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Abstract

Clothing transfer is a challenging task in computer vision
where the goal is to transfer the human clothing style in
an input image conditioned on a given language description.
However, existing approaches have limited ability in delicate
colorization and texture synthesis with a conventional fully
convolutional generator. To tackle this problem, we propose
a novel semantic-based Fused Attention model for Clothing
Transfer (FACT), which allows fine-grained synthesis, high
global consistency and plausible hallucination in images. To-
wards this end, we incorporate two attention modules based
on spatial levels: (i) soft attention that searches for the most
related positions in sentences, and (ii) self-attention modeling
long-range dependencies on feature maps. Furthermore, we
also develop a stylized channel-wise attention module to cap-
ture correlations on feature levels. We effectively fuse these
attention modules in the generator and achieve better perfor-
mances than the state-of-the-art method on the DeepFashion
dataset. Qualitative and quantitative comparisons against the
baselines demonstrate the effectiveness of our approach.

Introduction

The human clothing transfer is a challenging and compli-
cated task where the goal is to transfer the dressing style of
a person in a given image conditioned on an input language
description, while preserving his/her pose, identity and body
shape (as shown in Figure 1(a)). This task can be extended
to plenty of new applications in different areas including
the photo editing, film-making industry, virtual try-on ser-
vices etc. In recent years, Generative Adversarial Networks
(GAN) (Radford, Metz, and Chintala 2015; Goodfellow et
al. 2014; Denton et al. 2015) has shown impressive results in
domain transfer tasks such as facial attributes transfer (Shen
and Liu 2017; Choi et al. 2018; Xiao, Hong, and Ma 2018;
Pumarola et al. 2018) and makeup transfer (Li et al. 2018).
Despite all these successes, the area of human clothing trans-
fer remains to be exploited. However, with a conventional
fully convolutional generator conditioned on sentence repre-
sentations, existing approaches are strongly limited in find-
ing long-range correlations in images and are ineffective in
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Figure 1: Examples of our clothing transfer results. (a) Gen-
erated examples conditioned on different language descrip-
tions. (b) Two-stage generation under the guidance of se-
mantic segmentation.
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leveraging semantic information at the word level to gen-
erate high quality images. Moreover, there are hardly any
works focusing on exploiting feature correlations in cloth-
ing transfer, which makes it difficult for GANSs to reason and
hallucinate (such as folds, arms).

To tackle these problems, we propose a novel semantic-
based Fused Attention model for Clothing Transfer (FACT)
with Generative Adversarial Networks. Our model is com-
posed of two stages, namely deformation GAN and syn-
thesis GAN. In the first stage, we address the deformation
problem by transferring the segmentation map of an input
image according to a sentence. As shown in Figure 1(b),
the generated segmentation map depicts the rough sketch
of the desired image and is fed to the next stage as a se-
mantic guidance. In the second stage, the generator learns
to synthesize a fine-grained target image conditioned on the
transferred segmentation map and the sentence. To obtain
better visual quality, we incorporate three attention layers
in the second stage generator. Firstly, soft attention enables
each location of feature maps to search for the most rel-
evant words in the input sentence, which effectively rein-
forcing fine-grained text-to-image synthesis. Secondly, self-
attention serves as a complement to the locality of conven-
tional convolutions. In virtue of the self-attention mecha-
nism, the correlations among different spatial regions on fea-



ture maps are explicitly represented and the generator learns
to model these long-range dependencies to strengthen the
fidelity and global consistency in images. Moreover, since
soft attention and self-attention are both aimed at building
up spatial dependencies, we also develop a stylized channel-
wise attention module, which explicitly models feature cor-
relations through the channel-wise inner product and recal-
ibration on feature maps. The establishment of feature cor-
relations effectively facilitates texture synthesis, reasonable
hallucination and delicate colorization.
Overall, our contributions in this work are three-fold:

We propose a novel semantic-based Fused Attention
model for Clothing Transfer (FACT) with Generative Ad-
versarial Networks, which allows fine-grained synthesis,
high global consistency and plausible hallucination in im-
ages.

