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Abstract

Entity name disambiguation is an important task for many
text-based AI tasks. Entity names usually have internal se-
mantic structures that are useful for resolving different vari-
ations of the same entity. We present, PARTNER, a deep
learning-based interactive system for entity name understand-
ing. Powered by effective active learning and weak super-
vision, PARTNER can learn deep learning-based models
for identifying entity name structure with low human effort.
PARTNER also allows the user to design complex normal-
ization and variant generation functions without coding skills.

Understanding entity name variations can be helpful for
many text-based AI tasks such as knowledge base cu-
ration, data integration, and information retrieval. Text-
based similarity functions are widely used in these ap-
plications to resolve entity names (e.g., (Qian, Popa, and
Sen 2017)). However, entity names can be highly ambigu-
ous and text-based similarity functions are not sophisti-
cated enough for resolving complex entity variations. For
example, “General Electric (CN) Company” and
“General Electric Company” are textually similar
but referring to different entities. On the other hand, “GE
Co.” and “General Electric Company” are refer-
ring to the same entity even if they are textually dissimilar.

Entity names often have internal semantic structure con-
sisting of various semantic units (see Figure 1), which
are crucial for entity normalization and variant generation
(Bhutani et al. 2018; Arasu and Kaushik 2009). Specifi-
cally, if we can identify that “General Electric” is
the 〈corename〉 unit and “Company” is the 〈suffix〉 unit,
we can perform unit-level transformations such as creat-
ing initials for 〈corename〉 (e.g., General Electric
→ GE) and abbreviating 〈suffix〉 (i.e., Company → Co.),
and eventually we get “GE Co.”. In this way, “General
Electric Company” and “GE Co.” can be resolved as
the same name even though they are textually dissimilar.

Although it is possible to let a programmer to manually
write type-specific algorithms to identify semantic structures
of entity names (e.g., (Arasu and Kaushik 2009)), it is labor-
intensive, time-consuming, and does not scale. Therefore,
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Figure 1: Structure of sample company entities

based on (Bhutani et al. 2018), an active learning based
system called LUSTRE (Qian et al. 2018) has been devel-
oped to automatically generate rule-based models that iden-
tify the semantic structures of named entities. The rules
learned by LUSTRE are sequences of regex-based matchers
and dictionary-based matchers that define different sequence
patterns. The availability of a list of comprehensive, accu-
rate, and complete dictionaries is fundamental to the success
of LUSTRE, otherwise the learned rules do not take into ac-
count any semantic information and are sensitive to noisy
data (e.g., misspelling). Moreover, LUSTRE does not sup-
port incremental learning or transfer learning.

We present PARTNER (deeP leArning foR enTity
uNdERstanding), an interactive system that learns deep
learning-based models for parsing the semantic structures
of named entities. PARTNER has an intuitive user interface
for specifying sophisticated entity normalization and variant
generation functions with no coding skill needed.

Methodology

Learning framework. Parsing the semantic structures of
entity names can be viewed as a sequence tagging prob-
lem (see Figure 1). Deep BiLSTM-CRF models have been
shown to achieve state-of-the-art performance on sequence
tagging problems (Huang, Xu, and Yu 2015). However, deep
learning methods are known for data hungry. In our settings,
we initially do not have any annotated examples. To address
the data hungriness issue and minimize human effort, we
use active learning to iteratively find the most “informa-
tive/uncertain” example to be labeled by the user; we also
use weak supervision to augment the training data by auto-
matically generate a number of high-quality pseudo labels.
Our BiLSTM-CRF approach can use either use pretrained
fastText embeddings or use pretrained BERT models to gen-
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Figure 2: (left) BiLSTM-CRF models with fastText (BERT-based models has similar architecture). (right) User interaction.

erate contextual embeddings.
Figure 2(left) shows the architecture that PARTNER uses

for entity structure parsing. Concretely, given an entity men-
tion E we tokenize it into a set T = {token1, . . . , tokenm}
of tokens. We then convert the sequence of tokens into a se-
quence {v1, . . . , vm} of high dimensional embedding vec-
tors using some pretrained embeddings. PARTNER can
use pretrained BERT to tokenize entity names and generate
contextual token embeddings or use embeddings generated
by fastText1. These embedding vectors are then fed into a
BiLSTM layer. We set a low dimensionality (e.g., 50) for
both hidden size and output size of the BiLSTM layer so
that we can compress high-dimensional word embeddings
into low-dimensional “semantic” vectors capturing contex-
tual information of the input tokens. We also predefined a
list of generic regex-based functions, such as hasDigits(x),
allCaptial(x), isInDictionary(x,‘suffix’), to capture various
structure information of an input token and convert it into a
“structure” vector. Then, we concatenate the corresponding
“structure” and “semantic” vectors, and feed them, sequen-
tially, to the conditional random field (CRF) layer to find out
the most likely sequence labels.

Active learning and weak supervision. Figure 2(right)
illustrates the flow of one active learning iteration, where
only two places need human interaction (see more details
from the submitted video demo). First, we apply the cur-
rent candidate model (in first iteration, it will be a randomly
initialized model) to annotate all unlabeled entity mentions,
then we rank these annotations based on their informative
score (details omitted due to limited space). We choose the
most informative example e to be labeled by the user. After
the user labels e, the system will find a set S of unlabeled
entities that are structurally similar to e (i.e., examples have
identical sequence of “structure” vectors). It follows that the
labels of e will be used as pseudo labels for all examples
in S. We then refine the candidate model with both human
labels as well as pseudo labels. Next, we use the newly re-
fined model to annotate all unlabeled entity mentions, and
we then order these annotations based on their probability
scores produced by the CRF layer. We choose the annota-

1While the BERT-based version is potentially better than the
fastText-based version, it is computationally more expensive.

tions with top-k highest (resp. bottom-k lowest) probability
scores as high-confidence true positives (resp. likely false
positives) and present them to the user for verification. In
this step, the user just need to provide binary feedback to
these annotations. The verified annotations are used in the
subsequent iterations. Depending on labeling budget, high-
confidence true positives can also be treated as weak labels
to further minimize human effort (configurable from the UI).

Variant generation. During the learning, the user can test
the parsing model by either uploading a test file or manually
type in test cases. The user can also play with the parsing
model by building normalization or variant generation func-
tions on top of it. PARTNER provides a rich set of unit-level
and pattern-level transformations (intuitively visualized in
UI), which allows the user, without coding skills, to design
complex normalization and variant generation functions.

Switching between learning and normalization is simple
and flexible. Moreover, the design of PARTNER makes
transfer learning and incremental learning easy. The user can
simply adapt a pre-trained model to new data by fine-tuning
it with the aforementioned active learning strategy over the
new data. PARTNER2 is developed in Angular, Django, Py-
Torch, and HuggingFace Pytorch-Transformers.
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