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Abstract

Firms implementing digital advertising campaigns face a
complex problem in determining the right match between
their advertising creatives and target audiences. Typical solu-
tions to the problem have leveraged non-experimental meth-
ods, or used “split-testing” strategies that have not explic-
itly addressed the complexities induced by targeted audi-
ences that can potentially overlap with one another. This pa-
per presents an adaptive algorithm that addresses the prob-
lem via online experimentation. The algorithm is set up as
a contextual bandit and addresses the overlap issue by par-
titioning the target audiences into disjoint, non-overlapping
sub-populations. It learns an optimal creative display policy
in the disjoint space, while assessing in parallel which cre-
ative has the best match in the space of possibly overlap-
ping target audiences. Experiments show that the proposed
method is more efficient compared to naive “split-testing”
or non-adaptive “A/B/n” testing based methods. We also de-
scribe a testing product we built that uses the algorithm. The
product is currently deployed on the advertising platform of
JD.com, an eCommerce company and a publisher of digital
ads in China.

1 Introduction

A critical determinant of the success of advertising cam-
paigns is picking the right audience to target. As digital
ad-markets have matured and the ability to target advertis-
ing has improved, the range of targeting options has ex-
panded, and the profile of possible audiences have become
complex. Both advertisers and publishers now rely on data-
driven methods to evaluate audiences and to find effective
options with which to advertise to them. This paper presents
a new bandit algorithm along with a product built to facili-
tate such evaluations via online experimentation.

The problem addressed is as follows. An advertiser de-
signing a campaign wants to pick, from a set of possible tar-
get audiences and creatives, a creative-target audience com-
bination that provides her the highest expected payoff in the
campaign. The target audiences can be complex, potentially
overlapping with each other, and the creatives can be any
type of media (picture, video, text etc). We would like to de-
sign an experiment to find the best creative-target audience
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combination for the advertiser while minimizing her costs of
experimentation.

When only creatives have to be compared to each other,
the typical practice is to leverage an “A/B/n” experimental
design in which creatives represent arms, so that the best
creative is found by ranking the expected payoffs for users
randomized into the arms. When target audiences have to
be evaluated in addition, extending this design − treating
creative-target audience combinations as arms− is problem-
atic. The main difficulty is possible overlap in the target au-
diences that are compared (e.g., “San Francisco users” and
“Male users”). This complicates user assignment because it
is not obvious to which constituent arm, a user belonging
to an overlapping region should be assigned (e.g., should
a Male user from San Francisco be assigned to the “San
Francisco-creative” arm or the “Male-creative” arm?). As-
signing the overlapping user to one of the constituent arms
violates the representativeness of the arms (e.g., if we use
a rule that Male users from San Francisco will always be
assigned to the “San Francisco-creative” arm, the “Male-
creative” arm will have no San Franciscans, and will not
represent the distribution of Male users in the platform pop-
ulation).1 Such assignment also under-utilizes data: though
the feedback from the user is informative of all constituent
arms, it is being used to learn the best creative for only one
picked arm (e.g., if we assign a Male user from San Fran-
cisco to the “San Francisco-creative” arm, we do not learn
from him the value of the “Male-creative” arm, though his
behavior is informative of that arm).

Another difficulty is that typical “A/B/n” test designs
keep the sample/traffic splits constant as the test progresses.
Therefore, both good and bad creatives will be allocated the
same amount of traffic during the test. Instead, as we learn
during the test that an arm is not performing well, reducing
its traffic allocation can reduce the cost of experimentation.

