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Abstract

Convolutional neural networks (CNNs) have been widely
adopted in the visual tracking community, significantly im-
proving the state-of-the-art. However, most of them ignore
the important cues lying in the distribution of training data
and high-level features that are tightly coupled with the tar-
get/background classification. In this paper, we propose to
improve the tracking accuracy via online training. On the
one hand, we squeeze redundant training data by analyzing
the dataset distribution in low-level feature space. On the
other hand, we design statistic-based losses to increase the
inter-class distance while decreasing the intra-class variance
of high-level semantic features. We demonstrate the effec-
tiveness on top of two high-performance tracking methods:
MDNet and DAT. Experimental results on the challenging
large-scale OTB2015 and UAVDT demonstrate the outstand-
ing performance of our tracking method.

Introduction
Visual tracking aims at predicting the trajectory of a target in
an image sequence. Although much effort has been devoted
in the past decades, it is still challenging to develop an effi-
cient tracking method in the face of interfering factors such
as heavy occlusions, out-of-plane rotations, and fast motion,
etc.

Recent CNN-based trackers (Yan et al. 2019; Bertinetto et
al. 2016; Nam and Han 2015; Qi et al. 2016; Pu et al. 2018;
Bhat et al. 2018; Song et al. 2018; Qi et al. 2019) have
shown the great success of hierarchical features learned by
deep convolutional neural networks. Most of the existing
trackers first pre-train a classification model using off-line
data. Then the tracker is initialized via finetuning the learned
models with the given target in the first frame. In the follow-
ing frames, it is further finetuned with the collected samples,
which is known as online training. However, the online train-
ing data is usually dominated by easy samples, and thus the
model is prone to overfitting. Besides, the structure of the
learned feature space is not always preserved. While the tar-
gets and the backgrounds lay close in the feature space, it is
difficult to train a classifier to identify the targets.
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Figure 1: A comparison of our approach with the baseline
MDNet on three example sequences. Trackers face four vi-
sual tracking challenges: large occlusion (top row), fast mo-
tion and illumination variation (middle row), and scale vari-
ations (bottom row). Through improved online-training, our
approach achieves more accurate tracking results than MD-
Net.

To address the problems mentioned above, we propose a
novel discriminative tracking method, which improves the
online training method from two perspectives, i.e., deliver-
ing more compact and informative training data, and intro-
ducing statistic-based losses to obtain more discriminative
features. To finetune tracker with a high-quality online train-
ing set, we propose a sample squeezing method to elimi-
nate redundant samples. Different from existing approaches,
the proposed method eliminates redundant samples by es-
timating the similarity of both old and new samples with
novel proximity. The proposed proximity is more sensitive
to the sample location in the feature space and is more capa-
ble of identifying the redundancy from a global perspective.
As the proximity is updated efficiently, the sample squeez-
ing method improves the diversity of the online-training set
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without much time-consuming. On the other hand, we pro-
pose statistic-based losses to obtain more stable and dis-
criminative semantic features. The proposed statistic-based
losses increase the inter-class distance of both classes, as
well as decrease the intra-class variances. Through improved
online-training, more discriminative features are learned for
the classifier, and the tracker achieves more accurate track-
ing performance.

The main contributions of our method are summarized as
follows:
• We propose a sample squeezing method to maintain the

online-training set. The method delivers a more informa-
tive and compact training set by squeezing the redundant
samples via a global perspective.

• We introduce statistic-based losses to preserve the struc-
ture of semantic feature space and obtain more discrimi-
native features for the classifier.

• Extensive experimental results on both UAVDT and
OTB100 datasets demonstrate the effectiveness of the
proposed method.

Related Work

Our work is related to the previous approaches in two as-
pects. First, we summarize the sample management meth-
ods of online training. Then we overview the methods that
improve the discriminative ability of trackers.

Online Training Sample Management

Existing tracking approaches employ a generative or a dis-
criminative manner to track targets. In the training stage, the
trackers learn embedding spaces for the objects, while in the
reference stage, the trackers use various methods to maintain
the embedding spaces.

