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Abstract 

In collaboration with Frontec, which produces parts such as 
bolts and nuts for the automobile industry, Kyung Hee Uni-
versity and Benple Inc. develop and deploy AI system for 
automatic quality inspection of weld nuts. Various con-
straints to consider exist in adopting AI for the factory, such 
as response time and limited computing resources available. 
Our convolutional neural network (CNN) system using 
large-scale images must classify weld nuts within 0.2 se-
conds with accuracy over 95%. We designed Circular 
Hough Transform based preprocessing and an adjusted 
VGG (Visual Geometry Group) model. The system showed 
accuracy over 99% and response time of about 0.14 sec. We 
use TCP / IP protocol to communicate the embedded classi-
fication system with an existing vision inspector using Lab-
VIEW. We suggest ways to develop and embed a deep 
learning framework in an existing manufacturing environ-
ment without a hardware change. 

Introduction   

Manufacturing industry is one of pioneering areas innova-

tively applying AI technologies in Korea as well as the 

construction industry (Lee et al. 1995; Lee et al. 1998). We 

introduce a Convolution Neural Network(CNN)-based sys-

tem developed to distinguish the defect of weld nuts for a 

manufacturing company of Korea. Prior to this system, the 

company Frontec used an existing vision inspector to de-

termine whether a weld nut is defective in size or it has no 

thread with cameras. However, the customers of the com-

pany such as automobile manufacturers started to treat a 

product as defective if its surface is a bit damaged even 

though it has no functional defects. If such a defect was 

found, the customers demanded investigation of all remain-

ing products and Frontec’s staffs had to manually identify 

defects to meet the request. However, it was not possible to 

achieve consistent quality management because the inspec-
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tion criteria were different for each employee and depend-

ed on the situation of the employee such as eye fatigue. 

Therefore, it became necessary to automate the inspection 

of the surface defect. 

 The speed of quality inspection should be within 0.2 se-

conds per weld nut and at least 95% defect classification 

accuracy must be achieved. The size of the picture is 1920 

× 1600. We develop a CNN-based system that satisfies 

these requirements and can operate within constraints. Our 

adjusted VGG (Visual Geometry Group)-based model has 

an average accuracy of 98% or more on the normal/defect 

classification problem. 

 By automating quality inspection, it was possible to 

place the staff who had carried out the visual inspection, 

which is a tiring task, into another task, and it was possible 

to check products consistently through the equipment un-

like the subjective person, thereby enhancing the reliability 

of the product. This increases the efficiency and customer 

satisfaction of manufacturing companies. 

 Quality inspection has used image processing techniques 

and traditional machine learning, where extracting typical 

domain characteristics requires various kinds of pre-

processing using domain knowledge on the structure, sta-

tistics, filters, and model-based methodologies (Neogi et al. 

2014). However, such manual designs of the traditional 

machine learning methodologies may not be appropriate 

for today's manufacturing companies, which have to switch 

products frequently (Wang et al. 2018).   

On the other hand, the performance of the CNN has be-

come similar to or higher than that of humans in many do-

mains (Weimer et al. 2016) and has been being tried in 

product quality inspection (Masci et al. 2012). Since CNN 

requires a lot of computations, it seemed difficult to be ap-

plied in environments with limited computing infrastruc-

ture or when product production is so fast. 

Since the speed of quality inspection affects production 

volume, the inspection should be carried out within the 
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limited time. The development of the CNN to ensure accu-

racy and the constraints required by the company is needed 

for the real factory environment. 

Image-based Quality Inspection Techniques 

Companies have used cameras or sensors to digitize the 

surface or the state of products and attempted to automate 

quality inspection using statistics, image processing, do-

main knowledge rule-based system, and machine learning.  

Statistical methodologies use histogram analysis and auto-

correlation analysis to measure the spatial distribution of 

pixel values. The image processing methodology extracts a 

feature through a filter or converting an image into another 

form. However, a new experiment is required to find a fil-

ter that is optimized for each domain.  

