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Abstract

Today, most of the large-scale conversational AI agents such
as Alexa, Siri, or Google Assistant are built using manually
annotated data to train the different components of the sys-
tem including Automatic Speech Recognition (ASR), Nat-
ural Language Understanding (NLU) and Entity Resolution
(ER). Typically, the accuracy of the machine learning mod-
els in these components are improved by manually transcrib-
ing and annotating data. As the scope of these systems in-
crease to cover more scenarios and domains, manual annota-
tion to improve the accuracy of these components becomes
prohibitively costly and time consuming. In this paper, we
propose a system that leverages customer/system interaction
feedback signals to automate learning without any manual
annotation. Users of these systems tend to modify a previ-
ous query in hopes of fixing an error in the previous turn to
get the right results. These reformulations, which are often
preceded by defective experiences caused by either errors in
ASR, NLU, ER or the application. In some cases, users may
not properly formulate their requests (e.g. providing partial
title of a song), but gleaning across a wider pool of users and
sessions reveals the underlying recurrent patterns. Our pro-
posed self-learning system automatically detects the errors,
generate reformulations and deploys fixes to the runtime sys-
tem to correct different types of errors occurring in different
components of the system. In particular, we propose lever-
aging an absorbing Markov Chain model as a collaborative
filtering mechanism in a novel attempt to mine these patterns.
We show that our approach is highly scalable, and able to
learn reformulations that reduce Alexa-user errors by pooling
anonymized data across millions of customers. The proposed
self-learning system achieves a win-loss ratio of 11.8 and ef-
fectively reduces the defect rate by more than 30% on utter-
ance level reformulations in our production A/B tests. To the
best of our knowledge, this is the first self-learning large-scale
conversational AI system in production.

Introduction

Large-scale conversational AI agents (Sarikaya 2017) such
as Alexa, Siri, and Google Assistant are getting more and
more prevalent, opening up in new domains and taking up
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new tasks to help users across the globe. One key consid-
eration in designing such systems is how they can be im-
proved over time at that scale. Users interacting with these
agents experience frictions due to various reasons: 1) Auto-
matic Speech Recognition (ASR) errors, such as ”play maj
and dragons” (should be ”play imagine dragons”), 2) Nat-
ural Language Understanding (NLU) errors, such as ”don’t
play this song again skip” (Alexa would understand if it is
formulated as ”thumbs down this song”), and even user er-
rors, such as ”play bazzi angel” (it should’ve been ”play
beautiful by bazzi”). It goes without saying that fixing these
frictions help users to have a more seamless experience, and
engage more with the AI agents.

One common method to address frictions is to gather
these use cases and fix them manually using rules and Finite
State Transducers (FST) as they’re often the case in speech
recognition systems (Mohri, Pereira, and Riley 2002). This
of course is a laborious technique which is: 1) not scalable
at Alexa scale, and 2) prone to error, and 3) getting stale and
even defective over time. Another approach could be to iden-
tify these frictions, ask annotators to come up with the cor-
rect form of query, and then update ASR and NLU models
to solve these problems. This is also: 1) not an scalable so-
lution, since it needs a lot of annotations, and 2) it is expen-
sive and time consuming to update those models. Instead,
we have taken a ”query rewriting” approach to solve cus-
tomer frictions, meaning that when necessary, we reformu-
late a customer’s query such that it conveys the same mean-
ing/intent, and is actionable (i.e. interpretable) by Alexa’s
existing NLU systems.