The generative trackers do not online finetune the embed-
ding spaces in the reference stage, and they linearly com-
bine the known observations to formulate a target model.
The DCF based trackers (Danelljan et al. 2016; Henriques et
al. 2015; Valmadre et al. 2017a; Bertinetto et al. 2016) add
newly collected target samples to the target models with a
fixed and tiny step. Such updating strategy based on a strong
assumption, i.e. the appearance is changing with a uniform
speed. While there are heavy occlusions, out-of-plane ro-
tations, or fast motion, the strong assumption degrades the
discriminative ability of the target model and leads to the
tracking failures. Several attempts are proposed to improve
the online updating strategy. Bolme etc. (Bolme et al. 2010)
propose a method to reject new samples based on the Peak-
to-Sidelobe Ratio (PSR) criterion. This updating strategy
evaluates the new samples rather than the whole training
set and refuses the new target samples with significantly
changed appearances. ECO (Danelljan et al. 2017) weights
the collected target samples by their Euclid distances and the
time tags then integrates the samples with a Mixed Gaus-
sian Model. Although ECO considers all the training sam-
ples, as the Euclid distance only depicts the similarity of
two samples, ECO still unable to describe the distribution
of the whole training set. Furthermore, the ECO only for-
mulates one target appearance model. The lack of negative

training patches leads to over-fitting of the learned model,
significantly affecting the performance in cases e.g., target
deformations.

In the reference stage, the discriminative trackers fine-
tune the embedding spaces to adapt to a specific video.
Most discriminative trackers collect positive and negative
samples along the tracking process. MDNet (Nam and Han
2015) employs a hard-negative mining technique to excavate
valuable background samples. It also uniformly collects the
training samples and keeps massive redundant ones.

In this paper, to facilitate discriminative trackers, we pro-
pose a sample squeezing method with neighbour proximity,
which is more sensitive to the sample location in the feature
space and capable to evaluate the distribution of the whole
dataset.

Methods to Enhance the Discriminative Ability

Existing tracking methods employ several strategies to en-
hance the discriminative ability of trackers.

In the reference stage, the generative trackers obtain more
representative features without finetuning the embedding
spaces. SRDCF (Danelljan et al. 2015) weights the appear-
ance models with kernels to diminish the influence of back-
ground and the unwanted boundary effects. However, it as-
sumes the data are sampled correctly without spatial dis-
placements and introducing noises to the representations.
Danelljan et al. (Danelljan et al. 2017) integrate several
kinds of features to improve the discriminative ability, but
these features are not learned end-to-end and unable to adapt
to the arbitrary object class. DSLT (Lu et al. 2018) and
SiamFC-tri (Dong and Shen 2018) introduce the shrinkage
loss and the triplet loss to the off-line training. Through on-
line training, TADT (Li et al. 2019) selects the filters, which
are more sensitive to the scale change. However, these track-
ers are still limited by the pre-trained model and lack the
generalization ability to an unknown sequence.

Discriminative trackers use online training to learn more
discriminative features and classifiers. MDNet (Nam and
Han 2015) uses a multi-domain learning method to adapt
the tracker to a specific video. DAT (Pu et al. 2018) gener-
ates spital attention maps to restrain the background features
in the semantic domain, yet, needs abundant samples to ob-
tain the attention maps. Vital (Song et al. 2018) erases the
less significant area of the semantic features to promote the
robustness of the classifier.

In this paper, we propose novel statistic-based losses to
preserve the structure of the feature domain space and obtain
more discriminative semantic features.

The Proposed Method

The framework of our proposed method is shown in Fig-
ure 2. The deep network first extracts the low-level features
of input images. While the network goes deeper, we obtain
the semantic features and deliver them to the classifier to tell
the targets from backgrounds.

