index.
The rank-1 updates corresponding to each singular vector of
X and A are rescaled by their respective values in o.

Experiments

We evaluate the SBPCA and SBPCAV algorithms on the
CIFAR-10, CIFAR-100, and ImageNet datasets using an
AlexNet modified to accommodate the smaller input size
while maintaining the five convolutional and three fully con-
nected layer structure. These algorithms are used only for
fully connected layers; convolutional layers have less mem-
ory overhead, and so benefit less. We compare with MBGD
results.

Since the initialization condition of the gradient approx-
imation for the next batch is the end condition of the prior
batch, the gradient estimation includes significant prior gra-
dient history. This acts as a form of momentum, accelerating
the training convergence compared to MBGD. In our exper-
iments, we observed this is especially powerful at low learn-
ing rates. At high learning rates, the gradient changes more
rapidly than the gradient estimation can be updated, desta-

13814

Table 1: Accuracy of training methods and ranks for CIFAR-
10, CIFAR-100, and ImageNet. CIFAR hyperparameters
same as before. For ImageNet, B = 256 and b = 64. Fixed
refers to SBPCA and Varied to SBPCAV.

CIFAR-10 CIFAR-100 ImageNet

Rank Fixed Varied Fixed Varied Fixed Varied
1 0.7644 0.7391 0.4103 0.4163 0.3382 0.3660
3 0.7817 0.7729 0.4288 0.3783 0.3747 0.4065
10 0.7913 0.7840 0.4652 0.4252 0.4329 0.4454
30 0.4988 0.4563 0.4698 0.4602
100 0.5159 0.4712

MBGD: 0.7712 0.5185 0.5434

bilizing the training process. As seen in Fig. 1, the SPCA
consistently achieves faster convergence than the classic
MBGD for equivalent learning rates. Since AlexNet’s struc-
ture poorly solves CIFAR, it leads to a non-monotonic be-
havior in the loss due to overtraining and can converge to an
undesired local minimum. For small datasets, SBPCA ap-
proaches yield-equivalent accuracy to MBGD, shown in Ta-
ble 1. Even for ImageNet, the algorithm can reach 85% of
MBGD accuracy. We also see a dramatic difference in the
performance of SBPCAV compared to SBPCA.

Conclusions

Our proposed SBPCA and SBPCAV can produce stochas-
tic approximations of the gradient updates sufficient to train
functionally relevant neural networks. We find that approx-
imations of rank less than about ten are typically good
enough to capture most relevant information about the lo-
cal loss function. We verify these methods’ effectiveness on
three image datasets. While results are better on CIFAR-
10 and CIFAR-100, even on ImageNet, SBPCAV can reach
85% of MBGD accuracy at significantly lower memory
overhead. These results suggest future research exploring
detailed memory analysis, impact of dropout and low rank
approximations of more sophisticated training algorithms.

References

Ambrogio, S.; Narayanan, P.; Tsai, H.; et al. 2018. Equivalent-
accuracy accelerated neural-network training using analogue mem-
ory. Nature 558(7708):60-67.

Burrello, A.; Marchioni, A.; Brunelli, D.; et al. 2019. Embedding
principal component analysis for data reduction in structural health
monitoring on low-cost iot gateways. International Conference on
Computing Frontiers 235-239.

Henriksen, A., and Ward, R. 2019. Adaoja: Adaptive learning rates
for streaming pca. arXiv:1905.12115.

Hoskins, B. D.; Daniels, M. W.; Huang, S.; et al. 2019. Stream-
ing batch eigenupdates for hardware neural networks. Frontiers in
neuroscience 13:793.

Oja, E. 1982. Simplified neuron model as a principal component
analyzer. Journal of mathematical biology 15(3):267-273.
Strubell, E.; Ganesh, A.; and McCallum, A. 2019. Energy and

policy considerations for deep learning in nlp. arXiv preprint
arXiv:1906.02243.

