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Abstract

Short-term prediction of volcanic eruptions is one of the ulti-
mate objectives of volcanology. At Sakurajima volcano, an
active volcano in Japan, experts monitor the volcanic sen-
sor data and analyze the prior signal to predict the eruptions.
Even though experts derived some patterns, it is hard to make
a good prediction due to handcrafted features. To address this
issue, we propose to predict eruptions using machine learn-
ing. In this paper, we attempt to predict the eruptions hourly
by adapting several machine learning methods including tra-
ditional and deep learning approaches. As recurrent neural
network is well-known for extracting the time-sensitive fea-
tures, we propose the model especially for volcanic erup-
tion prediction named VepNet. The assumption is based on
domain knowledge that some specific triggers are the main
causes of future eruptions. To take this advantage, VepNet
deploys an attention layer to locate and prioritize these trig-
gers in decision making. The extensive experiments ever con-
ducted using data from Sakurajima volcano showed the ef-
fectiveness of deep learning approach over the traditional ap-
proach. On top of that, VepNet showed its effectiveness on
prediction with AUC-score up to 0.8665. Moreover, an at-
tempt has been made to explain the mechanism of the erup-
tions by analyzing the attention layer of VepNet. Lastly, to
support volcano expert in issuing warnings and the safety of
living people around Sakurajima, a warning system named
3LWS is proposed. The system predicted the eruptions hourly
with high accuracy and reliability with the eruption rate up to
68.97% in the High-Risk level.

Introduction

Volcanic eruptions cause severe damages to human and so-
ciety, hence it is an important research topic to solve. In the
context of this paper, the eruption means explosive eruption.
Volcano experts at Sakurajima volcano deploy a monitor-
ing system (Figure 1) which includes the sensors to mea-
sure time series data like strain and energy data (Iguchi
et al. 2013). The details of these data will be explained
later in the Background Knowledge and Dataset section.
Experts observe the data over many years to extract the
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Figure 1: The monitoring system and short-term prediction
at Sakurajima volcano.

prior signals of these data before an eruption occurs and
found some interesting patterns (Kamo and Ishihara 1989;
Iguchi et al. 2008). However, it is hard to map that knowl-
edge into an accurate model due to handcrafted features.
This creates an opportunity for machine learning researchers
to solve this problem while collaborating with volcano ex-
perts.

In this paper, we attempt to predict the eruptions hourly
using the historical sensor data two hours ago. This setting
is due to domain knowledge and recommended by volcano
experts. An eruption is very hard to predict more than an
hour in advance due to the limitation of the current technol-
ogy (Sparks 2003). The factors that lead to a volcanic erup-
tion unfold deep inside our planet, further down than current
technology can reach. In the current monitoring system, the
prior signals of an eruption measured by the sensors on the
ground are clear only when the eruption is about to happen
soon. That is why in this paper, we predict the eruptions an
hour in advance and use the past data of two hours ago as
more data just increase the computational cost and do not
bring much useful information about the eruptions. The pre-
diction will be made hourly and is either explosive or not
explosive.

We conduct this research on two perspectives: traditional
and deep learning approaches. As recurrent neural network
is promising for learning the nonlinearity and the tempo-
rality of time series data, we propose a modern deep neu-
ral network architecture called Volcanic eruption prediction
(VepNet) especially for the short-term prediction of vol-



canic eruptions. VepNet employs a stack of two Long Short-
Term Memory (LSTM) to extract the high level and time-
dependent features from the sensor data. As each LSTM cell
can handle multiple data points at one time step, the model
can handle multivariate time series data easily. This is impor-
tant because the eruptions can be predicted more accurate if
we give more data to the model from different sources. On
top of LSTM, VepNet employs a concatenation-based atten-
tion layer which plays a role as a selector to automatically
judge the importance of each time step for the prediction
(Luong, Pham, and Manning 2015). Furthermore, we pro-
pose a 3-Level Warning System (3LWS) to issue the warning
at Sakurajima volcano in real-time.

We have conducted extensive experiments for the short-
term prediction of volcanic eruptions on the real and large
datasets obtained from Sakurajima volcanic monitoring sys-
tem. The experimental results show that deep learning ap-
proaches, especially VepNet, outperforms traditional models
on a large test set with a wide range of evaluation metrics.
The following are the main contributions of this paper:

e The research tackles an important problem of short-term
prediction of volcanic eruptions on a wide range of ma-

chine learning models.