The goal of this paper is to develop an algorithm that
addresses these issues. It has two broad steps. In step one,
we split the compared target audiences (henceforth “TA”s)
into disjoint audience sub-populations (henceforth “DA”s),
so the set of DAs fully span the set of TAs. In step two, we
train a bandit with the creatives as arms, the payoffs to the

1Random assignment of users in overlapping regions to parent
arms does not solve the issue; discussed later in the paper.
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advertiser as rewards, and the DAs, rather than the TAs as
the contexts. As the test progresses, we aggregate over all
DAs that correspond to each TA to adaptively learn the best
creative-TA match. In essence, we learn an optimal creative
allocation policy at the disjoint sub-population level, while
making progress towards the test goal at the TA level. Be-
cause the DAs have no overlap, each user can be mapped
to a distinct DA, addressing the assignment problem. Be-
cause all DAs that map to a TA help inform the value of
that TA, learning is also efficient. Further, tailoring the ban-
dit’s policy to a more finely specified context − i.e., the DA
− allows it to match the creative to the user’s tastes more
finely, thereby improving payoffs and reducing expected re-
gret, while delivering on the goal of assessing the best com-
bination at the level of a more aggregated audience. The
adaptive nature of the test ensures the traffic is allocated in
a way that reduces the cost to the advertiser from running
the test, because creatives that are learned to have low value
early are allocated lesser traffic within each DA as the test
progresses. The overall algorithm is implemented as a con-
textual Thompson Sampler (henceforth “TS”; see (Russo et
al. 2018) for an overview).

Increasing the overlap in the tested TAs increases the pay-
off similarity between the TAs, making it harder to detect
separation. An attractive feature of the proposed algorithm
is that feedback on the performance of DAs helps inform the
performance of all TAs to which they belong. This cross-
audience learning serves as a counterbalancing force that
keeps performance stable as overlap increases, preventing
the sample sizes required to stop the test from growing un-
acceptably large and making the algorithm impractical.

In several simulations, we show the proposed TS per-
forms well in realistic situations, including with high levels
of overlap; and is competitive against benchmark methods
including non-adaptive designs and “split-testing” designs
currently used in industry. To illustrate real-world perfor-
mance, we also discuss a case-study from a testing product
on the advertising platform of JD.com, where the algorithm
is deployed.

2 Related Work and Other Approaches

There is a mature literature on successful applications of
bandits in web content optimization (e.g., (Agarwal, Chen,
and Elango 2009), (Li et al. 2010), (Chapelle and Li 2011),
(Urban et al. 2014), (Agarwal et al. 2016)). This paper be-
longs to a sub-stream of this work on using bandits for
controlled experiments on the web. The closest papers to
our work are the complementary papers by (Scott 2015),
(Schwartz, Bradlow, and Fader 2017) and (Ju et al. 2019)
who propose using bandit experiments to evaluate creatives
for targeted advertising, without focusing on the problem ad-
dressed here of comparing target audiences.

In industry, a popular experimental design to compare TAs
for advertising campaigns is “audience split-testing” (e.g.,
(Facebook 2019), (Tencent 2019)). Suppose there is only
one creative, and K TAs are to be compared. The audience
split-testing design randomizes test users into K arms, each
of which is associated with the same creative, but which

correspond respectively to the K TAs. Conditional on be-
ing randomized into an arm, a user is shown the creative
only if his features match the arms’ TA definition. This en-
sures that the mix of overlapping and non-overlapping au-
diences is representative; however, the design under-utilizes
the informational content of experimental traffic as there is
no learning from users who are randomized into a test-arm
but do not match its TA definition. Also, in contrast to the de-
sign proposed here, there is no cross-audience learning from
overlapping users. In addition, the typical implementation
of split-testing is non-adaptive, and is not cost minimizing
unlike the adaptive design presented here.

A possible strategy for maintaining the representativeness
of TAs in the test is to randomly allocate some proportion
p of users in each overlapping region to the TAs the region
overlaps with. Unfortunately, no value of p exists that main-
tains representativeness after such allocation while retaining
all the data. To illustrate, suppose we have two TAs (TA1
and TA2) that overlap with each other, so we have three
DAs, DA1, DA2 and DA3, with DA2 belonging to both
TA1 and TA2. Suppose in the test, a representative sam-
ple of NDA1, NDA2, and NDA3 users belonging to each of
the three DAs arrive, and have to be assigned in this man-
ner to TA1 and TA2. If we allocate proportion p of users
in DA2 to TA1, the proportion of DA2 users in TA1 is
P (DA2|TA1) = p×NDA2

p×NDA2+NDA1
. However, to be repre-

sentative of the population, we need this proportion to be
NDA2

NDA2+NDA1
. The only value of p that makes TA1 under this

scheme representative is 1. However, when p = 1, the pro-
portion of DA2 in TA2 is 0, making TA2 under this scheme
not representative of TA2 in the population. One can restore
representativeness by dropping a randomly picked propor-
tion 1 − p of NDA1 users and p of NDA2 users. But this
involves throwing away data and induces the same issue as
the “audience split-testing” design above of under-utilizing
the informational content of experimental traffic.

