The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Constraint Programming for an Efficient and Flexible Block Modeling Solver

Alex Lucia Mattenet,' Ian Davidson,’ Siegfried Nijssen,' Pierre Schaus'
'UCLouvain, ICTEAM, Belgium, 2Computer Science Department, University of California at Davis, USA
{alex.mattenet, siegfried.nijssen, pierre.schaus} @uclouvain.be,
davidson @cs.ucdavis.edu

Abstract

Constraint Programming (CP) is a powerful paradigm for
solving combinatorial problems. In CP, the user creates a
model by declaring variables with their domains and ex-
presses the constraints that need to be satisfied in any so-
lution. The solver is then in charge of finding feasible
solutions—a value in the domain of each variable that sat-
isfies all the constraints. The discovery of solutions is done
by exploring a search tree that is pruned by the constraints
in charge of removing impossible values. The CP frame-
work has the advantage of exposing a rich high-level declar-
ative constraint language for modeling, as well as efficient
purpose-specific filtering algorithms that can be reused in
many problems. In this work, we harness this flexibility and
efficiency for the Block Modeling problem. It is a variant of
the graph clustering problem that has been used extensively in
many domains including social science, spatio-temporal data
analysis and even medical imaging. We present a new ap-
proach based on constraint programming, allowing discrete
optimization of block modeling in a manner that is not only
scalable, but also allows the easy incorporation of constraints.
We introduce a new constraint filtering algorithm that outper-
forms earlier approaches. We show its use in the analysis of
real datasets.

This is an extended abstract of an earlier publication at
CP2019 (Mattenet et al. 2019).

Introduction

Block modeling is a problem that originates from the anal-
ysis of social networks. The core problem is to take a graph
and divide its vertices into k clusters, in such a way that
vertices in the same cluster have the same pattern of ties to
other vertices. These clusters and the interactions between
them summarize the graph and give insight into its large-
scale structure.

More formally, in its simplest formulation, the core prob-
lem is: given a graph G(V, E') whose n x n adjacency matrix
is X, simplify X into a symmetric trifactorization ' M F'*.
Here F'is an n X k block allocation matrix with the clus-
ters stacked column wise. Here F; ; € {0,1} and M is a
k x k image matrix showing the interaction between clus-
ters. The objective function is to minimize the reconstruction

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

13685

error || X — FMF!||.

This block modeling formulation has the advantage of
identifying structural equivalence (Lorrain and White 1971):
if the reconstruction error is 0, any instance in cluster ¢ must
have the exact same neighbors in the graph. The reconstruc-
tion error (|| X — FM F||) counts the number of edges that
violate this property.

An example of block model with 3 clusters for a toy graph
with 9 vertices is given in Figure 1. The three clusters are
c1 = {a,h,g}, co = {b,i, [}, and c3 = {c,d, e}. The ad-
jacency matrix of the graph is shown with the columns and
rows reordered to group the vertices in their respective clus-
ter. The cost of this block model is 9. The nine entries where
X differs from FMF? are in red italics. The image matrix
M corresponds to an image graph of three vertices (one per
cluster), which gives a simplified overview of the large-scale
structure of the base graph.

As this block model formulation is very generic, it is use-
ful to incorporate additional constraints such as bounds on
the cluster size, constraints on the structure of the image
graph M (forcing it to be a tree, a ring graph,. ..), constraints
on the composition of the clusters, and more. This is to com-
bine strong semantic knowledge (the constraints) along with
empirical evidence (the graph). The constraints exclude un-
wanted or useless models from the search space.

Existing approaches for solving this problem with addi-
tional constraints focus on one or two constraint at a time
(Wang et al. 2011; Bai et al. 2017; Ganji et al. 2018a;
Bai, Qian, and Davidson 2018) and are not compatible. It
is impossible to use all of multiple constraints at the same
time because they use incompatible solving methods, and
they are either not usable or not scalable without the prede-
fined constraints.