We show the effectiveness of different attention modules
through a component analysis and visualization of atten-
tion maps.

We provide both qualitative and quantitative results on the
clothing transfer task and demonstrate its superiority over
the state-of-the-art method on the DeepFashion dataset.

Related Work
Generative Adversarial Networks

The typical Generative Adversarial Network (GAN) (Good-
fellow et al. 2014; Radford, Metz, and Chintala 2015) is
composed of two networks, namely a generator and a dis-
criminator. The discriminator acts as a critic to differentiate
fake samples from real samples while the generator learns to
generate fake samples to fool the discriminator. Eventually,
the counterfeits are indistinguishable for the discriminator
and these two modules converge to a Nash equilibrium.

Clothing Transfer

InstaGAN (Mo, Cho, and Shin 2018) is proposed as an
instance-aware GAN model to transfer women’s bottoms.
However, their work is only available for a specific trans-
lation between two categories and bottoms are merely the
simplest pattern in clothing transfer. FashionGAN (Zhu et
al. 2017b) addresses the multiple clothing attributes transfer
task by training two separate networks. Whereas, they fail
to preserve the background during transferring and are also
ineffective in delicate colorization, reasonable hallucination
and fine-grained texture synthesis by utilizing a plain fully
convolutional generator.

Attention Models

Attention models are first proved to be effective by Bah-
danau et al. (Bahdanau, Cho, and Bengio 2014) in neural
machine translation. Xu et al. (Xu et al. 2015) propose an
attention-based model that automatically learns to describe
the content of images. Vaswani et al. (Vaswani et al. 2017)
achieve the state-of-the-art performances in neural machine
translation by solely employing a multi-head self-attention
transformer without any recurrence and convolutions en-
tirely. Recently, several studies have explored the attention
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mechanism in the area of GANs. Xu et al. (Xu et al. 2018)
proposes a attention-driven GAN for text-to-image gener-
ation and SAGAN (Zhang et al. 2018) combines the self-
attention mechanism with GANs in image generation tasks.
In this paper, we adapt and incorporate both soft attention
and self-attention into GANs and develop a novel stylized
channel-wise attention module for better generation quality
in clothing transfer.

Fused Attention model for Clothing Transfer

In this section, we present our novel semantic-based fused
attention GAN framework for clothing transfer task con-
ditioned on language descriptions. As clothing transfer in-
volves not only significant changes in shape but also fine-
grained texture synthesis and colorization, we decompose
the task into two stages, which are the deformation GAN
and the synthesis GAN.

Deformation GAN

Instead of directly generating a target image /,;, we simplify
the task by first deforming the segmentation map S,. of an in-
put image /,- to match an input sentence #,. As shown in Fig-
ure 2, the text description f, is first encoded by a two-layer
LSTM to extract semantic embeddings. We leverage the hid-
den state at each time step as a semantic representation of the
corresponding word and gather these hidden states to com-
pose the word embeddings matrix w € RX*T where T in-
dicates the length of the sentence and K = 128 denotes the
dimension of each word embedding. Furthermore, the last
hidden state of the second layer in LSTM is extracted as the
sentence embedding ¢, € REX1,

Adversarial Loss. To generate a target segmentation map
indistinguishable from real maps, we follow the LSGAN
scheme (Mao et al. 2017) which is empirically known to
stabilize the training dynamics and we adopt the matching-
aware loss introduced by (Reed et al. 2016):

Ll = EST,L,DtT [(Ddef(srv @tr) - 1)2]

1
+ 3E5,00,[(Dacs (S5, 01,))) n
1
4 5500, [(Dacs (1,0,)))
Lé‘ = ESg,wtg [(Daey(Sg: t,) — 1)2} 2

where S; = Gaep(Sy|¢s,) is the segmentation map gen-
erated by Gg.; conditioned on the target sentence embed-
ding ¢, . LY enables the discriminator to recognize two
sources of errors, namely the unreality of generated segmen-
tation maps and the matching error between real segmenta-
tion maps and mismatched sentence embeddings.