In motivating our approach, consider the example utter-
ance, ”play maj and dragons”. Now, without reformulation,
Alexa would inevitably come up with the response, ”Sorry, I
couldn’t find maj and dragons”. Some customers give up at
this point, while others may try enunciating better for Alexa
to understand them: ”play imagine dragons”. Also note that
there might be other customers who give up, and change the
next query to another intent, for example: ”play pop music”.
Here, frictions evidently cause dissatisfaction with differ-
ent customers reacting differently to them. However, quite
clearly there are good rephrases by some customers among
all these interactions, which beckons the question – how can
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Figure 1: A high-level overview of the deployed architecture with our reformulation engine in context of the overall system in
(a) and the offline sub-system that updates its online counterpart on a daily cadence.

we identify and extract them to solve customer frictions?
We propose using a Markov-based collaborative filtering

approach to identify rewrites that lead to successful cus-
tomer interactions. We go on to discuss the theory and im-
plementation of the idea, as well as show that this method is
highly scalable and effective in significantly reducing cus-
tomer frictions. We also discuss how this approach was de-
ployed into customer-facing production and what are some
of the challenges and benefits of such approach.

Related Work

Collaborative filtering has been used extensively in recom-
mender systems. In a more general sense, collaborative fil-
tering can be viewed as a method of mining patterns from
various agents (most commonly, people), in order to help
them help each other out (Terveen and Hill 2001). Markov
chains have been used previously in collaborative filtering
applications to recommend course enrollment (Khorasani,
Zhenge, and Champaign 2016), personalized recommender
systems (Sahoo, Singh, and Mukhopadhyay 2012), and web
recommendation (Fouss et al. 2005).

Studies have shown that Markov processes can be used
to explain the user web query behavior (Jansen, Booth, and
Spink 2005), and Markov chains have since been used suc-
cessfully for web query reformulation via absorbing random
walk (Wang, Huang, and Wu 2015), and modeling query
utility (Xiaofei Zhu 2012). We here present a new method
for query reformulation using Markov chain that is both
highly scalable and interpretable due to intuitive definitions
of transition probabilities. Also, to the best of the authors’
knowledge, this is the first work where Markov chain is used
for query reformulation in voice-based virtual assistants.

One important difference between the web query refor-
mulation and Alexa’s use case is that we need to seamlessly
replace the user’s utterance in order to remove friction. Ask-

ing users for confirmation every time we plan to reformulate
is on itself an added friction, which we try to avoid as much
as possible. Another difference is how success and failure
are defined for an interaction between user and a voice-based
virtual assistant system. We use implicit and explicit user
feedback when interacting with Alexa to establish the ab-
sorbing states of success and failure.

System Overview

The Alexa conversational AI system follows a rather well-
established architectural pattern of cloud-based digital voice
assistants (Gao, Galley, and Li 2018) i.e. comprising of an
automatic speech recognition (ASR) system, a natural lan-
guage understanding (NLU) system with a built-in dialog
manager, and a text-to-speech (TTS) system, as visualized in
Fig. 1. Conventionally, as a user interacts with their Alexa-
enabled device, their voice is first recognized by ASR and
decoded into plain text, which we refer to as an utterance.
The utterance is then interpreted by the NLU component to
surface the aforementioned user’s intent by also accounting
for the state of user’s active dialog session. Thereafter, the
intent and the corresponding action to execute is passed on
to the TTS to generate the appropriate response as speech
back to the user via their Alexa-enabled device, thus closing
the interaction loop. Also note that the metadata associated
with each of the above systems are anonymized and logged
asynchronously to an external database.

In deploying our self-learning system, we first intercept
the utterance being passed onto the NLU system and rewrite
it with our reformulation engine. We then subsequently pass
the rewrite in lieu of the original utterance back to NLU for
interpretation, and thus restoring the original data flow. This
is shown as the post-deployment data flow path in Fig. 1.
Our reformulation engine is essentially implements rather
lightweight service-oriented architecture that encapsulates
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the access to a high-performance, low-latency database,
which is queried with the original utterance to yield its cor-
responding rewrite candidate. This along with the fact that
the system is fundamentally stateless across users translates
to a rather scalable customer-facing system with marginal
impact to the user perceived latency of their Alexa-enabled
device.