We propose a modern architecture named VepNet, an end-
to-end, powerful and effective model for eruptions predic-
tion with minimum data preprocessing. VepNet not only
predicts the eruptions well but also provides a meaningful
interpretation of the prediction. To the best of our knowl-
edge, this is the first attempt to adopt deep learning for the
challenging research of short-term prediction of volcanic
eruptions.

We propose a 3-Level Warning System (3LWS) for is-
suing the eruption warnings in real-time. The proposed
system achieved high accuracy and reliability. 3LWS sup-
ports volcano experts in the decision of issuing warnings.
This could bring a strong impact on society.

Related Work

There are limited works on the short-term prediction of vol-
canic eruptions. Most of the prediction works are done by
volcano experts using their own experience by monitoring
data through time, which is hard to make a fast and accurate
prediction. Some of the popular data volcano experts use for
prediction are seismicity, ground deformation, and volcanic
gases (Sparks 2003). (Chouet et al. 1994) predicted the ex-
plosive eruptions at Mount Redoubt, Alaska using seismic
data. The Alaska Volcano Observatory issued warnings of
several eruptions based on changes in seismic activity re-
lated to the occurrence of precursory swarms of long-period
seismic events. The ground deformation and seismicity are
used together to forecast the Hekla eruption (Agustsson et
al. 2000). Its seismic expressions were a swarm of numer-
ous small earthquakes related to its onset. A swarm of small
earthquakes was observed some 80min before the onset of
the eruption. At the same time, a compressive strain sig-
nal was observed at strain station 15 km from Hekla. The
integration of precursory seismicity, ground deformation,
and SO, emissions led to a successful forecast at Mount

13321

Pinatubo (Newhall and Punongbayan 1996). (Kamo and
Ishihara 1989) categorized the volcano’s status into multi-
ple warning levels based on the thresholds of the inflation-
ary tilt, the deflationary tilt, and the accumulated values of
these data over time. The shared point of these works is that
the prediction mainly relies on the knowledge of the volcano
experts, which requires a lot of domain knowledge and the
difficulty of discovering complicated patterns. Moreover, as
each volcano has its eruption characteristics, the prediction
knowledge from one volcano is hardly used in the other vol-
canoes. Therefore, the generalizability is low. Our approach
has better generalizability as the model only needs to be re-
trained for each volcano.

Background Knowledge and Dataset

Sakurajima is an active volcano located in Kagoshima Pre-
fecture in Kyushu, Japan !. Many explosive eruptions are
occurring in this volcano every week. Strain data and seis-
mic data are the two main monitoring data at this volcano.
Strain data (including tangential strain data and radial strain
data) is measured by Strainmeters. These instruments mea-
sure linear strain by detecting horizontal contraction or ex-
tension in a length. The component installed in the direc-
tion of the crater (radial component) measures radial strain.
The component installed perpendicular to the radial direc-
tion (tangential component) measures tangential strain. Seis-
mic data (including seismic energy data and maximum am-
plitude data) is measured by Seismometer. This measures
ground surface vibration as the velocity of a particle. The
square sum of the velocity is proportional to seismic energy
data to evaluate the intensity of long-term tremor. Maximum
amplitude velocity in the seismic records is treated as the in-
stantaneous intensity of the event. The visualization of the
data is shown in Figure 2.
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Figure 2: The visualization of strain data (left) and seismic
data (right).

The data for all sensors are numeric values and recorded
every minute by volcano experts. The total data includes
eight years from 2009 to 2016, and this is the biggest dataset
about the volcanic monitor in Japan. We use the sliding win-
dow of two hours and the sliding step of one hour to seg-
ment the sensor data. The two labels explosive and not ex-
plosive are carefully done by volcano experts. The details

"https://en.wikipedia.org/wiki/Sakurajima



of the dataset are shown in Table 1. We merge the dataset
from 2009 to 2012 because it is used together for training.
We can see that the class imbalanced problem is severe in
this dataset.

Table 1: The details of the dataset for short-term prediction
of volcanic eruptions. Abbreviation: Sequences (Seq), Ex-
plosive (Exp).

2009-2012 2013 2014 2015 2016
Seq 34,123 8,420 8,684 8611 8,659
Exp 3,130 742 409 642 47
Exp rate 1:10 1:11 1:21 1:13  1:184

VepNet: Short-Term Prediction of Volcanic
Eruptions

Problem definition

The model takes D sensors as the input and each sensor is a
time series of length n. Each element z¢ of the input is the
it" element of the time series obtained from sensor d, where
1 <i<mnandl1l < d < D. In short, we denote x; as the
value of all sensors at time 7. Each input has a corresponding
output which is the prediction the volcano y € {0, 1} with 0
is not explosive and 1 is explosive.
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Figure 3: The architecture of the proposed VepNet.