3 Method

The test takes as input K = {1, ..,K} possible TAs and R =
{1, .., R} creatives the advertiser wants to evaluate for her
campaign. In step 1, we partition the users in the K TAs
into a set J = {1, .., J} of J DAs. For example, if the TAs
are “San Francisco users” and “Male users,” we create three
DAs, “San Francisco users, Male,” “San Francisco users, Not
Male,” and “Non San Francisco users, Male.”

In step 2, we treat each DA as a context, and each cre-
ative as an arm that is pulled adaptively based on the
context. When a user i arrives at the platform, we cat-
egorize the user to a context based on his features, i.e.,
i ∈ DA(j) if i’s features match the definition of j, where
DA(j) denotes the set of users in DA j. A creative r ∈ R is
then displayed to the user based on the context.

The cost of displaying creative r to user i in context j is
denoted as birj . After the creative is displayed, the user’s
action, yirj , is observed. The empirical implementation of
the product uses clicks as the user feedback for updating the
bandit, so y is treated as binary, i.e., yirj ∈ {0, 1}. The pay-
off to the advertiser from the ad-impression, πirj , is defined
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as πirj =γ · yirj − birj , where γ is a factor that converts
the user’s action to monetary units. The goal of the bandit is
to find an optimal policy g(j) : J → R which allocates the
creative with the maximum expected payoff to a user with
context j.

Thompson Sampling To develop the TS, we model the
outcome yirj in a Bayesian framework, and let

yirj ∼ p(yirj |θrj); and, θrj ∼ p(θrj |Ωrj). (1)

where θrj are the parameters that describe the distribu-
tion of action yirj , and Ωrj are the hyper-parameters gov-
erning the distribution of θrj . Since y is Bernoulli dis-
tributed, we make the typical assumption that the prior on
θ is Beta which is conjugate to the Bernoulli distribution.
With Ωrj ≡ (αrj , βrj), we model,

yirj ∼ Ber(θrj); and, θrj ∼ Beta(αrj , βrj). (2)

Given yirj ∼ Ber(θrj), the expected payoff of each
creative-disjoint sub-population combination (henceforth
“C-DA”) is μπ

rj(θrj) = E[πirj ] = γE[yirj ]−E[birj ] = γθrj−
b̄rj , ∀r ∈ R, j ∈ J, where b̄rj is the average cost of showing
the creative r to the users in DA(j).2

To make clear how the bandit updates parameters, we
add the index t for batch. Before the test starts, t = 1, we
set diffuse priors and let αrj,t=1 = 1, βrj,t=1 = 1, ∀r ∈
R, j ∈ J. This prior implies the probability of taking action
y, θrj,t=1, ∀r ∈ R, j ∈ J is uniformly distributed between
0% and 100%.

In batch t, Nt users arrive. The TS displays creatives to
these users dynamically, by allocating each creative accord-
ing to the posterior probability each creative offers the high-
est expected payoffs given the user’s context. Given the pos-
terior at the beginning of batch t, the probability a creative r
provides the highest expected payoff is,

wrjt = Pr[μπ
rj(θrjt) = max

r∈R
(μπ

rj(θrjt))|�αjt, �βjt], (3)

where �αjt = [α1jt, . . . , αRjt]
′ and �βjt = [β1jt, . . . , βRjt]

′

are the parameters of the posterior distribution of �θjt =
[θ1jt, . . . , θRjt]

′.
To implement this allocation, for each user i = 1, .., Nt

who arrives in batch t, we determine his context j, and
make a draw of the R × 1 vector of parameters, θ̃

(i)

jt . Ele-

ment θ̃(i)rjt of the vector is drawn from Beta(αrjt, βrjt) for
r ∈ R. Then, we compute the payoff for each creative r as
μπ
rj(θ̃

(i)
rjt) = γθ̃

(i)
rjt − b̄rj , and display to i the creative with

the highest μπ
rj(θ̃

(i)
rjt).