In this paper, we propose a Constraint Programming ap-
proach for the block modeling problem, with a dedicated
global constraint. This constraint and its implementation
within a CP framework makes that our approach is inher-
ently composable with any of the others constraints imple-
mented in the CP solver. Furthermore, the CP solver can be
used both to find exact solutions, and to find approximations
using Large Neighborhood Search. We compare our CP ap-
proach with existing exact methods and local search meth-
ods, and show that it outperforms the state of the art.

graph studied

vertices clustered by similar ties

I ECEE

a h g |b i f|c d e
a (0 0 0 11 0 0 0 0
hjo 2 of1 0 10 0 o0
g |0 O 0 1 1 0 0 0 0

X = bt 0 10 0 o1 1 o0],F=

ilt 0o 100 o011 o
flt 1 oo 0 o1 1 1
cfo o 0o 0 o |1 1 1
d |0 0 0 0 0 0 1 1 1
e |0 O 0 0 0 0 1 1 1

[
e: 1] Z@
<X c O«——0p
S

OH»—AOOOOOHE

—T0M@ w0 &N T W

ideal graph according to the model

o 0 0

(XK

0. o 6
S0) e

L

01 @m(oc 1 o

0 1 ‘1

0 1 ,M: C2 1 0 1 =

1 0 C 0 0 1

- @
0 0 U
1 0

Figure 1: Illustration of a block model for a small graph. The adjacency matrix X has been reordered to group the vertices in
their respective clusters. The entries where the X differs from the model are in red italics. The cost of this block model is 9.

Constraint Programming Approach

Constraint Programming is a powerful paradigm for solving
combinatorial search problems. It has been successfully ap-
plied to many domains, such as scheduling, planning, vehi-
cle routing, and bioinformatics (Rossi, van Beek, and Walsh
2006). The basic idea of CP is that the user gives a descrip-
tion of the problem in terms of variables and constraints be-
tween them, and a solver will search for suitable solutions.
We refer to (L. Michel 2019) for more information on CP
and CP systems.

In recent years, there has been a trend for using CP in data
mining (Bessiere et al. 2016; Aoga, Guns, and Schaus 2016;
Dao et al. 2018). Many data mining and Al problems are
fundamentally discrete optimization. However, these dis-
crete optimization problems are typically relaxed to contin-
uous optimization problems for mathematical convenience,
as is often the case for the block modeling problem. The
continuous relaxation means compromise in terms of i) loss
of interpretability and ii) inability to enforce semantic con-
straints. CP formulations allow us to model the problem cor-
rectly, as well as giving us access to efficient generic solvers
and heuristics, and ease of modification and extension of
the model, with a treasure-trove of existing additional con-
straints which can be added or removed to fit the specific
problem and domain-specific expertise.

There is work on incorporating CP as a component in-
side existing iterative block modeling algorithms (Ganji et
al. 2018b), but to our knowledge there exists no efficient
solver for this problem developed entirely within the CP
framework. In our work, we fill this gap by introducing a
CP model for the Block Modeling problem, with a dedicated
constraint and filtering algorithm.

class BMCP (graph: Digraph, wval k: Int) extends CPModel {
val n = graph.n number of nodes in the graph
val X = graph.adjacencyMatrix
val C = Array.fill(n) (CPIntVar(0 until k))
val M = Array.fill(k,k) (CPIntVar(0, 1))
val cost = Array.fill(k,k) (CPIntVar(0 to nxn))
val = CPIntVar(0 to n=n)

totalCost

for(c <- 0 until k) add(atLeast(l, C, c))
add (sum(cost.flatten, totalCost))
add (blockModelCost (X, M, C, cost, totalCost))

13686

Listing 1: Implementation of the model for OscaR

CP Model for Block Modeling

The description (the CP model) for the block modeling prob-
lem is given in Listing 1. The code is written for OscaR
(Team 2012), an open-source Scala CP library. The con-
structor for the class takes two parameters: a directed graph
and the number of clusters k. With those, it instanciates the
necessary variables and constraints, and registers them to
OscaR’s CP solver. Not included in this example is the code
defining the search heuristics and starting the solver.