 Hough transform (Duda & Hart 1972) is used to detect 

well-defined forms, such as lines and circles. When pro-

cessing an image, a filtering operation can be performed 

not only in the spatial domain but also in the frequency 

domain. Especially, filters in the frequency domain are 

used when there is a periodic characteristic, or the patterns 

of images cannot be detected in the spatial domain. The 

features obtained in the spatial domain and the frequency 

domain can be applied to supervised machine learning for 

defect classification such as k-Nearest Neighbor method. 

Traditional Support Vector Machines (SVM) have been al-

so used extensively for binary classification and are often 

used to find defects on the surface of metal products. 

SVM-based binary classifiers are assembled to implement 

a multi-class classifier and used for classification of defects 

by incorporating feature extractors or knowledge-based 

methodologies implemented by other preprocessing pro-

cesses such as histogram, edge extraction, and shape ex-

traction (Agarwal et al. 2011). 

 Especially, before CNN, it was difficult to use images 

because of hardware performance and the constraint that 

input should be one dimension. Therefore, Principal Com-

ponent Analysis is often used as a function to extract fea-

tures from an image and reduce the dimension to generate 

input. By Principal Component Analysis (PCA), Luiz et al. 

(2010) generated feature vectors from the region in which 

there may be a defect detected by Hough transform and 

used them as neural network input to classify defects with 

complex shapes.  

 Traditional quality management methodologies have re-

quired a lot of domain knowledge or a pre-processing filter 

optimized for domain in order to extract features. Many 

new methodologies have been developed that do not re-

quire much knowledge of the domain, such as CNN, which 

was originally designed for image analysis. CNN with max 

pooling shows better performance than SVM and multi-

layer perceptron (Scholz-Reiter et al. 2012). 
 Janssens et al. (2016) introduced the CNN to reduce the 
overhead of feature engineering for specific defects of 
bearings through vibration analysis. The CNN, which re-
ceives the Discrete Fourier Transform (DFT) motor signal, 
classifies the bearing states into four categories. Wang et 
al. (2016) formed a spectrogram for vibration through a 
Discrete Wavelet Transform (DWT) and put it into CNN to 
classify five defect types. Dong et al. (2016) introduce 
CNN to distinguish six small defects that were difficult to 
catch by conventional methods due to noise or resonance 
in the wind turbine vibration data. Ferguson et al. (2017) 
developed CNN using x-ray images of castings to identify 
defect locations and types. Ye et al. (2018) introduce a 
CNN to distinguish the glass surface of touch panel from 
normal and 10 kinds of defects. We use a variety of pre-
processing techniques to reduce overhead of feature engi-
neering and employ CNN for detecting defects relatively 
small compared to the whole image  

Approach 

The AI development project proceeded for seven months 

from August of 2018 to February of 2019 as in Figure 1. 

Figure 1. Development Process 
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 From the start, the deployment issue was much empha-

sized. The AI team consisted of one AI model developer 

and one AI-factory system integrator to lead and collabo-

rate with vision inspector team. First, we identified the ex-

isting vision inspector specification that the AI system will 

be embedded and agreed with development team on the al-

lowable load levels of vision inspector. We verified that 

the data provided by the factory were correctly classified 

and some suspected matters were corrected (the 1st 

month). Then, we explored the method of extracting only 

the nut part from the data and searched for the optimal im-

age size to reduce the load (the 2nd month). We confirmed 

through experiments that it is possible to introduce from 

the simplest CNN to the deep neural network such as VGG 

(from the 3rd month to the 5th month). After the decision 

made to deploy CNN, we explored how to operate the 

model in the limited environment of the vision inspector 

(from the 6th month to the 7th month). 

Data 

We use two kinds of photos of weld nuts taken by the vi-

sion inspector cameras: upper side and underside. There 

are two types of upper side defects: ‘burst’ and ‘struck’, 

and three types of underside defects: ‘internal chip’, 

‘struck’, and ‘protrusion struck’ (Figure 2). The upper side 

surface ‘burst’ is caused by the impurities of the raw mate-

rial, and the inner chip on the underside surface is a residue 

generated during cutting process to make thread. Also, de-

fects of the ‘struck’ type are generated by mixing foreign 

matter and debris during the process. The number of pho-

tographs provided for machine learning is 1198 on the up-

per side: 500 normal works, 431 ‘burst’ and 267 ‘struck’. 