We update all parameters at the end of processing the
batch, after the outcomes for all users in the batch is ob-
served. We compute the sum of binary outcomes for each

2γ may be determined from prior estimation or advertisers’
judgment of the value attached to users’ actions. γ is pre-computed
and held fixed during the test. b̄rj and p̂(j|k) (defined later) can
be pre-computed outside of the test from historical data and held
fixed during the test, or inferred during the test using a simple bin
estimator that computes these as averages over the observed cost
and user contexts data.

C-DA combination as srjt =
∑nrjt

i=1 yirjt, ∀r ∈ R, j ∈ J,
where nrjt is the number of users with context j allocated
to creative r in batch t. Then, we update parameters as
�αj(t+1) = �αjt + �sjt and �βj(t+1) = �βjt + �njt − �sjt, ∀j ∈ J,
where �sjt = [s1jt, . . . , sRjt]

′, and �njt = [n1jt, . . . , nRjt]
′.

Then, we enter batch t + 1, and use �αj(t+1) and �βj(t+1)

as the posterior parameters to allocate creatives at t+ 1. We
repeat this process until a pre-specified stopping condition
(outlined below) is met.

Probabilistic Aggregation and Stopping Rule While the
contextual bandit is set up to learn the best C-DA combina-
tion, the goal of the test is to learn the best creative-target au-
dience combination (henceforth “C-TA”). As such, we com-
pute the expected payoff of each C-TA combination by ag-
gregating the payoffs of corresponding C-DA combinations,
and stop on the basis of the regret associated with learning
the best C-TA combination.

Using the law of total probability, we can aggregate across
all C-DAs associated with C-TA combination (r, k) to obtain
λrkt,

λrkt =
∑

j∈O(k)

θrjt · p̂(j|k). (4)

In equation (4), λrkt is the probability that a user picked
at random from within TA(k) in batch t, takes the action
y = 1 upon being displayed creative r; p̂(j|k) is the prob-
ability (in the platform population) that a user belonging to
TA(k) is also of the context j; andO(k) is the set of disjoint
sub-populations (js) whose associated DA(j)s are subsets of
TA(k).

Given equation (4), the posterior distribution of θrjts from
the TS induces a distribution of λrkts. We can obtain draws
from this distribution using Monte Carlo sampling. For each
draw θ

(h)
rkt, h = 1, .., H from Beta(αrjt, βrjt), we can use

equation (4) to construct a corresponding λ
(h)
rkt, h = 1, .., H .

For each such λ
(h)
rkt, we can similarly compute the implied

expected payoff to the advertiser from displaying creative r
to a user picked at random from within TA(k) in batch t,

ωπ
rkt(λ

(h)
rk ) = γλ

(h)
rkt − b̄rk, ∀r ∈ R, k ∈ K, (5)

where b̄rk is the average cost for showing creative r to tar-
get audience k, which can be obtained by aggregating b̄rj
through analogously applying equation (4). Taking the H

values of ωπ
rkt(λ

(h)
rk ) for each (r, k), we let r∗kt denote the

creative that has the highest expected payoff within each TA
k across all H draws, i.e.,

r∗kt = argmax
r∈R

max
h=1,..,H

ωπ
rkt(λ

(h)
rk ). (6)

Hence, ωπ
r∗kt,kt

(λ
(h)
rkt) denote the expected payoff for creative

r∗kt evaluated at draw h. Also, define ωπ
∗kt(λ

(h)
rkt) as the ex-

pected payoff for the creative assessed as the best for TA k
in draw h itself, i.e.,

ωπ
∗kt(λ

(h)
rkt) = max

r∈R
ωπ
rkt(λ

(h)
rk ), (7)
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Following (Scott 2015), the value ωπ
∗kt(λ

(h)
rkt)−ωπ

r∗kt,kt
(λ

(h)
rkt)

represents an estimate of the regret in batch t for TA k at
draw h. Normalizing it by the expected payoff of the best
creative across draws gives a unit-free metric of regret for
each draw h for each TA k,