Figure 3 shows the overview architecture of the model.
At each time step, the input to LSTM will be z; which is
the value of 4 sensors at time . The total number of the time
step is n which is 120 in our experiment. The input vector z;
is fed into a 2-layer Long Short-Term Memory and outputs
hidden state h; for each time step. The dimension of the hid-
den state in our experiment is 128. On top of LSTM, VepNet
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employs an attention layer which takes into account all the
hidden states but the last one with weighting vector a. The
attention layer outputs a context vector ¢. The dimension of
the context vector c is the same as the hidden state. Finally,
the context vector ¢ and the final hidden state h,, will be
concatenated to make the prediction using a fully connected
layer with a sigmoid function. The details of the model will
be explained later in this section.

Long Short-Term Memory (LSTM) LSTM is a type of
recurrent neural network which overcomes vanishing gradi-
ent problem (Hochreiter and Schmidhuber 1997) by incor-
porating gating functions into their state dynamics. The out-
put at each time step of LSTM is a hidden vector & which
represents the information learned from the time series up
to that point. By using the hidden state i of an LSTM as
the input to another LSTM, we can stack LSTMs, creating
deeper architectures. The hidden state h at layer [ obtained
from previous layer [ — 1 is

Bl = Istm(hi=1 KL ),

with [stm simply represents the gate computation of LSTM,
hl~! is the hidden state of layer [—1, k! is the hidden state
of the layer [ at previous time step ¢ — 1. VepNet consists of
a stack of two layers of LSTM to extract the hierarchical
level and time-dependent feature representation (Hermans
and Schrauwen 2013). The output of VepNet now is hidden
vectors h = [hy, ..., hy], by € R™, with m is 128, and h,, is
the last hidden state.

Attention Mechanism In the case of volcanic eruption,
the trigger of the eruption in the sequence could be any-
where. To deal with this problem, we employ an attention
layer on top of LSTM to selectively weighting the hidden
states to make the prediction. In this paper, we propose us-
ing concatenation-based attention which can relate the cor-
relation between the last hidden state and all other hidden
states.

For each hidden state h; in [hq, ..., hp—1], We first con-
catenate h; with the last hidden state h,,. The attention con-
tribution at time step ¢ is calculated as:

a; = tanh([hi; hp)]Wa), W, € R?™
The normalized attention contribution vector is:
a = Softmax([ay,as, ..., an—1])

The attention is applied up to the second last hidden state.
The context vector is derived based on the attention contri-
bution vector a and all the hidden states from h; to h,,_1:

n—1
Cc = E aihi
i=1

Then, the context vector ¢ and the hidden state h,, are com-
bined to generate the attentional hidden state as:

RQm Xk

[C; hn]Wattention7 Wattention S

hattention

with k£ = 256 is the dimensionality of the attentional hidden
state.



Short-Term Prediction of Volcanic Eruptions VepNet
takes the attentional hidden state from the attention layer to
make the prediction using a fully connected network with a
sigmoid function:

Yy = Singid(Whattention + b)
with W and b are the weight matrix and bias, respectively.

Optimization We minimize the weighted binary cross-
entropy loss function and increase the positive weight to deal
with False Negative cases. This is because False Negative
cases in volcanic eruption prediction are dangerous.
batch_size
L=- Z yilog(y;) x weight + (1 —y;) log(1 —y;),
i=1

with y is the target and ¢’ is the prediction. The parame-
ter weight with the value of more than 1 is included to the
loss function to penalize the cases when the target is 1 but
the prediction is near 0. By optimizing the loss function this
way, we can force the model to decrease the number of False
Negative cases. In our experiment, the weight parameter
was decided using the validation set, and the value was set
to be 4.

Experiments for Short-Term Prediction of
Volcanic Eruptions
Experimental Setup

We do the experiments in several models including tradi-
tional and deep learning approaches. Traditional models in-
clude INN-ED (INN-DTW was not used due to intractable
computational cost which is not appropriate for fast predic-
tion), SVM, and Random Forest (RF). Deep learning mod-
els include 4-layer CNN, 2-layer LSTM, and VepNet. Due
to the class imbalanced problem, we did not use accuracy to
evaluate the models. For a fair and complete evaluation, we
used four metrics AUC, F1-score, Precision, and Recall.