In the low-level feature space, we propose a sample
squeezing method to enlarge the diversity of training set with
novel proximity which is sensitive to the sample location.
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Figure 2: An overview of online-training stage of proposed tracker. We evaluate the training samples in the low-level feature
space via the proposed neighbour proximity and eliminate the redundant samples to obtain more informative training set. In
semantic feather space, we propose statistic-based losses to obtain more discriminative features for the classifier.

The proximity evaluates the distances among the samples in
the low-level feature space, and the squeezing method elim-
inates the redundant ones.

To obtain more accurate classification results, we need
more discriminative semantic features. Thus, in the semantic
feature space, we propose the statistic-based losses to pre-
serve the structure of the feature domain and employ the
centers of each class to depict the feature distribution. The
proposed losses diminish the intra-class distances among the
samples and the centers to obtain more compact groups and
enlarge the inter-class distance between groups at the same
time. We elaborate on the proposed method in the following
subsections.

Sample Squeezing

The moment of appearance change is unpredictable, and the
distribution of the training samples is hard to estimate. Most
existing methods assume that around the class center, the
training samples distribute uniformly. Thus they finetune the
network without evaluating the samples. However, the distri-
butions are unbalanced in most cases. As a result, the sample
centers stay close to a large number of similar samples and
are insensitive to appearance changes.

Figure 3: Comparing of two proximities in a toy example.
In Figure a), we evaluate the samples with the Euclid dis-
tance. In Figure b), we evaluate the samples with the neigh-
bor proximity.

A toy example on the 2-dimensional plane is shown in
Figure 3a, where a cluster of samples is the observations
of the target. Sample pairs {x̂t+1

i , x̂t+1
j } and {x̂t+1

h , x̂t+1
k }

are the redundant samples in different position of the clus-
ter. Among the cluster, most samples have a similar appear-
ance to the initial samples and are less informative. We name
these samples global redundant samples. On the other hand,
the rare samples at the edge of the cluster are more valuable
observations. We propose the sample squeezing method to
decide which sample is removed first. It is crucial for pre-
serving valuable observations and enrich the diversity of the
dataset.

Similarity Measurement To estimate the distribution of
the dataset, we evaluate the similarities between the samples
and propose novel proximity.

We denote the target and background training set in frame
t as Tt and Bt respectively, where Tt = {xt

1, x
t
2, · · · , xt

n}
and Bt = {st1, st2, · · · , stk}. Take the target training set
for example, after the tracker predicts the target location in
frame t + 1, we add the newly collected samples of target
{x̂t+1

1 , x̂t+1
2 , · · · , x̂t+1

m } to the Tt, and establish a tempo-
rary target set with m+ n elements, formulated as T̂t+1. In
the following stage, we squeeze a selected redundant subset
Rt+1 with m elements to obtain Tt+1. Before the predic-
tion of next frame, we finetune the network with the Tt+1

and Bt+1.
To select Rt+1, we first evaluate the similarities of sam-

ples in the Euclid space:

dIij = ‖x̂t+1
i − x̂t+1

j ‖22. (1)

The Euclid distance only reflects the similarities between
the two samples and cannot depict the distribution of the
whole dataset. To address this problem, we further evaluate
the transmission distances of a sample to its neighbours, and
introduce a transmit-vector:

ti = (dIi1, d
I
i2, · · · , dIii−1, 0, d

I
ii+1, · · · , dIil). (2)

In the semantic feature space, the transmit-vector reveals the
relative location of a sample in the dataset.

To estimate the similarity between the transmit-vectors of
the training samples, we propose neighbour proximity and
formulate it as:

dIIij = |tji − tij |, (3)
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where tji denotes vector ti with the j-th element set to 0.
As shown in Figure 3a, the Euclid distance is insensi-

tive to the locations of the samples, and shows equal penal-
ties while x̂t+1

i , x̂t+1
h move towards x̂t+1

j , x̂t+1
k respectively.

However, moving from x̂t+1
i to x̂t+1

j decreases more neigh-
bor proximity than moving from x̂t+1

h to x̂t+1
k . Therefore,

the neighbour proximity is more sensitive to the sample lo-
cations and capable of seeking redundancy from a global
perspective.