ρ
(h)
kt =

ωπ
∗kt(λ

(h)
rkt)− ωπ

r∗kt,kt
(λ

(h)
rkt)

ωπ
r∗kt,kt

(λ
(h)
rkt)

, (8)

Let pPV R(k, t) be the 95th percentile of ρ(h)kt across the
H draws. We stop the test when,

max
k∈K

pPV R(k, t) < 0.01. (9)

In other words, we stop the test when the normalized regret
for all TAs we are interested in falls below 0.01.3 Therefore,
while we learn an optimal creative displaying policy for each
DA, we stop the algorithm when we find the best creative for
each TA in terms of minimal regret. Algorithm 1 shows the
full procedure.

4 Experiments

This section reports on experiments that establish the face
validity of the TS; compares it to audience split testing and
a random allocation schema where each creative is allocated
to each context with equal probability; and explores its per-
formance when the degree of overlap in TAs increases.

For the experiments, we consider a setup with 2 creatives
and 2 overlapping TAs, implying 3 DAs, 4 C-TA combina-
tions and 6 C-DA combinations as shown in Figure (1). The
TAs are assumed to be of equal sizes, with an overlap of
50%.4 We set the display cost birj to zero and γ = 1 so
we can work with the CTR directly as the payoffs (therefore,
we interpret the cost of experimentation as the opportunity
cost to the advertiser of not showing the best combination.)
We simulate 1,000 values for the expected CTRs of the 6
C-DA combinations from uniform distributions (with sup-
ports shown in Figure (1)). Under these values, C1-DA1 has
the highest expected CTR amongst the C-DA combinations,
and C1-TA1 the highest amongst the C-TA combinations.
We run the TS for each simulated value to obtain 1,000 ban-
dit replications. For each replication, we update probabili-
ties over batches of 100 observations, and stop the sampling

3Other stopping rules may also be used, for example, based on
posterior probabilities, or based on practical criteria that the test
runs till the budget is exhausted (which protects the advertiser’s in-
terests since the budget is allocated to the best creative). The formal
question of how to stop a TS when doing Bayesian inference is still
an open issue. While data-based stopping rules are known to af-
fect frequentist inference, Bayesian inference has traditionally been
viewed as unaffected by optional stopping (e.g., (Edwards, Lind-
man, and Savage 1963)), though the debate is still unresolved in the
statistics and machine learning community (e.g., (Rouder 2014) vs.
(de Heide and Grünwald 2018)). This paper adopts a stopping rule
reflecting practical product-related considerations, and does not ad-
dress this debate.

4Specifically, Pr (TA1) = Pr (TA2) = .5; Pr (DA1|TA1) =
Pr (DA2|TA1) = 0.5; Pr (DA2|TA2) = Pr (DA3|TA2) =
0.5; and Pr (DA1|TA2) = Pr (DA3|TA1) = 0.

Algorithm 1 TS to identify best C-TA combination

1: K TAs are re-partitioned into J DAs
2: t← 1
3: αrjt ← 1, βrjt ← 1, ∀r ∈ R, j ∈ J

4: Obtain from historical data p̂(j|k), γ, b̄rj , ∀r ∈ R, j ∈
J, k ∈ K

5: pPV R(k, t)← 1, ∀k ∈ K

6: while max
k∈K

pPV R(k, t) < 0.01 do

7: A batch of Nt users arrive
8: for all users do
9: Sample θ̃

(i)
rjt using Beta(αrjt, βrjt) for r ∈ R

10: Feed creative Iit = argmaxr∈Rγθ̃
(i)
rjt − b̄rjt

11: end for
12: Collect data {yirjt}Nt

i=1, {nrjt}r∈R,j∈J

13: Compute srjt =
∑nrjt

i=1 yirjt, ∀r ∈ R, j ∈ J

14: Update αrj(t+1) = αrjt + srjt, ∀r ∈ R, j ∈ J

15: Update βrj(t+1) = βrjt+nrjt−srjt, ∀r ∈ R, j ∈ J

16: Make h = 1, .., H draws of θrj(t+1)s, i.e.
⎡
⎢⎢⎢⎣

θ11(t+1)

...
θrj(t+1)

...
θRJ(t+1)

⎤
⎥⎥⎥⎦

(h)

∼

⎡
⎢⎢⎢⎣

Beta(α11(t+1), β11(t+1))
...