Results

All models were tested in four years from 2013 to 2016.
For each year, the training set was all the previous years.
The result of all models for all four years is shown in Table
2. Deep learning models outperformed the traditional mod-
els by a wide margin. This is because the neural networks
can learn a better representation of the sensor data. These
features can capture the prior signal of the eruptions better.
Between deep learning models, LSTM generally performed
better than CNN. This is as expected that LSTM can learn
the time-sensitive features better than CNN in many appli-
cations. VepNet which takes advantages of attention layer
resulted in an improvement over pure LSTM model. This
can be explained because the eruption can be triggered at
any time steps before the eruption. The model which takes
advantages of these important time steps can make a better
prediction. VepNet performed the best in 2014 with AUC
up to 0.8665 and recall of 0.5795. While VepNet can make
good predictions from 2013 to 2015, the result was not good
in 2016. This is because the class imbalance in 2016 is ex-
tremely high. However, the recall of 0.2979 is encouraging
as the number of eruptions in this year is very small.
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Table 2: The results of VepNet and other models for 4 years.
The best model is shown in bold.

AUC  Fl-score Precision Recall
2013
INN-ED 0.5259 0.1282 0.1552 0.1092
SVM 0.5199  0.0969 0.2061 0.0633
RF 0.5006  0.0053 0.1538 0.0027
CNN 0.8015  0.4022 0.3179 0.5472
LSTM 0.8295  0.4372 0.3722 0.5296
VepNet  0.8373  0.4506 0.3773 0.5593
2014
INN-ED 0.5251 0.095 0.1 0.0905
SVM 0.5136  0.0611 0.1391 0.0391
RF 0.5014  0.0093 0.1053 0.0049
CNN 0.8375 0.388 0.2942 0.5697
LSTM 0.8484  0.4374 0.354 0.5721
VepNet  0.8665 0.467 0.3911 0.5795
2015
INN-ED 0.5248 0.1201 0.1218 0.1184
SVM 0.5494  0.1726 0.2807 0.1246
RF 0.5091 0.0409 0.3333 0.0218
CNN 0.7934  0.3965 0.3321 0.4919
LSTM 0.8321 0.38 0.3053 0.5031
VepNet 0.838 0.4125 0.3445 0.514
2016
INN-ED 0.5113 0.0182 0.0116 0.0426
SVM 0.499 0.0 0.0 0.0
RF 0.4999 0.0 0.0 0.0
CNN 0.7282  0.0965 0.0608 0.234
LSTM 0.6754  0.1004 0.0613 0.2766
VepNet  0.7307 0.1186 0.0741 0.2979

Hyper-parameter tuning and Optimization

VepNet is implemented using Tensorflow 2. The dimension-
ality of LSTM hidden state is 128, and the dimensionality of
the attentional hidden state is 256. The model was trained
via the Adam optimizer (Kingma and Ba 2014), with an
initial learning rate of le — 3 and batch size of 64. Ran-
dom search is used for hyper-parameter tuning (Bergstra and
Bengio 2012).

Prior signals of the eruptions

In this part, we attempt to extract the learning knowledge
from VepNet to explain the prior signals of the eruptions.
VepNet utilizes two hours (120 minutes) of 4 type of data to
make the prediction. According to domain knowledge, some
abnormal signals last for approximately 10 minutes which
triggers the eruptions. The whole idea of attention layer is
to figure out which signals are the triggers. 120-minute data
can be split into 12 intervals with 10 minutes each. Some
intervals have higher attention scores than others. The set of
data which shares high attention scores at the same interval
is likely to share some common signals. Such set of data is
visualized in one figure to investigate the data as we believe

*https://www.tensorflow.org/
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Figure 4: The visualizations of 4 types of data having the high attention scores around minute 30 (top) and minute 70 (bottom).

that the shared common signals could be the triggers of the
eruption. We later consult with volcano experts to verify the
information we have learned from this visualization to con-
firm the correctness of the assumption. Due to the page limit,
we only show the visualizations of two intervals: high atten-
tion scores around minute 30 and minute 70 of the data. The
visualizations are shown in Figure 4. It is interesting to no-
tice that the tangential strain data (blue lines) has a sharp
drop at the location where the attention scores are high.
Similarly, radial strain data (red lines) has a sharp increase,
seismic energy data (green lines) and maximum amplitude
(black lines) data have the peaks. Volcano experts confirmed
that these signals are generally well-known for the prior sig-
nals of the eruptions at Sakurajima volcano. However, it is
hard for experts to know the thresholds of these patterns, for
example how much the signal drops, to make the prediction.
VepNet can detect these prior signals automatically and is
potential for further investigation of the pattern thresholds.