In order to discover new rewrite candidates and maintain
the viability of existing rewrites, our Markov-based model
ingests the anonymized Alexa log data on a daily basis
to learn from users’ reformulations and subsequently up-
dates the aforementioned online database. We discuss the
nature of the dataset and how our model achieves this in
later sections of this paper. This ingestion to update pro-
cess takes place offline in entirety with the rewrites in the
database updated via a low-maintenance feature-toggling
(i.e. feature-flag) mechanism. Additionally, we also have an
offline blacklisting mechanism which evaluates the rewrites
from our Markov model by independently comparing their
friction rate against that of the original utterance, and subse-
quently filtering them from being uploaded to the database
should they perform worse against their no-rewrite counter-
part using a Z-test with a rather conservative p-value of 0.01.
This allows us to maintain a high precision system at run-
time. It is worth mentioning that friction detection is done
using a pre-trained ML model based on user’s utterance and
Alexa’s response. The details of that model is out of scope
of this paper.

Dataset

As our objective is to learn the patterns from user interac-
tions with Alexa, we pre-process 3 months of anonymized
Alexa log data across millions of customers, which consti-
tutes a highly randomized collection of time-series utterance
data, to build our dataset, D comprising of a set of sessions,
S i.e.:

D = {S0, S1, . . .} (1)
Here, in defining the concept of a session, we first define

the construction function f , parameterized by a customer,
c, a device, d, and an initial timestamp, τ0, to yield a finite
ordered set of successive utterances, u (and its associated
metadata) such that the time delay between any two con-
secutive utterances is at most δτ . We also note that inter-
jecting utterances, J , i.e. those leading to StopIntent,
CancelIntent, etc., that occur before the end of the
aforementioned set are removed. Then, a session, Sk is de-
fined as follows:

Sk = f(c, d, τ0) =
(
u
(k)
0 , u

(k)
1 , . . . , u

(k)
Tk

)
(2)

such that the following properties hold true:

• τ
(k)
0 = τ0, and

• τ
(k)
j > τ

(k)
i , ∀ 0 ≤ i < j ≤ Tk, and

•
∣∣∣τ (k)i+1 − τ

(k)
i

∣∣∣ ≤ δτ , and

• ui �∈ J, ∀ i < Tk.

Intuitively speaking, a session is effectively a time-
delimited snapshot of a user’s conversation history with their
Alexa-enabled device. We illustrate this in Fig. 2 (a), (b),
and (c) where each session is represented as a linear directed
chain of successive utterances e.g. u2 → u3 → u4. In this
paper, we choose the value of δτ = 45 seconds as a result
from a separate internal analysis.

Absorbing Markov Chain

In this section, we show how encoding user interaction his-
tory as paths in an absorbing Markov Chain model can be
used to mine patterns for reformulating utterances. In par-
ticular, we discuss in detail the concept of the interpretation
space, H , which functions as the vertex set of the model’s
transient states. We then elaborate on the construction of the
absorbing states, R, the canonical solution to the model, and
the practical implementation of the model. As the Markov
Chain model is inherently a probabilistic graphical model,
we can represent it as graph, G = (V,E), where the vertex
set, V and the edge set, E are given as follows:

V = H ∪R E = {(x, y) | x ∈ H ∧ y ∈ V } (3)

We note that from here on out, we use the terms, Graph
and Markov model interchangeably.

Interpretation Space

While our definition of a session above naturally extends to-
wards having each ordered linear sequence of utterances as
a path in our Markov model, this encoding in the utterance
space, U i.e. the space of all utterances u, imposes a limita-
tion on the model by creating heavily sparse connections.
This is primarily due to the high degree of semantic and
structural variance in U , which would ultimately result in
a lower capacity for generalization.