Beta(αrj(t+1), βrj(t+1))
...

Beta(αRJ(t+1), βRJ(t+1))

⎤
⎥⎥⎥⎦

(h)

, ∀h = 1, ..., H

17: Compute �λ(h)
t+1 =

⎡
⎢⎢⎢⎣

λ11(t+1)

...
λrk(t+1)

...
λRK(t+1)

⎤
⎥⎥⎥⎦

(h)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑
j∈O(k=1)

p̂(j|k = 1) · θrj(t+1)

...∑
j∈O(k)

p̂(j|k) · θrj(t+1)

...∑
j∈O(k=K)

p̂(j|k = K) · θrj(t+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(h)

, ∀h = 1, ..., H

18: Compute �ωπ(h)
t+1(

�λ
(h)
t+1) =

⎡
⎢⎢⎢⎢⎣

ωπ
11(t+1)

...
ωπ
rk(t+1)

...
ωπ
RK(t+1)

⎤
⎥⎥⎥⎥⎦

(h)

=

⎡
⎢⎢⎢⎣

γ · λ11(t+1) − b̄11(t+1)

...
γ · λrkt − b̄rk(t+1)

...
γ · λRKt − b̄RK(t+1)

⎤
⎥⎥⎥⎦

(h)

, ∀h = 1, ..., H

19: Set ρ
(h)
k(t+1) = [ωπ

∗k(t+1)(λ
(h)
rk(t+1)) −

ωπ
r∗
k(t+1)

,k(t+1)(λ
(h)
rk(t+1))]/ω

π
r∗
k(t+1)

,k(t+1)(λ
(h)
rk(t+1)),

∀h = 1, ..., H, k ∈ K

20: ∀k ∈ K, calculate pPV R(k, t + 1) as the 95th per-
centile across the H draws of ρ(h)k(t+1)

21: Set t← t+ 1
22: end while
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Figure 1: Simulation Setup: 2 Cs, 2 TAs and 3 DAs

when we have 1000 batches of data. Then, we report in Fig-
ure (2), box-plots across replications of the performance of
the TS as batches of data are collected, plotting these at ev-
ery 10th batch.

Figures (2a and 2b) plot the evolution over batches in the
unit-free regret (pPVR) and the expected regret per impres-
sion, where the latter is defined as the expected clicks lost
per impression in a batch when displaying a creative other
than the true-best for each DA, evaluated at the true param-
eters.5 If the TS progressively allocates more traffic to cre-
atives with higher probability of being the best arm in each
context (DA), the regret should fall as more data is accumu-
lated. Consistent with this, both metrics are seen to fall as
the number of batches increases in our simulation. The cut-
off of 0.01 pPVR is met in 1,000 batches in all replications.
Figure (2c) shows the posterior probability implied by TS in
each batch that the true-best C-TA is currently the best.6 The
posterior is seen to converge to the true-best combination as
more batches are sampled.

We now compare the proposed TS algorithm to an Equal
Allocation algorithm (henceforth “EA”) and a Split-Testing
algorithm (henceforth “ST”). EA is analogous to “A/B/n”
testing in that it is non-adaptive: the allocation of traffic to
creatives for each DA is held fixed, and not changed across
batches. Instead, in each batch, we allocate traffic equally to
each of the r ∈ R creatives for each DA. ST follows the de-
sign described in §2, and traffic is allocated at the level of C-
TA (rather than C-DA) combinations. Each user is assigned
randomly with fixed, equal probability to one of R×K C-TA
arms (4 in this simulation), and a creative is displayed only
if a user’s features match the arm’s TA definition.