Proposed 3-Level Warning System (3LWS)

When an eruption occurs, a huge amount of dust and ash
will be emitted from the crater, which extremely affects peo-
ple’s health and daily life (Blong 2013). Therefore, there is a
need to have an eruption warning system in real-time. Based
on the promising results from VepNet, we developed a sys-
tem at Sakurajima volcano which issues the eruption warn-
ing hourly. This system is for the convenience of people’s
lives, not for evacuation’s purpose because we predict all
eruptions. Therefore, it is normal to have many warnings.
The system for evacuation plan should consider predicting
large-scale eruptions only.

In this system, we categorize the warning into three lev-
els: Low Risk, Medium Risk, and High Risk. Low Risk
means less likely that there will be an eruption, High Risk
is likely to have eruption, and Medium Risk is the middle
level. Using the output from VepNet, we define two opti-
mal cut-off points for High Risk and Low Risk based on
the cost of False Negative and False Positive from domain
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knowledge. Medium Risk will take the threshold between
these two cut-off points. The cut-off point for Low Risk is
the threshold at which the number of False Negative cases
should be small. This is important because people will not
prepare for the eruption at all. Hence, the cost of False Nega-
tive should be high. Taking domain knowledge into account,
the cost ratio of False Negative and False Positive is 20:1. In
contrast, the cut-off point for High Risk is the threshold at
which the number of False Positive cases should be small.
As False Negative is always severe, the cost ratio, in this
case, is equally 1:1. The cut-off point will be the threshold
where the cost is minimum in each case. The visualization
of cost for two cut-offs is shown in Figure 5. From the cost
curve, the optimal threshold for Low Risk is 0.1942, and this
figure for High Risk is 0.8236. Medium Risk will take the
threshold between 0.1942 and 0.8236. Because the eruption
warning will be predicted in three levels hourly, we call this
system 3-Level Warning System (3LWS).
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Figure 5: The visualization of cost curve with respected to
threshold of Low Risk cut-off and High Risk cut-off.

The prediction result of 3LWS is shown in Table 3. We



Table 3: The performance of 3LWS. Abbreviation: Eruption Rate (ER).

Year 2013 2014 2015 2016

Risk Low Medium High | Low Medium High | Low Medium High | Low Medium High

Total 4,713 3,549 158 | 5,406 3,191 87 5,899 2,463 249 | 7,960 648 51

Eruption 102 540 100 62 287 60 116 387 139 24 18 5

ER (%) 2.16 1522 6329 | 1.15 8.99 68.97 | 1.97 15.71 55.82 | 0.3 2.78 9.8
evaluated the performance in four years from 2013 to 2016. References

The eruption rate is the number of eruptions over all the pre-
dicted cases for a given level. 3LWS achieved a low erup-
tion rate in Low-Risk level in four years. The highest erup-
tion rate in Low-Risk level is 2.16% in 2013. This means
that when the system issues a Low Risk, 97.84% there is
no eruption. The Medium Risk level has up 15.71% erup-
tion which is not high, but still, people need to be careful. In
the High-Risk level, the model made good warning with the
eruption up to 68.97% in 2014. In 2016, because the class
imbalanced problem is extreme, 3LWS had some trouble in
prediction. Nevertheless, we can observe that the system is-
sued a large number of Low-Risk levels and a small number
of High-Risk levels compared to previous years. This shows
that 3ALWS was aware of a year of not many eruptions. 3LWS
can issue warnings with high accuracy and reliability.

Conclusion

Short-term prediction of volcanic eruptions is a challeng-
ing and important task. It is hard to even for volcano ex-
perts to make the prediction. In this paper, we researched the
short-term prediction of volcanic eruptions using machine
learning on two perspectives: traditional and deep learn-
ing approaches. We then proposed a modern architecture
named VepNet to predict the eruptions of Sakurajima vol-
cano hourly. By employing a stacked LSTM, VepNet can
learn the high-level nonlinear and time-dependent features
from the sensor data. On top of LSTM, we stack an at-
tention layer which plays a role as a selector to automati-
cally weight the contribution of each time step. This layer
helps to increase the accuracy of the prediction and at the
same time provide the interpretation to the eruptions. Exper-
imental results on the real dataset from Sakurajima volcano,
which is the largest dataset about volcanic sensor monitor in
Japan, showed that VepNet outperformed the other models.
The analysis showed that the attention mechanism provided
meaningful interpretation by focusing on some interesting
patterns of the eruptions. From the promising result of Vep-
Net, we proposed a 3-Level Warning System to issue the
eruption warning hourly. The system can issue the warning
with high accuracy and reliability.
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