To resolve this, we leverage the domain and intent clas-
sifier as well as the named entity recognition (NER) results
from Alexa’s NLU systems to surface structured representa-
tions of utterances, and thus encapsulate a latent distribution
over U . Consequently, each utterance in a session is pro-
jected into this interpretation space, H which comprises the
set of all interpretations h, to define a latent session:

S′
k =

(
h
(k)
0 , h

(k)
1 , . . . , h

(k)
Tk

)
(4)

To exemplify this, consider the utterance, ”play despica-
ble me” (i.e. u4 in Fig. 2), which would be mapped into the
H-space as:

Music|PlayMusicIntent|AlbumName:despicable me

which is compactly represented as h2 in Fig. 2. As the H-
space condenses the semantics of U , this mapping between
U and H is inherently a many-to-one relationship. However,
given the stochasticity of Alexa’s NLU, the original projec-
tion itself is not entirely bijective and thus results in a many-
to-one relationship in both the forward and inverse mapping,
i.e. U → H and H → U , akin to a bipartite mapping.
This in turn, yields the conditional probability distributions,
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Figure 2: A visual representation of the Markov model constructed in the interpretation space, H , over three separate sessions,
(a), (b), and (c), of users attempting to play the album ”Despicable Me”, and how solving for the path with the highest likelihood
of success, (+), given by the darkened edged in (d), can allow for the defective utterances to be reformulated into a more
successful query, as summarized in (e). Note that here, for demonstration purposes, we only show 3 interactions. However,
in practice, we had a higher threshold for the minimum number of customers and interactions to have better estimates for the
probabilities.

P (H|U) and P (U |H), such that for a particular u ∈ U and
h ∈ H , they are defined as follows:

P (h|u) = c (u, h)∑
h′∈H

c (u, h′)
P (u|h) = c (u, h)∑

u′∈U

c (u′, h)

(5)
where c(u, h) is the co-occurrence count of the pair (u, h)
in the dataset, D i.e. the total number of times both u and h
are mapped onto each other.

Transient States

Given our transformed dataset, D′ of latent sessions S′,
we take each such session and the interpretations within it
to represent paths and transient states respectively in our
Markov model, such that each successive pair of interpre-
tations would represent an edge in the Graph. In defining the
transition probability distribution, we first define Zi, the to-
tal occurrence of an interpretation hi in the aforementioned
dataset as follows:

Zi =
∑
v∈V

c (hi, v) (6)

where c (hi, v) is the co-occurrence count of the pair (hi, v)
i.e. the total number of times v is adjacent to hi, aggregated
across all sessions (i.e. over 3 months and millions of cus-
tomers) in D′:

c (hi, v) =
∑
k

Tk−1∑
t=0

1
(
h
(k)
t = hi ∧ h

(k)
t+1 = v

)
(7)

Then, the corresponding probability that a transition state
hi ∈ H transitions to hj ∈ H in the Graph is given by:

P (hj |hi) =
c (hi, hj)

Zi
(8)

Taking this in context of Fig. 2, consider the transition
probability P (h1|h0). From the sessions (a), (b), and (c), we
can note that the transition state h0 is adjacent to the states,
{h0, h1, h3, (−)} with each of them having a co-occurrence
of 1 with h0. Here, (−) refers to the failure absorbing state
(defined in the following sub-section). As such, the probabil-
ity P (h1|h0) =

1
4 = 0.25 as shown in (d).

Absorbing States

In formulating the definition of the absorbing states of the
Markov model, we look towards encoding the notion of in-
terpreted defects as perceived by the user. As we have briefly
introduced earlier, this concept of defect surfaces in two key
forms i.e. via explicit and implicit feedback.

Here, explicit feedback refers to the type of corrective
or reinforcing feedback received from direct user engage-
ment. This primarily includes events where users opt to in-
terrupt Alexa by means of an interjecting utterance (as de-
fined above in Dataset). This is illustrated in the example
below:
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User: ”play a lever”
Alexa: ”Here’s Lever by The Mavis’s, starting now.”
User: ”stop”

In contrast, implicit feedback is typically observed when
users abandon a session following Alexa’s failure to handle
a request either due to an internal exception or simply unable
to find a match for the entities resolved. Case in point:

User: ”play maj and dragons”
Alexa: ”Sorry, I can’t find the artist maj and dragons.”

Given this, we define two absorbing states: failure (r−),
and success (r+), where success is defined as the absence
of failure. These states are artificially injected to the end of
all sessions, based on the implicit and explicit feedback we
infer from Alexa’s response, and user’s last utterance.