Reconstruction Loss. As the multi-domain translation
problem without paired data is inherently ill-posed and lacks
additional constraints. We utilize the cycle consistency loss
(Zhu et al. 2017a) to maintain the body shape, pose and iden-
tity in the segmentation map, which can be denoted as the
L1 loss between the original segmentation map S, and its
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Figure 2: The framework of our FACT model. SoA, SeA, StA represent soft attention, self-attention and stylized channel-wise

attention respectively.
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Only a single generator is used here to both translate and re-
construct, which remarkably reduces the amount of parame-
ters and memory consumption.

Full Objective.
GAN is :

The full objective of the deformation

Ll 'L"D+LG+)‘rec rec

is the hyper-parameter .

“

1
where A,

Synthesis GAN

The segmentation map S, generated by the deformation
GAN depicts the rough sketch of the desired image /,. In
the synthesis GAN, we leverage the translated segmentation
map S, as semantic guidance and train a generator Gy, to
learn the mappings among clothing images from multiple
domains conditioned on S, and the target sentence 7. In this
stage, we incorporate soft attention, self-attention and styl-
ized channel-wise attention into the generator to facilitate
fine-grained synthesis, high global consistency and plausi-
ble hallucination in images.

As shown in Figure 2, the synthesis GAN has two separate
encoder branches to extract features for the segmentation
map S, and the real image I, respectively. Since the head
parts are not what we care about, we add a matting layer on
top of the last convolution layer to retain head parts (see the
supplementary material for details about matting layer).

Soft Attention Module. We borrow the soft attention
mechanism from neural machine translation models (Bah-
danau, Cho, and Bengio 2014) and adapt it to our clothing
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transfer task. As can be seen in Figure 3, the soft atten-
tion model takes in two inputs: word embedding matrix w
€ REXT and feature maps x € RC*N_ Context vectors can
be obtained as follows:

sji = W) Wi (w;)
5= exp(s;;)
J,r T
> et exp(s;r)

T
= Z Bj,in(wz)
i=1

S

W, € REXC W, € REXE W, € RE*K are convolutions
to transform inputs to feature spaces. [3;; is the attention
weights indicating the extent to which the model attends to
the 7" word when synthesizing the j*" region on feature
maps. Then the context maps of the soft attention model
is denoted as ¢ = (cy1,¢a,--- ,cn) € ROV, Finally, we
transform the context maps back to the original channel size
to obtain the word context features csopr = We(c), We €
RC ><C'

Self-Attention Module. Although conventional convolu-
tions show remarkable results on extracting local features,
they are unable to capture long-range correlation in im-
ages. To this end, we apply the self-attention mechanism
(Vaswani et al. 2017; Zhang et al. 2018) to strengthen the
global consistency of the generated images in our frame-
work. More specifically, the feature maps x are transformed
into three feature spaces, p, r, u, by using convolutions

W, € REXC W, € REXC W, € REXC | The self-
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Figure 3: The soft attention model.

attention context vectors are calculated as below:
tiy = Wy(a:) Wi (;)

exp(ti;)
Vii = SN (s

Zizl eXp(tij) (6)
N

dj =Y Wal(w:)
i=1

and -, ; indicates the relevance between two sub-regions i, j
on feature maps. The self-attention context maps is repre-

sented as d = (dy,da, -+ ,dy) € RE*N and final context
feature maps are acquired by transforming the context maps

back Cself = Wd(d), Wy € RE*C,

Stylized Channel-Wise Attention Module. Several stud-
ies (Gatys, Ecker, and Bethge 2015; Li et al. 2017) have
proved the effectiveness of employing the Gram matrix as
the representation of image styles on neural style transfer.
Analogously, in clothing transfer, the GAN model is also
supposed to generate human images with various dressing
styles. Essentially, the Gram matrix can be considered as the
biased covariance matrix to calculate the correlations be-
tween channels, and capturing these feature correlations is
actually very necessary in clothing transfer because colors,
texture and clothes can be highly correlated. For instance,
jeans are mostly blue and there are generally many folds on
skirts. Explicitly learning feature correlations is prone to re-
inforcing fine-grained texture synthesis, reasonable halluci-
nation and delicate colorization. Consequently, in the styl-
ized channel-wise attention module, we calculate the Gram
matrix, normalize it using softmax and recalibrate features
through weighted sum over all channels. Specifically, con-
text maps are calculated as follows:

Gji = Z FirFi,
k

e
s = SP(C5)

2 exp(Gii) (N

fi= Zzaj,iFik
i &

Cstyle = Concat(ftha o 7fC)

G is the Gram matrix. oy ; is the attention weights ob-
tained after normalization.

Eventually, we incorporate soft attention, self-attention
and stylized channel-Wise attention context feature maps
1nto x:

y= + TICsoft + ecself + HCstyle (8)

where 7, 6 and p are all learnable paramaters initialized as 0.
These parameters allow the generator to dynamically learn
how much contributions different attention modules should
make to synthesizing feature maps, which effectively inten-
sifies the fusion of three context maps.

Background Preserving Loss. Analogous to the head
parts, the background in the original image is irrelevant as
well. However, if we deal with the background using the
matting scheme, there can be shape contradiction between
input and generated images, resulting in the inconsistency of
human bodies. Therefore, we make the generator learn how
to maintain the background by introducing a background
preserving loss:

Myg = My, N leg ©
Ll2)g :” Mbg © (Ir - Ig) ||1

where M, denotes the background mask obtained through
the intersection of the background parts in /,. and /.

Full Objective. The adversarial loss of the synthesis GAN
is similar to the deformation GAN:

£3 =Ep, o, [(Dayn(Lr,0r,) — 1)?]

1
+ i]EIy»%g [(DS.WZ(Ig’Lptg))z] (10)
1
+ 5E1 o0, [(Dagn (L, #1,))°]
Lé = EIga%g [(Dsyn(Igv QOtg) B 1)2] (11

Moreover, we enforce the shape constraint on the generate
image I, by dual learning. Specifically, we train an addi-
tional network F... to reconstruct the segmentation map and
minimize the reconstruction loss:

L%ec = ESg,wtg ,w[H FTEC(GSyn(IT|‘Ptg7SQ7w)) - S [l1]
(12)
The full objective of the synthesis GAN is given by:
’C2:L2D+L2G+)‘bg£‘gg+Azechec (13)

where Ay, and A2, are the hyper-parameters controlling the

relative importance of each loss term.

Implementation Details

To stabilize GAN training, we apply the spectral normal-
ization (Miyato et al. 2018) to discriminators of both two
stages to satisfy the Lipschitz constraint at a small compu-
tational cost. In addition, we also adopt the label smoothing
trick introduced by (Salimans et al. 2016).



Table 1: FID of FACT Variants and Baseline

Model FID

FashionGAN 35.18
Base Model 36.03
Base Model + SoA 34.71
Base Model + SoA + SeA 32.67
Base Model + SoA + SeA + StA(Full Model) 30.54

Training Details. The model is trained using Adam
(Kingma and Ba 2014) with a learing rate of 0.0002 for both
generators and discriminators. The batch size is set to 32
for the first stage and 16 for the second stage. The hyper-
parameters are \py = Ar.. = A%, = 10 . We first train
iteratively D; and G; for 15 epochs by fixing the second
stage GAN and linearly decay the rate to zero over the last
5 epochs. Then we train Dy and G» for 20 epochs by fixing
the first stage GAN and linearly decay the rate to zero over
the last 5 epochs.

Experiments

In this section, we conduct quantitative and qualitative eval-
uations on the DeepFashion Dataset to validate the effective-
ness of our FACT model.

Dataset. The DeepFashion dataset is composed of a train-
ing set with 70,000 images and a test set with 8,979 images.
All the evaluations are conducted on the test set.

Evaluation metric. We choose the Fréchet Inception Dis-
tance (FID) (Heusel et al. 2017) for quantitative evaluation.
Lower FID values mean higher similarity between generated
and real data distributions.