In the case of the underside, 2031 pictures were received: 

500 normal pieces, 658 ‘internal chips’, 410 ‘the struck’, 

and 463 ‘struck protrusion’. 

Figure 2. Types of Defects 

 The images are taken from the two cameras built into the 

vision inspector as shown in Figure 3. The captured image 

is grayscale and its size is 1920 × 1600.  

Figure 3. The Vision Inspector and the Cameras 

Pre-Processing of Data 

Data preprocessing has two main purposes. The first goal 

is to reduce the size of the image (Circle Hough Transform 

and downsampling), and the second one is to improve the 

performance of the model (DWT and PCA). 

Circle Hough Transform (CHT)  

As seen in Figure 4, the background image is much larger 

than the weld nut area. If the provided image is used as the 

input, the initial learning takes much longer. We needed a 

module to extract only weld nut part from the photo image 

from vision inspector. CHT algorithm is used to search the 

circular weld nut region, which is used as the input of the 

CNN. Figure 4 shows the process of extracting only the 

weld nut part from the supplied image. 

Figure 4. Extracting only the Weld Nut Part in Image 
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image based on the threshold value 90 to make the image a 

simple monochrome image with no noise. The Gaussian 

function with a magnitude of 9 × 9 and a standard devia-

tion of 1.5 convolutes the result to perform Gaussian blur, 

thereby connecting the lines that can be broken. From the 

Gaussian Blur results, we perform a CHT to find circles 
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Downsampling Images 

The CHT reduced the image size from 1920x1600 to 

750x750, but downsamples the image to a size of 224x224 

considering the resources the vision inspector consumes in 

the PCB (Printed Circuit Boards) control. The performance 

of Inter-area interpolation was the best compared with that 

of nearest neighbor, linear, cubic, or Lanczos interpolation 

respectively. The lines are formed the smoothest by the in-

ter-area interpolation. 

Discrete Wavelet Transform (DWT) 

We tested Discrete Wavelet Transform to emphasize the 

weld nut image components extracted by CHT. A filter for 

performing DWT is a binary orthogonal filter. DWT is ap-

plied to decompose the input image into 16 components of 

five levels. The results of the decomposition are merged as 

one image to be input to the CNN. 

Principal Component Analysis (PCA) 

We tested PCA as a way to generate normal reference im-

ages to emphasize the difference between defective and 

normal product images. The standard image is generated 

by the process in Figure 5. 

Figure 5. Process of Generating the Normal Reference Image 

 Smoothing each two-dimensional image into one dimen-

sion is accumulated for all the data sets to make one data. 

The data is normalized to a standard normal distribution 

and scaled. Assuming that the top 5% of the distribution of 

the standardization result is noise, only 95% of the compo-

nents are used. An average is calculated for the result, and 

the result is inversely transformed to obtain a normal refer-

ence image.  The difference between the reference image 

and the input image is shown in Figure 6. (a) is a reference 

image generated through principal component analysis, (b) 

is a difference between a reference image and a normal im-

age, and (c) is a difference between a reference image and 

a defect image. The difference image is input to CNN.  

 

 

 

 

Figure 6. Reference Image and the Differenced Images 

Model 

2ConvBlock and 4ConvBlock  

We define the basic structure of CNN, from convolution 

layer to maximum pooling layer, as ConvBlock. Con-

vBlock is stacked to test 2ConvBlock and 4ConvBlock. 

One ConvBlock is composed of two convolution layers 

and one pooling layer. In 2ConvBlock, referring to the pa-

rameters of VGG-16 (Simonyan & Zisserman 2014), the 

size of the feature map is set to be twice as large as the 

depth of the layer. Since the input image is large, the size 

of the filter and the stride nearer to the input layer are set to 

be larger. 4ConvBlock doubles the layers in 2ConvBlock. 