To do the comparison, we repeat the same 1,000 replica-
tions as above with the same configurations, but this time
stop each replication when the criterion in equation (9) is
reached. In other words, for each of TS, EA and ST algo-
rithms, we maintain a posterior belief about the best C-TA
combination, which we update after every batch.7 In TS, the
traffic allocation reflects this posterior adaptively, while in
EA and ST, the traffic splits are held fixed; and the same
stopping criteria is imposed in both. All parameters are held

5Specifically, the expected regret per impression in each batch
t is

∑
k∈K

∑
j∈O(k) p̂(j|k)

∑
r∈R

wrjt(θ
true
rj −max

r∈R
θtrue
rj ).

6Note, these probabilities are not the same as the distribution of
traffic allocated by the TS, since traffic is allocated based on DA
and not TA.

7Note that, we do not need to partition the TAs under ST, and
instead directly set up the model at the C-TA level under ST.

(a) Unit-free Regret (b) Expected Regret

(c) Pr(True-Best C-TA Com-
bination is Current-Best) (d) Total Regret at Stopping

(e) Sample Size at Stopping (f) Pr(True-Best C-TA Combi-
nation is Best at Stopping)

Figure 2: Results from 1,000 Replications for TS and Com-
parisons to Equal Allocation and Split-Testing

the same.
Figure (2d) shows that TS generates the smallest amount

of expected regret, and the sample sizes required to exit the
experiments under TS are between those under EA and those
under ST (Figure (2e)). This is because the expected re-
gret per impression under EA and ST remains constant over
batches, while as Figure (2b) demonstrated, the expected
regret per impression under TS steadily decreases as more
batches arrive. ST generates the most regret and requires the
largest sample sizes, since it is not only non-adaptive, but
also discards a portion of the traffic and the information that
could have been gained from this portion. Figure 2f shows
that the TS puts more mass at stopping on the true-best C-TA
combination compared to EA and ST. Across replications,
this allows TS to correctly identify the true-best combina-
tion 85.8% of the time at stopping, compared to 77.8% for
EA and 70.8% for ST. Overall, the superior performance of
the TS relative to EA are consistent with the experiments
reported in (Scott 2010).

Next, we assess how the extent to which audiences
overlap affects performance. This demonstrates the cross-
audience learning effect in the algorithm. To do this, we
fix the CTRs of the six C-DA combinations C1-DA1,
C2-DA1, C1-DA2, C2-DA2, C1-DA3, C2-DA3 to be
[.01,.03,.03,.05,.025,.035]. We vary the size of the over-
lapped audience, i.e. Pr (DA2|TA1) = Pr (DA2|TA2), on
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(a) Sample Size (b) Total Exp. Regret

(c) Prop. of True-Best Found (d) Post. Prob of Best at Stop

Figure 3: TS Performance with Increasing Overlap

a grid from 0-.9. For each grid value, we run the TS for 1,000
replications, taking the 6 C-DA CTRs as the truth, stopping
each replication per equation (9). We then present in Fig-
ure 3 box-plots across these replications as a function of
the degree of overlap. Along the x-axis, the two target audi-
ences become more similar, increasing cross-audience learn-
ing, but decreasing their payoff differences.

Figures (3a and 3b) show that sample sizes required for
stopping and total expected regret per impression remain
roughly the same as overlap increases, suggesting the two ef-
fects largely cancel each other. Figure (3c) shows the propor-
tion of 1,000 replications that correctly identify the true-best
C-TA combination as the best at stopping. The annotations
label the payoff difference in the top-2 combinations, show-
ing the payoffs become tighter as the overlapping increases.
We see that the TS works well for reasonably high values
of overlap, but as the payoff differences become very small,
it becomes difficult to correctly identify the true-best C-TA
combination. Figure (3d) explains this pattern by showing
the posterior probability of the best combination identified
at stopping also decreases as the payoff differences grow
very small. Finally, the arXiv version of the paper presents
additional experiments that show that the observed degrada-
tion in performance of the TS at very high values of overlap
disappears in a pure cross-audience learning setting.

Overall, these simulations suggest the proposed TS is vi-
able in identifying best C-TA combinations for reasonably
high levels of TA overlap. If the sampler is to be used in sit-
uations with extreme overlap, it may be necessary to impose
additional conditions on the stopping rule based on posterior
probabilities, in addition to the ones based on pPV R across
contexts in equation (9). This is left for future research.