Component Analysis

To study the important components of our FACT model, we
conduct the ablation studies. Base Model(BM) represents
our model without any attention applied. SoA, SeA, StA
represent soft attention, self-attention and stylized channel-
wise attention respectively.

Ablation Study. As shown in Table 1, our FACT model
with fused attention achieves far better results than that with-
out any attention added (with FID from 36.03 to 30.54).
Moreover, Base Model + SoA and Base Model + SoA +
SeA both improve the performance on FID, demonstrating
that each attention component makes its contribution to gen-
erating plausible images. In addition, the full model acquires
even lower FID score than Base Model + SoA + SeA (30.54
and 32.67), indicating the usefulness of the stylized channel-
wise attention module.

Attention Visualization. To better understand what has
been learned in our FACT model, we visualize the interme-
diate attention weights in the synthesis generator, as shown
in Figure 4. For soft attention, we pick out five words with
the largest soft attention weights and visualize their corre-
sponding attention maps. We observe that the irrelevant re-
gions such as the background mostly attend to words with
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little semantic information, e.g., the word “is”. However,
for those regions with high correlation with human bodies,
attention is mostly allocated to the attribute description in
the sentence, including shape, color and category. For in-
stance, in the left cell of Figure 4, the words “’short-sleeved”,
“black” and “tee” are mostly attended by the upper body
parts. In this way, the generator is able to synthesize fine-
grained textures and colors by attending to the most relevant
words in the target sentence.

With regards to self-attention, we select the five most rep-
resentative query locations and visualize their most attended
regions on self-attention maps. As shown in the third row
of Figure 4, self-attention tends to be allocated to the neigh-
borhood for a query location because they share the simi-
lar color or texture. For example, in the bottom-left row, the
third map mostly attends to the background and the fifth map
mostly attends to the leg parts. This manner ensures the lo-
cal consistency of textures and colors. In addition, we also
observe that the self-attention indeed finds the long-range
dependencies in images. In the right cell of Figure 4, since
the situation is the attribute transfer from “long-sleeved” to
”sleeveless”, the arms need to be hallucinated to maintain
the consistency of a human body. To this end, the third map
in the bottom-right row attends to nonadjacent regions to
synthesize a plausible arm. This observation further demon-
strates that the self-attention mechanism is complementary
to convolutions for modeling global dependencies in our
task.

Comparison with Baselines

FashionGAN is the state-of-the-art method in clothing trans-
fer on the DeepFashion dataset,. They train two separate net-
works with the first one synthesizing the segmentation map
and the second one rendering the segmentation map into an
image using paired data.

Quantitative Comparison. First, we compare our full
FACT model with FashionGAN on FID. As shown in Ta-
ble 1, our FACT model remarkably reduces the FID of
FashionGAN (from 35.18 to 30.54), which means that our
model achieves the state-of-the-art results on the DeepFash-
ion dataset. Note that in Table 1, the Base Model is inferior
to FashionGAN, which further validates the effectiveness of
our fused attention mechanism.

To demonstrate the ability of our model to generate re-
alistic images matching with the language descriptions, we
perform an attribute prediction experiment introduced by
FashionGAN. We apply the R*CNN model (Gkioxari, Gir-
shick, and Malik 2015) as the attribute predictor and fine-
tune the model on the Deepfashion training set. Several rel-
evant attributes are selected, e.g. "Has T-Shirt”, "Has Long
Sleeves”, "Has Shorts”, "Has Jeans”, "Has Long Pants”.
As shown in Table 2, our FACT model outperforms Fash-
ionGAN on prediction for all five attributes. This experi-
ment suggests that our FACT model is capable of gener-
ating clothing images with higher fidelity and global con-
sistency than FashionGAN. In addition, the comparison be-
tween Base Model and FACT shows the important role of
the fused attention model in increasing the attribute predic-
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Figure 5: Results of different models on the same input. Each column represents the same target language description.

tion accuracy.