The zero padding is used to equalize the input and output 

sizes of each convolution layer. The pooling size is set to 

2X2 and stride to 2. The number of hidden layers is 1 and 

the number of hidden nodes is fixed to 100. 

VGG-16 

VGG is superimposing sixteen structures consisting of two 

convolution layers and one pulling layer. A structure has 

one 3X3 and 2X2 convolution filters with stride one and 

zero padding convolution layer and a Max-pooling layer of 

zero padding. VGG has a relatively simple structure than 

Inception (Szegedy et al. 2017) or ResNet (He et al. 2016). 

Since the processing speed is important when applied to 

vision inspector, the size of the original VGG-16 feature 

map is reduced by half, and the remaining parameters are 

used in the same manner. 

Experiment for Optimal Deployment 

The procedure for optimal structure and parameter search 

for field deployment is described in Figure 7.  

Data Set 

To perform the defect classification experiment with 

2ConvBlock, 4ConvBlock, and VGG-16 model, we use the 

image downsampled to 224x224 by inter-area linear inter-

polation on the image extracted through CHT. 
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 Images are divided into defect types, with 1198 for the 

upper side and 2031 for underside, with 20% for test and 

the 80% for training. The datasets were separated so that 

the ratios of each classification type appeared identical in 

the training and test data sets. The number of types to be 

classified is three on the upper side and four on the under-

side. In the case of training data sets, data is doubled by 

random rotation and up/down/right/left flipping. 

Figure 7. The Experiment Process Summary 

Experiment Design 

We tested how the classification accuracy of test data sets 

changes depending on learning rate, mini-batch size 

change, dropout usage, and batch normalization in using 

2ConvBlock, 4ConvBlock, and adjusted VGG-16 models. 

To overcome this overfitting problem of deep learning, we 

used mini-batch, batch normalization, and dropout. Mini-

batch means reducing the size of the batch, which is a unit 

of data to be learned. Batch normalization means scaling 

and shifting the distribution of inputs in mini-batch units. 

Dropout (Srivastava 2014) has the effect of learning gener-

alized models by arbitrarily disconnecting connections be-

tween nodes at a certain rate.  

 The evaluation metrics used include accuracy, recall, 

precision, and F1 score. Confusion Matrix components 

(e.g. TP: True Positive, FN: False Negative, FP: False Pos-

itive, TN: True Negative) were measured for each experi-

ment. Our case corresponds to the situation where defects 

are relatively uncommon and the cost of false positive is 

significantly higher than the cost of false negative. 

 Each experiment was classified into normal/defect clas-

sification and defect type classification. The experiment 

performed 500 epochs and measured the average accuracy 

and Confusion Matrix components of the 400 ~ 499 

epochs. In defect type classification experiment, the accu-

racy of each type was measured and the average was rec-

orded. For checking the frequency of cases classifying de-

fects as normal, the Confusion Matrix components for each 

defect type were combined and used for comparison. The 

detailed results can be found in Kwon (2019). 

Optimal Learning Rate 

We experimented with the decreasing learning rates 10
-2

, 

10
-3

, 10
-4

, 10
-5

 and so on. Models achieved high perfor-

mance when the learning rate was 10
-4

. The learning rates 

of 10
-5

 or less are is too small to search the global optimum 

point within 500 epochs. The false-positive component of 

the Confusion Matrix is the smaller as the learning rate is 

the smaller. In the case of normal/defect classification 

problem, the model with the learning rate 10
-5

 is the small-

est, and in the defect type classification, one with 10
-3

 has 

the lowest false positive (FP) rate.  

Optimal Mini-Batch Size 

Learning rate 10
-4

 and the mini-batch sizes 16, 32, 64, 128, 

and 256 are used for the experiments. The mini-batch size 

64 or less gave the highest performance. Especially for 

normal/defect classification, all test sets were correctly 

classified. The smaller mini-batch size, the more accuracy 

is achieved in defect type classification. The majority of 

the Confusion Matrix components have the lowest false-

positives at mini-batch size 64. 