5 Deployment

We designed an experimentation product based on algo-
rithm. To use the product, an advertiser starts by setting up
a test ad-campaign on the product system. The test cam-

paign is similar to a typical ad-campaign, involving rules
for bidding, budget, duration etc. The difference is that the
advertiser defines K TAs and binds R creatives to the test-
campaign, rather than one as typical; and the allocation of
creatives to a user impression is managed by the TS algo-
rithm. Both K and R are limited to a max of 5. Because
the algorithm disjoints TAs, the number of contexts grows
combinatorially as K increases, and this restriction keeps
the total combinations manageable.

When a user arrives at JD.com, the ad-serving system re-
trieves the user’s features. If the features activate the tag(s)
of any of the K TAs, and satisfies the campaign’s other re-
quirements, the TS chooses a test creative according to the
adaptively determined probability, and places a bid for it
into the platform’s auction system. The bids are chosen by
the advertiser, but are required to be the same for all cre-
atives in order to keep the comparison fair. The auction in-
cludes other advertisers who compete to display their cre-
atives to this user. The system collects data on the out-
come of the winning auctions and whether the user clicks
on the creative when served; updates parameters every 10
minutes; and repeats this until the stopping criterion is met
and the test is stopped. The data are aggregated and relevant
statistical results regarding all the C-TA combinations are
delivered to the advertiser. See https://jzt.jd.com
/gw/dissert/jzt-split/1897.html for a product
overview.

We discuss a case-study based on a test on the product.
Though several other tests exhibit similar patterns, there is
no claim this case-study is representative: we picked it so it
illustrates well for the reader some features of the test en-
vironment and the performance of the TS.The test involves
a large cellphone manufacturer. The advertiser set up 2 TAs
and 3 creatives. The 2 TAs overlap, resulting in 3 DAs. Fig-
ure (4) shows the probability that each C-TA combination is
estimated to be the best as the test progresses. The 6 possi-
ble combinations are shown in different colors and markers.
During the initial 12 batches, the algorithm identifies the “*”
and “+” combinations to be inferior and focuses on explor-
ing the other 4 combinations. Then, the yellow “.” combina-
tion starts to dominate the others and is finally chosen as the
best. The advantage of the adaptive design is that most of the
traffic during the test is allocated to C-DA combinations cor-
responding to the yellow “.” combination, so the advertiser
does not unnecessarily waste resources on assessing those
that were learned to be inferior early on.

The test lasted about 6 hours with a total of 18,499
users and 631 clicks. The estimated CTRs of the six C-
TA combinations C1-TA1, C2-TA1, C3-TA1 (yellow “.”
combination), C1-TA2, C2-TA2, C3-TA2 at stopping are
[.028,.034,.048,.028,.017,.036]. Despite the short time span,
the posterior probability induced by the sampling on the yel-
low “.” combination being the best is quite high (98.4%).
We use a back-of-the-envelope calculation to assess the eco-
nomic efficiency of TS relative to EA in this test. Using
the data, we simulate a scenario where we equally allocate
across the creatives the same amount of traffic as this test
used. We find TS generates 52 more clicks (8.2% of total
clicks) than EA.
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Figure 4: Results from Practical Implementation

In other tests, we found the product performs well even in
situations where the creatives are quite similar and K,R are
close to 5, without requiring unreasonable amounts of data
or test time so as to make it unviable. Scaling the product to
allow for larger sets of test combinations is a task for future
research and development.

6 Conclusion

An adaptive algorithm to identify the best combination
among a set of advertising creatives and TAs is presented.
Experiments show that the proposed method is more ef-
ficient compared to naive “split-testing” or non-adaptive
“A/B/n” testing based methods. The approach assumes that
creatives do not induce long-term dependencies, for in-
stance, that they do not affect future user arrival rates, and
that auctions are unrelated to each other, for instance due to
the existence of a binding budget constraint. These assump-
tions justify framing the problem as a multi-armed bandit,
and could be relaxed by using a more general reinforcement
learning framework.
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