Qualitative Comparison. As shown in Figure 5, we com-
pare the generated results of FashionGAN, Base Model,
BM+So0A+SeA and FACT respectively. In Figure 5, each
column represents the same target language description.
FashionGAN learns the mapping between paired segmenta-
tion maps and real images without taking original images as
inputs. This training manner results in that they fail to retain
the background, whereas our model does not suffer from this
problem due to the background preserving loss.

As seen in Figure 5, our full FACT model clearly gener-
ates the most natural and realistic person images with consis-
tent colorization and fine-grained texture details. Although
FashionGAN succeeds in maintaining the pose and identity
of the original image, they fail to generate sufficient texture
details to make their results stereoscopic. They are also un-
able to produce plausible colorization. For example, in the
sixth image of the first row, the color ’green” is not man-
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ifested, and artifacts appear instead. Furthermore, the ex-
amples generated by FashionGAN look quite similar and
lack of variation, which is a sign of mode collapse. We
believe that the superiority of our FACT model is because
of the fused attention mechanism. The comparison between
BM+SoA+SeA and Base Model convincingly demonstrates
the advantages of the soft attention and self-attention on syn-
thesizing fine-grained textures and facilitating global consis-
tency in images. Comparing the third row and the fourth row
in Figure 5, we can conclude that by virtue of the stylized
channel-wise attention, FACT is able to generate images
with higher quality and less artifacts than BM+SoA+SeA.
See the supplementary material for additional qualitative re-
sults.

Traversing the manifold. To demonstrate that our FACT
model learns a smooth latent data manifold, we traverse the
manifold by making linear interpolation between an origi-
nal sentence and a target sentence, as shown in Figure 6. To
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Figure 6: Results of traversing the manifold.

Table 2: Attribute Prediction Results of FACT and FashionGAN

Model Has T-Shirt | Has Long Sleeves | Has Shorts | Has Jeans | Has Long Pants
FashionGAN 62.9 86.7 89.9 81.8 90.2
Base Model 61.4 85.4 88.3 80.6 89.1
Base Model + SoA + SeA 63.2 86.9 90.0 82.7 89.6
FACT 64.1 87.5 90.2 83.9 91.0

maintain the semantic consistency, we interpolate both word
embeddings and sentence embeddings. The results show that
the generated images from interpolated embeddings can ac-
curately reflect shape deformation and color changes.

User Study. We also conduct a user study with 65 vol-
unteers. We randomly choose 10 images and 10 target sen-
tences from the test set and use four different methods to
generate 100 target images respectively. Every time, we pro-
vided the original image, four different generated images
and a language description to volunteers. They were in-
structed to rank four generated images based on fidelity,
global consistency and matching with the language descrip-
tion. Rank 1 represents the best transfer performance while
Rank 4 represents the worst. We summarize statistics on the
percentage of each rank order for each method. As can be
seen from Table 3, our full FACT model has the most Rank
1 and least Rank 4 while FashionGAN mostly gets Rank 3 or
Rank 4. The result shows that our FACT model outperforms
FashionGAN from human judgment.

Conclusion

In this paper, we have proposed a semantic-based Fused At-
tention model for Clothing Transfer, namely FACT, with
generative adversarial networks. The proposed model is
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Table 3: User Study

Model Rank 1 Rank 2 | Rank3 | Rank 4
FashionGAN 14.58% | 19.15% | 32.38% | 33.89%
BM 11.17% | 17.41% | 33.32% | 38.10%
BM+SoA+SeA | 22.49% | 33.91% | 23.16% | 20.44%
FACT 51.76% | 29.53% | 11.14% | 7.57%

composed of two modules: the deformation GAN and the
synthesis GAN. The deformation GAN transfers segmenta-
tion maps of input images, which depicts the rough sketch
of the desired images as semantic guidance. In virtue of soft
attention, self-attention and stylized channel-wise attention,
the synthesis GAN is able to generate fine-grained cloth-
ing images with high fidelity. Extensive quantitative and
qualitative experiments demonstrate the effectiveness of our
method. Our FACT model achieves the state-of-the-art per-
formance on clothing transfer on the Deepfashion dataset.
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