Squeeze Redundancy With the the neighbor proximities
among samples, we formulate the distance matrix D as:

D =

⎡
⎢⎣

0 dII12 · · · dII1l
dII21 0 · · · dII2l· · · · · · · · · · · ·
dIIl1 dIIl2 · · · 0

⎤
⎥⎦

The non-diagonal element with the smallest value indi-
cates the most similar sample pair. To enrich the diversity of
the training set, we eliminate the older sample in this pair.
We repeat this operation m times until the size of the sample
set equals to n again.

While squeezing the redundant samples from the data set,
the data distribution varies correspondingly. While x̂t+1

j is

eliminated, we update the d
II(k)
ih as:

d
II(k)
ih = d

II(k−1)
ih − |dIij − dIhj |, (4)

here, k denotes the k-th update. Then we delete the jth col-
umn and jth line of D(k).

When the new samples arrive, the distance matrix expands
on the contrary way. Thus, the sample squeezing method
improves the diversity of training set without much time-
consuming.

Statistic-based Losses

In visual tracking, the targets can be arbitrary objects. As
such, the pre-trained deep features are less effective in dis-
tinguishing these targets, as the distribution of the target and
background is also arbitrary in the domain of the deep fea-
ture. To depict the structure of the feature domain, we em-
ploy the centers of the target and background. We denote
the center as c = 1

n

∑n
i=1 xi, and mark the centers of the

target and background as ct and cb respectively. It’s worth
mentioning that in the training process, the centers are dif-
ferentiable and updated with the randomly selected samples
of training batches.

To achieve more discriminative features, we propose a
loss term that favors larger distance between two centers:

Ld(cb, ct) =
1

|cb − ct| . (5)

We name this loss term as inter-class distance loss.
As the tracker is online-trained with sample batches, if we

only increase the inter-class distance, it would tear apart the
clusters. To make the clusters of samples to be compact, we
propose a intra-class variance loss:

Lv(xi, sj , ct, cb) =
1

2m

m∑

i=1

‖xi − ct‖22 +
1

2n

n∑

j=1

‖sj − cb‖22,

(6)
here, xi and sj are the semantic features of a target sample

and a background sample respectively.
The tracking-by-detection framework defines the target

object as a positive class and the background as a negative
class to train a binary classifier. We equip the binary classi-
fication layer with the softmax cross-entropy loss as the pri-
mary loss function. The cross-entropy loss function is pre-
sented as follows:

Lce(p, y) = −(y ∗ log(p) + (1− y)log(1− p)). (7)

Where y ∈ {0, 1} are the class labels, p ∈ [0, 1] denotes the
estimated probability for a class with label y = 1. Mean-
while, we define the probability for a class with label y = 0
as 1− p.

Then we add the inter-class distance and the intra-class
variance losses to the cross-entropy loss with two scaler pa-
rameters λ1 and λ2, and the loss function is formulated as
follows:

L = Lce + λ1Ld + λ2Lv. (8)

During training, the center of target set is updated as:

Δct =
1

n

n∑
i=1

(ct − xi). (9)

With both the statistic-based losses, the online-training
process forces the semantic features to be more compact and
discriminative.

Experiments

In this section, we first present the implementation de-
tails. Then we evaluate our method on two standard bench-
marks: OTB-2015 (Wu, Lim, and Yang 2015) dataset and
UAVDT (Du et al. 2018) dataset. To analyze the effective-
ness of each opponent in our method, we conduct abla-
tion studies from four perspectives: 1) We evaluate our pro-
posed sample squeezing method with three comparing ex-
periments. 2) We assess the improvement coming up with
the statistic-based losses. 3) We value our proposed online
training method with another tracking-by-detection tracker.
4) We visualize the influences of the proposed losses on deep
feature distribution.