Experiment for Dropout and Batch Normalization 

Dropout (50%) or batch normalization is placed after fully 

connected layer. For normal/defect classification, dropout 

had better performance. Batch normalization had higher 

accuracy in defect type classification. Since dropout has a 

lower false-positive, dropout is finally applied. 

Model Selection 

We selected VGG-16, which has high accuracy both classi-

fication. The 2ConvBlock model has a high accuracy (F1) 

of 0.99 or higher in the case of the normal/defect classifi-

cation, but the VGG-16 model is better suited to the vision 

inspector in cases where the FP should be lower and the 

defect type should be classified.  
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The VGG-16 model with learning rate of 10
-5

 and mini-

batch size 64 showed low FP. PCA and DWT were not al-

ways performing well in all cases, but partially accurate, 

therefore we apply neither to satisfy the operating speed. 

The operating speed of the model when using GPU is less 

than 0.078 seconds per inspection. The inspection system 

deploys the normal/defect classification model first rather 

than the defect classification model. 2ConvBlock is simple 

but it shows high accuracy in the problem of normal/defect 

classification, so it can be used instead of the VGG-16 just 

in case if the GPU cannot be used in unavoidable acci-

dents. 

Deployment 

Application Environment and Operation Process 

The inspection system is constructed as in Figure 8. Weld 

nuts enter the rail of vision inspector, and the products 

classified as normal fall from the conveyor belt to basket 

for packaging operation. The vision inspector takes photos 

through three cameras for upper side, underside, and thread 

images. The existing inspector can only examine the size 

of the welded nuts and the defect in the thread through the 

existing algorithm. The upper side and underside of the 

weld nuts are inspected through the model we developed. 

The inspector has a built-in computer with CPU intel i5 

3.1GHz, GPU Nvidia GTX 1080 Ti, RAM 16GB, SSD 

256GB, and OS Windows 10 64bit. The vision inspector 

operates under a program implemented in LabVIEW (La-

boratory Virtual Instrument Engineering Workbench), a 

system design platform used to build automation systems 

in manufacturing.  

 For applying the developed model to the existing vision 

inspector, we designed the model to operate as a server and 

to communicate with the inspector. The process of bring-

ing the weld nut into the inspector to make a normal or de-

fect decision is shown in Figure 8. First, clicking the "Ini-

tialization" button confirms the connection with the server. 

Pressing the "inspection" button puts the weld nut on a ro-

tating transparent circular plate coming in and out of the 

rail. As the disc rotates, the upper side and underside of the 

weld nut are sequentially photographed by the camera. The 

captured result is transmitted to the server. The result of 

the transfer is in the form of a string, which is transformed 

into an image form that can be operated on, and then only 

the weld nut part image is extracted through CHT. If the 

result of the classifying model is transmitted to the vision 

inspector, it is finally decided whether or not the product is 

defect integrating the size defect decision (‘size test’) and 

the thread defect decision (‘thread test’). 

 

 

 

 

Figure 8. The Quality Inspection System 

Interoperation with Control System 

The mechanism inside the vision inspector to apply the 

CNN model is controlled by LabVIEW (Figure 9).  

Figure 9. The Architecture of the Vision Inspector 

 There was a problem in initializing CNN to link the 

LabVIEW. First, CNN implemented through Python-based 

TensorFlow operates as Figure 10. The hardware for learn-

ing CNN has the CPU Intel Core i9-7900X @ 3.30GHz, 

64GB RAM, and GPU Nvidia GTX1080ti 11GB. After 

performing an action related to machine control with Lab-

VIEW, the process is reinitialized.  
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Then we should construct the CNN structure through the 

checkpoint information every time each operation is per-

formed. However, it takes tens of seconds to read because 

the checkpoint information of the developed VGG-16 has a 

size 700 MB. The initialization, which takes tens of se-

conds, is a fatal problem because it takes about 0.2 seconds 

for a weld nut to reach the front of the air gun from the 

camera in the vision inspector. To solve this, the initializa-

tion and the quality inspection process were separated. The 

inspection model was designed to operate as a client-server 

separately from LabVIEW. The CNN runs as a local server 

on a computer embedded in the inspector. 