There are four groups of variables in our model. Each
variable has a domain, which is the set of values it can take.
They are defined as follows:

Line 5, C: n cluster variables, with C; = c if vertex 7 is in
cluster c. This is a different formulation of the F' matrix;

Line 6, M: k x k image matrix variables, with M4 = 0 if
the image graph has no arc from cluster c to cluster d, and
1 if it is has such interactions;

Line 7, cost: k x k variables, with cost.4 is the number of
errors in block ¢, d : #{(4,7) | Xij # Mcq, C; = ¢, and
C; = d} the number of entries with rows in cluster ¢ and
columns in cluster d where the value in X do not match
Mcd;

Line 8, totalCost: a variable representing || X — F'M F'||.

CP systems all come with a library of common con-
straints, such as sum(x,s) ensuring that) .x; = s,
atLeast(n, x, v) ensuring that at least n variables in x have
value v, etc. These are general constraints that appear in a
wide range of problems and can be composed together. In
line 10, we use atLeast constraints to ensure that there is
at least one vertex in each cluster, and in line 11, we use a
sum constraint to ensure that the total cost of the solution
and the individual cost of every block stays consistent.

Other constraints are implemented for a domain-specific
task. For examples, there are constraints for vehicle routing,
for planning, for scheduling, and more. These constraints are
less generic than the ones mentioned previously, but their fil-
tering algorithm is much more efficient than the composition
of multiple simple constraints.

In this work, we implemented a domain-specific con-
straint for the block modeling problem, blockModelCost.
Itis called on line 12. It filters the values of the different vari-
ables along the search, ensuring that the cost and totalCost
variables stay consistent with their definiton with respect to
X, C and M. Specifically, it ensures 7' | 37 | |Xi; —
Me,c,| < totalCost and 3312, 377, (C; = ¢) - (Cj =
d) - | Xij — Megq| < costeq Ve, d.

The intuition for blockModelCost’s filtering algorithm
is that we keep track of some key values depending on the
current partial assignment of vertices into clusters, and use
these values to calculate a lower bound on the cost of the best
block model possible with this partial assignment. These
bounds are used to prune inconsistent values. The complete
details and the pseudocode of the algorithm are given in the
full paper, along with a discussion of its complexity.

Optimizing the Search Procedure

In constraint programming, the formulation of the problem
is kept separate from the search procedure. The search pro-
cedure is a branch and bound depth-first-search on the space
of possible assignments of values to the C and M variables.
At every node of the search, the solver will call a dedi-
cated algorithm for each relevant constraint. These are called
the constraints’ filtering algorithms. They prune inconsistent
values from the search space, i.e. values from the domain of
their associated variables which cannot lead to a valid solu-
tion. If a variable has all its values pruned from its domain,
then no valid solution can be found along this path of the
search, and the solver backtracks. Once the solver finds a
first solution with totalCost = x, it will continue the search
with the additional constraint that totalCost < z, repeating
this until the optimal solution has been found.

Two important components of a search procedure are the
variable and value ordering heuristics. These should permit
discovering rapidly good incumbent solutions in order to
prune the search tree. Since the problem also exhibits value

13687

symmetries, we use a dynamic symmetry breaking scheme
during the search. When the search space becomes too large,
and there is no hope to explore completely the search tree,
LNS (Large Neighborhood Search) (Shaw 1998) can be used
on top of CP to diversify the search and discover good solu-
tions rapidly.

Value and Variable Ordering Heuristic When arriving
at a branching point in the search, the CP solver must decide
which variable to branch on and what value to try first. These
decisions are called variable ordering and value ordering.
Selecting the right ordering for the problem can significantly
improve the efficiency of the solver.