To clarify this, let’s walk through the examples above as-
suming that they are the last utterances of their correspond-
ing sessions. In the first example, we would drop the ”stop”
turn, and add a failure state. In the second example, we sim-
ply add the failure state to the end of the session. Finally,
in the absence of an explicit or implicit feedback, we add a
success state to the end of the session. Given this, we can
then define the probability that a given transient state, hi is
absorbed in much the same way as in Eq. 8, e.g.:

P
(
r+|hi

)
=

c (hi, r
+)

Zi
(9)

Note that in Fig. 2, we refer to the failure (r−), and suc-
cess (r+) states as (−) and (+) respectively.

Markov Model

With the distributions over both the transition and absorbing
states defined above, recall that the interpretation space, H
is the set of all transient states in the Graph. Then, we can
summarize the Markov model in its canonical form via the
transition matrix, A as follows:

A =

[
Q R
0 I2

]
(10)

where:
• Q ∈ R

|H|×|H| s.t. qi,j = P (hj |hi),

• R = [r+, r−] ∈ R
|H|×2 s.t. ri = [P (r+|hi) , P (r−|hi)],

• 0 is the 2× |H| zero-matrix, and
• I2 is the 2× 2 identity matrix.

Now, we generalize the previous notation of probabilities
as P (n) i.e. the probability at depth-n of the Graph, with P
implicitly referring to P (1). Then, let hs and ht be given
source and target transient states in the Graph respectively.
We further define the probability of success of ht given hs

such that ht is reached by hs in at most k steps as follows:

Φk (ht) = P (1)
(
r+|ht

) · k∑
n=0

P (n) (ht|hs) (11)

As such, in the context of reducing defects, we consider ht to
be a possible reformulation candidate for hs if it is reachable

by hs, such that conditioned on hs, ht has a higher chance
of success than hs on its own, i.e.:

P (1)
(
r+|ht

) · ∞∑
n=0

P (n) (ht|hs) > P (1)
(
r+|hs

)
Φ∞(ht) > Φ1(hs)

(12)

Here, reachability of any two states implies that there
exists a path between them in the Graph or mathemati-
cally speaking, there exists a non-zero value of n for which
P (n) (ht|hs) > 0. Now, consider the probability of success
of ht given hs such that ht is reached by hs in exactly n
steps. We would then have the following:

P (1)
(
r+|ht

) · P (n) (ht|hs) = P (1)
(
r+|ht

) · q(n)s,t (13)

where q
(n)
s,t refers to the (s, t)-entry of the matrix Qn (Q

multiplied by itself n times), which in turn refers to the
probability of reaching ht from hs in exactly n steps i.e.
P (n) (ht|hs). Expanding this to any number of steps i.e.
reachable would thus allow us to reformulate the left set of
terms in the inequality of Eq. 12 using matrix notations:

Φ∞(ht) = P (1)
(
r+|ht

) · ∞∑
n=0

P (n) (ht|hs)

= P (1)
(
r+|ht

) · ∞∑
n=0

q
(n)
s,t

= P (1)
(
r+|ht

) ·
( ∞∑

n=0

Qn

)
s,t

(14)

Generalizing this across all h ∈ H , define the matrix P
such that its (s, t)-th entry, ps,t = Φ∞(ht). Then, we have:

P =

( ∞∑
n=0

Qn

)
R+

dg (15)

where R+
dg is the diagonal matrix whose diagonal is the vec-

tor r+. Now, as Q is a square matrix of probabilities, we
have ‖Q‖ < 1 and that Q is convergent. Then the summa-
tion above leads to a geometric series of matrices, which as
given by Definition 11.3 in (Grinstead and Snell 1997), cor-
responds to the fundamental matrix of the Markov model,
denoted by N:

N =
∞∑

n=0

Qn =
(
I|H| −Q

)−1
(16)

with I|H| referring to the identity matrix with the dimen-
sions, |H| × |H|. Given this, let p(s) be the s-th row vector
of the matrix P corresponding to hs. As such, every non-
zero entry t in p(s) translates to the probability Φ∞(ht) of
some reachable ht. This vector is thus given by:

p(s) =
(
NR+

dg

)
s
= N�

s ◦ r+ (17)
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where ◦ refers to the Hadamard (element-wise) product. We
then frame our objective as identifying the ht which maxi-
mizes the aforementioned probability for the given hs:

h∗
t = argmax

ht

Φ∞(ht) = argmax
t

p
(s)
t (18)

Intuitively speaking, in the event that h∗
t �= hs, the model

shows that there exists a reachable target interpretation that
when reformulated from hs, has a better chance at a suc-
cessful experience than not doing so. In reference to Fig. 2,
we can see that reformulating h0 to h∗

t = h2 increases the
likelihood of success as:

P (1)
(
r+|h2

) · ∞∑
n=0

P (n) (h2|h0) =
2

3
> P (1)

(
r+|h0

)
= 0

(19)
Suppose that h∗

t = hs. In which case, the source inter-
pretation is already successful on its own and hence requires
no reformulation. As such, the model is effectively able to
automatically partition the vertex space, H into sets of suc-
cessful (H+) and unsuccessful (H−) interpretations. In ex-
tending this reformulation back to the utterance space, U ,
we leverage the distributions P (U |H) and P (H|U) defined
in Eq. 5 and re-define our objective as follows for a given
source utterance us ∈ U :

u∗
t = argmax

ut

∑
hs

∑
ht

P (1) (ut|ht) · Φ∞(ht) · P (1) (hs|us)

(20)

The intuition described above can similarly be applied here
where u∗

t is the more successful reformulation of us. Note
that the self-partitioning feature of the model directly ex-
tends to the utterance space, U , allowing it to surgically tar-
get only utterances that are likely to be defective and sur-
face their corresponding rewrite candidates. This is the car-
dinal aspect of the model that drives the self-learning nature
of the proposed system without requiring any human in the
loop.

Implementation

With |H| ∼ 106, constructing the matrix Q, let alone invert-
ing it, poses a key challenge towards scaling out the model,
particularly in its batched form. As such, we formulate an
approximation in computing the vector p(s) for all source
interpretations, hs by means of a distributed approach.

We note that from our dataset, D′, that in the event that
a given source utterance, us is defective, users would only
attempt at reformulating their query a few times before ei-
ther arriving at a satisfactory experience or abandoning their
session entirely. This translates to most (∼ 97.3%) source
interpretations, hs in the Markov model having short path
lengths (i.e. typically ≤ 5) prior to them being absorbed by
an absorbing state. Consequently, this along with the fact
that these reformulations are recurrent across users, most
high-confidence reformulations often only involve visiting
a much smaller set of target interpretations, ht, i.e.

|H|∑
t=0

1
(
p
(s)
t > 0

)
� |H| (21)

This leads us to deduce that the matrix Q is highly sparse
and the corresponding Graph contains many clustered (i.e.
community) structures. We then leverage these facts to first
collect the paths for every source interpretation, hs in a se-
ries of map-reduce tasks, by means of a distributed breadth-
first search traversal up to a fixed depth of 5 using Apache
Spark (Zaharia et al. 2016). Thereafter, each task receives
the paths corresponding to a single hs and in turn uses them
to construct an approximate transition matrix, Ā(s). As the
dimensionality of the matrix Ā(s) is much lower than that
of A, we can easily compute the approximate fundamental
matrix, N̄ and the approximate vector p̄(s) within the same
task. As a result, we have a distributed solution for paral-
lelizing the computation of p̄(s) for every h ∈ H .

The breadth-first search traversal, which involves a series
of sort-merge joins, does indeed introduce an algorithmic
overhead of O(d · |E|+ |E| log |E|), where d and E refer to
the depth of the traversal and the set of all edges in the Graph
respectively. We do also note that as this is a distributed join,
the incurred network cost due to data shuffles are omitted
here for simplicity. That being said, these overheads are off-
set by the advantage of being able to scale out the model.
For purposes of optimization, each successive join is only
performed on the set of paths which are non-cyclic and have
yet to be absorbed while paths with vanishing probabilities
are pruned off.