Implementation Details

We utilize the same network architecture of MDNet to con-
struct our baseline tracker. MDNet appends three fully con-
nected layers to three trained convolution layers as the clas-
sifier. The network is pre-trained on sequences collected
from VOT datasets (Felsberg et al. 2015), excluding the
videos included in OTB2015. During tracking, the weights
of the first three convolutional layers are fixed to deliver sta-
ble features. Features of the third layer are used to estimate
the global data redundancy, and the statistic-based losses are
added to the fifth layer. We significantly reduce the scale
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Figure 4: Overlap success and distance precision plots using the one-pass evaluation on the OTB-2015 datasets.

Figure 5: Overlap success and distance precision plots on the UAVDT dataset.

of training set: MDNet possesses 3000 online-training sam-
ples; we maintain only 150 samples. The learning rate of
class centers is 2e-2, λ1 is set to 1e-3, and λ2 is set to 1e-2.
We implement our tracker in Python using Pytorch (Paszke,
Gross, and Lerer 2017) library. The implementation runs on
an Intel Core i7-6700 3.4GHz CPU with 12GB of RAM and
a GIGABYTE GTX 1080 Ti GPU with 11GB of VRAM,
and the average speed is 1.0 FPS.

Evaluations on OTB2015

OTB is a popular tracking benchmark that contains 100 fully
annotated videos with substantial variations. The evaluation
is based on two metrics: center location error and bound-
ing box overlap ratio. The one-pass evaluation (OPE) is
employed to compare our algorithm with the eight state-
of-the-art trackers including MDNet (Nam and Han 2015),
ECO (Danelljan et al. 2017), DAT (Pu et al. 2018), Vi-
tal (Song et al. 2018), SiameseFC (Bertinetto et al. 2016),
CFNet (Valmadre et al. 2017b), HDT (Qi et al. 2016) and
KCF (Henriques et al. 2015).

We evaluate the tracking performance on OTB-2015 in
both metrics and show the results in Figure 4. Our tracker
outperforms all of them and shows a remarkable perfor-
mance. Specifically, our method improves the baseline MD-
Net by a large margin, which is not off-line trained on auxil-

iary sequences for a fair comparison. The overall favourable
performance of our tracker can be explained by the fact that
the proposed algorithm strengthens the discriminative power
of the tracker.

Evaluations on UAVDT

UAVDT is a benchmark for 3 foundational visual tasks in-
cluding detection, multi-object-tracking, and single-object-
tracking. The single-object-tracking dataset consists of 50
videos (40k frames) captured by the unmanned aerial ve-
hicle (UAV) platform from complex scenarios. We evaluate
eight state-of-the-art trackers, including MDNet, ECO, DAT,
Vital, SiameseFC, CFNet, HDT, and KCF to compare with
our algorithm.

As shown in Figure 5, our tracker outperforms all of
them and shows a remarkable performance. UAV captures
videos in relatively high altitudes, and the targets tend to be
small. Thus, comparing with the tracking results on the OTB
benchmark, the overlap success and the distance precision
scores dramatically decrease. Our tracker achieves superior
performance.

We show five example sequences in Figure 6. The five se-
quences contain different challenges coming up with UAV
videos. The targets in these sequences are tiny, and the back-
ground is cluttered. It can be seen that the proposed tracker
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Figure 6: Qualitative results of the proposed method on UAVDT sequences. Trackers face five typical UAV challenges: long time
occlusion (first column), unclear vision (second column), cluster background (third column), camera rotation (fourth column)
and similar objects (fifth column).

Table 1: Evaluation results on OTB-2013. The comparing trackers are the baseline tracker MDNet, and the modified baseline
trackers which are equipped with the sample squeezing method and the data augmentation respectively. ED stands for Euclid
Distance, Np stand s for Neighbor Proximity, DA stands for Data Augmentation, while SLoss stans for Statistic-based Loss.
Besides, DP stands for distance precise, and AUC stands for average overlap ratio score.