For the CP model presented here, there are two sets
of variables we can branch on (C and M). Since the
blockModelCost constraint filters mostly based on the ver-
tices which have been bound, it is better to branch on those
before branching on M variables. The ordering of the C
variables can further be refined with modern first-fail learn-
ing heuristics (Gay et al. 2015; Hebrard and Siala 2017;
Michel and Hentenryck 2012). A good value heuristic for the
clusters can also be constructed from our global constraint.
We calculate J;,,.(c, d), a lower bound on the added cost
of assigning vertex ¢ to cluster x, so a good heuristic is to
branch first on C; = argmin,), disz(c, d), i.e. branch
first on the value for which we expect the least increase in
cost.

Symmetry Breaking for the Block Modeling Problem
Symmetry breaking permits to drastically reduce the search.
Symmetries can generally be avoided by adding constraints
to the model. Unfortunately, this approach suffers from a bad
interaction with the search as good solutions that were dis-
covered early may become unfeasible because of the sym-
metry breaking constraints (Van Hentenryck and Michel
2008). Therefore, a dynamic symmetry breaking during
search strategy is generally more efficient. At every stage
of the search, all-but one child nodes leading to symmetrical
states are discarded.

The search space for this CP formulation of the block
modeling problem has a number of symmetries, which are
discussed in the full paper. Here we will only present one. It
is clear that as long as the clusters stay the same, their labels
can be changed. This kind of symmetry can be broken with
a dynamic symmetry-breaking scheme: when branching on
a C; variable, the solver explores branches C; = 1,C; =
2,...,C; = m + 1 where m is the largest value bound to
a C variable m = max{v | 3 : C; = {v}}. This way
we avoid exploring symmetrical states, without harming the
value heuristics.

Evaluation and Results

In the full paper, we compare the performance of our CP
approach to the current state of the art for exact solving
of the Block Modeling problem, which uses a MIP model
(Dabkowski, Fan, and Breiger 2016). We measure the run
time to completion on well-studied datasets from the liter-
ature, and show that our approach is order of magnitudes
better.

We also compare the performance of a popular local
search algorithm for Block Modeling bundled in the Pajek
software (Batagelj et al. 2004) with a Large Neighborhood
Search using our CP model. We measure the evolution of the
objective function with respect to time on synthetic datasets
with up to 200 vertices (Pajek’s limit). For all instances over
50 vertices, the LNS method outperformed Pajek’s search.

Finally, we explore the scalability the LNS method on
synthetic graphs of up to 7000 vertices with known block-
model structure, and we illustrate possible uses of additional
constraints (e.g. requiring that each cluster form a connected
graph) with applications to the analysis of global human mi-
gration.

Conclusion and Further Work

In the full paper, we introduced a CP approach to the block
modeling problem, using a dedicated global constraint. It
has the advantage of being able to easily incorporate any
combination of additional constraints, contrary to previous
works. Our experiments show that our approach is orders
of magnitude faster than competing solutions to find opti-
mal block models. Our CP formulation can also be used for
heuristic search with Large Neighborhood Search.

This work could be further expanded with an equiva-
lent global constraint for regular equivalence or general-
ized blockmodeling (Doreian, Batagelj, and Ferligoj 2005).
The search could be accelerated by considering more com-
plex symmetry-breaking techniques, notably breaking sym-
metries on automorphisms of X and M, and by considering
more advanced variable ordering schemes.

Further work could also be done to study the effectiveness
of the model with the types of additional constraints men-
tioned in the introduction. For each of these variants, one
could compare different variable and value heuristics, and
evaluate the performance compared to dedicated solvers. Fi-
nally, one could study the expansion of the CP model to the
RESCAL setting (Krompalf et al. 2013) — similar to block
modeling with multigraphs.

Acknowledgments
Alex Mattenet is supported by a FRIA grant.

References

Aoga, J. O.; Guns, T.; and Schaus, P. 2016. An efficient
algorithm for mining frequent sequence with constraint pro-
gramming. In ECML-PKDD. Springer.