Experiments

Baseline: Pointer-Generator Sequence-to-Sequence
Model

Sequence-to-sequence (seq2seq) architectures have been the
foundation for many neural machine translation and se-
quence learning tasks (Sutskever, Vinyals, and Le 2014). As
such, by formulating the task of query rewriting as an ex-
tension of sequence learning, we used a Long Short-Term
Memory-based (LSTM) model as an alternative method
to produce rewrites. In short, we first mined 3 months of
rephrase data using a rephrase detection ML model such that
the first utterance was defective, and the rephrase was suc-
cessful. We then used this data to train the pointer-generator
model, such that given the first utterance, it produces the
second utterance. The model is based on well-established
encoder-decoder architecture with attention and copy mech-
anisms (See, Liu, and Manning 2017). After the model is
trained, we then used it to rewrite the same utterances that
the Graph rewrites.

Offline Analysis

In order to evaluate the quality of the rewrites we obtained,
we annotated 5,679 unique utterance-rewrite pairs generated
via the Graph, and estimated the accuracy and win-loss ra-
tio to be 93.4% and 12.0, respectively. The notion of win-
loss ratio here is defined as the ratio of rewrites that result
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Table 1: Some example rewrites from the Graph.
No. Original utterance Rewrite Label

1 play maj and dragons play imagine dragons

Good

2 play shadow by lady gaga play shallow by lady gaga
3 play rumer play rumor by lee brice
4 play sirius x. m. chill play channel fifty three on sirius x. m.
5 play a. b. c. play the alphabet song
6 don‘t ever play that song again thumbs down this song
7 turn the volume to half volume five
8 play island ninety point five play island ninety eight point five

9 play swaggy playlist shuffle my songs Bad10 play carter five by lil wayne play carter four by lil wayne

in better customer experience and the rewrites that deterio-
rate customer experience. We further leveraged the pointer-
generator model to generate rewrites for these utterances as
a baseline.

Applying the pointer-generator model on this dataset re-
sulted in accuracy of 55.2%, i.e. significantly lower than the
accuracy of Graph. This is expected, since the Graph

1. Aggregates all three months of data (and not limited to
merely rephrases),

2. Takes into account the frequency of transitions whereas
the pointer-generator model only has unique rephrase
pairs for training, and

3. Utilizes the interpretation space to further compact and
aggregate the utterances.

However, the pointer-generator model has the benefit of
higher recall (since it can rewrite any utterance), and it
learns the patterns, e.g. SongName → play SongName.
Another important difference between the Graph and the
pointer-generator method is that the Graph is capable of
identifying when an utterance is successful via its interpre-
tation i.e. when h∗

t = hs and thus maximize its precision.
This is a signal to not rewrite the utterance, since statisti-
cally speaking, rewriting could only potentially worsen its
likelihood of success. However, the pointer-generator model
lacks this capability, and it may rewrite an otherwise suc-
cessful utterance, which thereafter would cause a friction.

Table 1 shows some examples of good and bad rewrites
from the Graph. It is clear from the examples that the
rewrites are capable of fixing ASR (no. 1-3), NLU (no. 4-
7) and even user errors (no. 8). On the other hand, there
are cases that the rewrites fail (no. 9-10). One of the recur-
ring cases of failure is when an utterance is rewritten to a
generic utterance, like ”play”, or ”shuffle my songs”. This
usually happens due to the original utterance not being suc-
cessful, and the users trying many different paths that even-
tually loses information, and is aggregated in a generic ut-
terance (due to Eq. 20). Another common case of failure is
when the rewrite changes the intention of the original utter-
ance by changing the song name or artist name. This hap-
pens because of various reasons. For example, the data that
we use for building the Graph may contain a period of time

where the original utterance was not usually successful, so
the users changed their mind by asking to play another sim-
ilar song (like no. 10). The first type of error is easy to cor-
rect, by either applying rules or building a learning-based
ranker after the Graph generation. The second type, how-
ever, is tricky to detect, since a lot of times, the change in
the interpretation helps. We relied on an online blacklisting
mechanism to remove these rewrites in the production sys-
tem.