Figure 10. Integration of LabVIEW and TensorFlow 

Initialization, CHT and Downsampling Process 

The processes consist of executing the upper side and un-

derside inspection respectively, and sending and receiving 

signals using LabVIEW and TCP (Transmission Control 

Protocol). Pressing the Initialization button in LabVIEW 

passes the signal to each model for the initialization. By 

running these quality inspection models on the server, the 

CNN model exists in the RAM until the inspector system is 

shut down. So, if you perform the initialization process on-

ly once, you do not need to reinitialize the CNN even after 

the machine control through LabVIEW, and you can elim-

inate the time lost from the initialization. Figure 11 shows 

the process of preprocessing the data to operate the model. 

To minimize the load, AI development team implemented 

it through a tool that performs CHT and downsampling 

built into LabVIEW. 

Quality Inspection Process 

The designed LabVIEW process to perform the quality in-

spection is in Figure 12. When you press the button “In-

spection”, LabVIEW sends a signal and the preprocessed 

images to the server to perform the inspection. The server 

activates the CNN to give the judgment. The server passes 

the computed results to LabVIEW, which synthesizes the 

results, size test result, and thread test result, and drops 

them into the air gun if the final judgment is normal. 

 

Figure 11. LabVIEW Coding of CHT and Downsampling 

Figure 12. LabVIEW Implementation 

Application Use and Pay-off 

Since the deployment on November 2018, the expected 

monetary benefit is US$20,000 per month, a combination 

of labor costs and failure costs previously incurred to man-

ually perform a quality inspection. The monthly labor cost 

US$16,000 includes the overtime work of 4 inspectors and 

2 packing workers, and the monthly failure cost US$4,000 

includes the cost for inspection at customer site. Besides 

weld nut, Frontec has more than ten types of products. If 

we introduce AI for the rest products, we expect a profit of 

US$200,000 per month. 
 Compared with the large potential benefit of the AI sys-
tem, the development cost is not so much. Korea Industrial 
Complex Corporation, supported the Frontec’s seven-
month project with US$90,000 under the grant of the 4th 
Industrial Revolution Smart Factory Construction Program. 
The financial support was shared among the AI develop-
ment team (Benple Inc. and Kyung Hee University), vision 
inspector team, and the Frontec’s fieldwork team. Since 
deploying AI in the manufacturing industry is still in the 
early stage, the AI development team had to contributed 
much more to even in integrating the developed AI model 
into the existing system than the vision inspector team. Our 
experience gives a lesson to AI experts in recognizing their 
roles in successfully deploying AI in the real business en-
vironments. 
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Summary and Conclusions 

The adjusted VGG-16 with dropout is embedded in the ex-

isting vision inspector. For the deployment, CHT and the 

downsampling process, once developed in OpenCV-

Python, are implemented in LabVIEW to satisfy the time 

and resource requirement. Our case confirms that CNN can 

perform the quality inspection with consistency and accu-

racy. Frontec now can feedback quality information in re-

al-time and reduce worker fatigue. 

 This deployment is a first step to automatic quality man-

agement of all products by developing and applying deep 

learning-based AI to the modern manufacturing industry. It 

is possible to extend the range of inspectable products by 

securing additional data. The experience of success will 

save development costs for further development. By auto-

matically classifying the defect types real time with high 

accuracy, the company expects the defect rate can be even 

more lowered by early detection of the cause of the defect. 

Through this AI success experience, the company now 

plans to expand the application of AI from the current 

quality inspection to optimal production scheduling and the 

preventive maintenance of the factory facilities. Frontec 

now plays a hub role of diffusing the AI knowhow to relat-

ed manufacturing companies, especially to forging indus-

try. 
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