Bai, Z.; Walker, P.; Tschiffely, A.; Wang, F.; and Davidson,
I. 2017. Unsupervised network discovery for brain imaging
data. In SIGKDD. ACM.

Bai, Z.; Qian, B.; and Davidson, I. 2018. Discovering mod-
els from structural and behavioral brain imaging data. In
SIGKDD. ACM.

Batagelj, V.; Mrvar, A.; Ferligoj, A.; and Doreian, P. 2004.
Generalized blockmodeling with pajek. Metodoloski zvezki
1(2).

Bessiere, C.; De Raedt, L.; Kotthoff, L.; Nijssen, S.;
O’Sullivan, B.; and Pedreschi, D. 2016. Data Mining

13688

and Constraint Programming - Foundations of a Cross-
Disciplinary Approach.

Dabkowski, M.; Fan, N.; and Breiger, R. 2016. Exploratory
blockmodeling for one-mode, unsigned, deterministic net-
works using integer programming and structural equiva-
lence. Social Networks 47.

Dao, T.-B.-H.; Kuo, C.-T.; Ravi, S.; Vrain, C.; and David-
son, I. 2018. Descriptive clustering: Ilp and cp formulations
with applications. In IJCAI. AAAI Press.

Doreian, P.; Batagelj, V.; and Ferligoj, A. 2005. Generalized
Blockmodeling. Cambridge University Press.

Ganji, M.; Chan, J.; Stuckey, P.; Bailey, J.; Leckie, C.; Ra-
mamohanarao, K.; and Davidson, I. 2018a. Image Con-
strained Blockmodelling: A Constraint Programming Ap-
proach. In 2018 SIAM International Conference on Data
Mining, Proceedings. Society for Industrial and Applied
Mathematics.

Ganji, M.; Chan, J.; Stuckey, P. J.; Bailey, J.; Leckie, C.;
Ramamohanarao, K.; and Park, L. 2018b. Semi-supervised
blockmodelling with pairwise guidance. In ECML-PKDD.
Springer.

Gay, S.; Hartert, R.; Lecoutre, C.; and Schaus, P. 2015.
Conflict ordering search for scheduling problems. In CP.
Springer International Publishing.
Hebrard, E., and Siala, M. 2017.
weighted degree. In CPAIOR.
KrompaB, D.; Nickel, M.; Jiang, X.; and Tresp, V. 2013.
Non-negative tensor factorization with rescal. In Tensor
Methods for Machine Learning, ECML workshop.

L. Michel, P. Schaus, P. V. H. 2019. Minicp: A lightweight
solver for constraint programming.

Lorrain, F., and White, H. C. 1971. Structural equivalence of
individuals in social networks. The Journal of Mathematical
Sociology 1(1).

Mattenet, A.; Davidson, I.; Nijssen, S.; and Schaus, P. 2019.
Generic constraint-based block modeling using constraint
programming. In CP.

Michel, L., and Hentenryck, P. V. 2012. Activity-based
search for black-box constraint programming solvers. In
CPAIOR 2012, Nantes, France, May 28 - Junel, 2012. Pro-
ceedings.

Rossi, F;; van Beek, P.; and Walsh, T. 2006. Handbook of
constraint programming. Amsterdam: Elsevier.

Shaw, P. 1998. Using constraint programming and local
search methods to solve vehicle routing problems. In CP.
Springer.

Team, O. 2012. OscaR: Scala in OR. Available from
https://bitbucket.org/oscarlib/oscar.

Van Hentenryck, P., and Michel, L. 2008. The Steel
Mill Slab Design Problem Revisited. In CPAIOR, LNCS.
Springer Berlin Heidelberg.

Wang, F; Li, T.; Wang, X.; Zhu, S.; and Ding, C. 2011.
Community discovery using nonnegative matrix factoriza-
tion. Data Mining and Knowledge Discovery 22(3).

Explanation-based