Application Deployment

Offline Rewrite Mining

Since there are thousands of new utterances per day, and
there are constant changes to the upstream and downstream
systems in Alexa on a daily basis, it is important to update
our rewrites on a regular basis to remove stale and ineffective
rewrites. We run daily jobs to mine the most recent rewrites
in an offline fashion. This allows us to find the most recent
rewrites and serve them to users. It is noteworthy that in case
of conflicts between the rewrites, we pick the most recent
rewrite, since it has the latest data. We have online alarms
and metrics to monitor daily jobs, since sometimes changes
to the upstream and downstream Alexa components can im-
pact our rewrite mining algorithm. In case of large changes
in our metrics, we do a dive deep into the data to find the
root cause.

Online Service

Since the Graph is static during the period it is used, and
there are many repetitive utterances per day, we opted to
mine the rewrites as key-value pairs, where the original ut-
terance is the key, and the rewrite is the value. For exam-
ple, we store ”play babe shark” → ”play baby shark” as
one entry. We then serve these pairs in a high-performance
database to meet the low latency requirement. This allows us
to decouple the offline mining process and the online serving
process for high availability and low latency requirements.

Online Performance

Following the offline analysis and traffic simulations, we
launched the Graph rewrites in production in an A/B testing
setup. We monitored the performance of our rewrites against
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no-rewrites for over 2 weeks, and we observed more than
30% average reduction in defect rate (p-value < 0.001),
helping millions of users. Here, the notion of defect is based
on a ML model which scores user dissatisfaction at ev-
ery turn. In a separate 9 week randomized control trial,
we also noted as defect decreased, a new dialog interac-
tion was created for every 2 corrections made by the sys-
tem (p-value < 0.01), which in turn translates to greater
user engagement. We further measured the win-loss ratio 3
months after the system’s release by calculating the number
of unique rewrites where rewriting is significantly better -
win - or worse - loss - compared to no-rewrite option (we
used Z-test to test the significance, and set p-value threshold
of 0.01). The post-launch win-loss ratio closely matched our
offline estimate (11.8 online vs. 12.0 offline).

We have been running this application for over 9 months
in production, and it has been serving millions of users since,
improving their experience on a daily basis without getting
in their way. We know this for a fact since we have been
monitoring customer satisfaction metrics on a weekly ba-
sis. We monitor the total number of rewrites, and the aver-
age friction rate for the rewrites, along with average friction
for no-rewrites, where for the latter two, the aforementioned
30% margin still prevails. On top of tracking online met-
rics, we continue doing offline evaluations on a weekly ba-
sis, where we sample our traffic, and send it for annotation.
Combining the online and offline metrics in a longitudinal
fashion allows us to closely follow the changes in the cus-
tomer experience, which is the ultimate metric for our sys-
tem.

Conclusion

As conversational agents become more popular and grow
into new scopes, it is critical for these systems to have self-
learning mechanisms to fix the recurring issues continuously
with minimal human intervention. In this paper, we pre-
sented a self-learning system that is able to efficiently tar-
get and rectify both systemic and customer errors at runtime
by means of query reformulation. In particular, we proposed
a highly-scalable collaborative-filtering mechanism based
on an absorbing Markov chain to surface successful utter-
ance reformulations in conversational AI agents. Our system
achieves a high precision performance thanks to aggregating
large amounts of cross-user data in an offline fashion, with-
out adversely impacting users’ perceived latency by serv-
ing the rewrites in a look-up manner online. We have tested
and deployed our system into production across millions of
users, reducing customer frictions by more than 30% and
achieving a win-loss ratio of 11.8. Our solution has been
customer-facing for over 9 months now, and it has helped
millions of users to have a more seamless experience with
Alexa.
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