MDNet MDNet
MDNet MDNet MDNet +SLoss +SLoss

MDNet +ED +NP +DA +NP w/o NP
DP 0.924 0.925 0.933 0.921 0.941 0.935

AUC 0.682 0.680 0.685 0.660 0.702 0.690

is more robust than the other trackers. This phenomenon
demonstrates that our online training can generate more dis-
criminative features.

Ablation Study

In this section, we investigate how the proposed algorithm
improves the tracking performance. We adopt MDNet and
DAT as baseline trackers.

Evaluate Sample Squeezing Method We first evaluate
our proposed neighbour proximity. We equip the squeezing
method with the Euclid distance as a comparing method,
then evaluate the performances of both squeezing ap-
proaches and show the results in Table 1. It can be seen
that the squeezing method with the Euclid distance receives
a performance degradation, due to it squeezes the dataset
without increasing the diversity. As the neighbour proximity
evaluate the dataset distribution from a global perspective, it
enable the squeezing method to eliminate the global redun-
dancy.

In a classification task, data augmentation is a frequently-
used technique to enrich the diversity of limited training
data. Thus, we first compare our proposed sample squeezing
method with the data augmentation technique. We conduct
data augmentation in the initial training. 30% of samples
were randomly selected for the flip, rotation, and blur opera-
tion, and 10% samples were selected for dropout. We report

the evaluation results on OTB-2013 (Wu, Lim, and Yang
2013) in Table 1. It can be seen that the MDNet tracker with
the data augmentation receives a performance degradation.
On the contrary, our sample squeezing method improves the
baseline. Moreover, we achieve improvement with a small
training set. The data augmentation does not simulate the
target changes and introduces noise to the training set. This
phenomenon affirms our method can enrich the diversity of
the training set and is more suitable for visual tracking.

Moreover, we online train a baseline tracker with the
statistic based losses, yet without the squeezing method.
As shown in Table 1, in the metric of AUC, the perfor-
mance of the modified tracker increases 1.17%, comparing
to the performance of baseline. However, it is lower than the
performance of the tracker with both statistic-based losses
and squeezing method. This phenomenon affirms that our
squeezing method efficiently eliminates the redundant sam-
ples, and facilitates the statistic losses to be more sensitive to
the appearance changes. As the proposed squeezing method
efficiently increases the diversity of training data, it can fa-
cilitate the CF-based trackers to establish a more discrimi-
native target representations.

Evaluate Statistic-based Losses Next, we evaluate the
performance of the statistic-based losses and adopt MDNet
with sample squeezing as the baseline tracker. In the experi-
ment, we add the intra-class variance and the inter-class dis-
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tance losses sequentially to the classification loss and report
the tracking performance on the OTB-2013 dataset in Ta-
ble 2. As shown, in overlap ratiometric, the intra-class vari-
ance loss contributes 0.6% improvement to the overall per-
formance, and the inter-class distance loss contributes 1.1%.
Our method achieves the best performance among the com-
paring trackers.

Table 2: Evaluation results on OTB-2013 dataset. We adopt
MDNet with sample squeezing as baseline. IV stands for the
Intra-class Variation loss, and ID is short for the Inter-class
Distance loss.

Baseline Baseline + IV Baseline +
IV + ID(Ours)

DP 0.933 0.939 0.941
AUC 0.685 0.691 0.702

Visualize the Influence of the Statistic-based Losses In
the following experiments, we utilize the t-SNE method
(Der Maaten and Hinton 2008) to visualize the seman-
tics feature space. First, We conduct three online-trainings,
and successively add cross-entropy loss, intra-class variance
loss, and inter-class distance loss to the loss function.

Figure 7: Visualisation of feature distribution in the seman-
tic feature space. (a) depicts the feature distribution while
tracker is trained by the original cross-entropy loss. (b) re-
veals the feature distribution when we add the intra-class
variance to the loss function. (c) shows how the inter-class
distance influences the distribution.

We use the ’Basketball’ sequence in the OTB dataset as a
test sequence, and visualize the feature spaces of the same
training step in Figure 7. As shown in Figure 7a, the tar-
get and background samples remain in a pack while the net-
work is trained without the statistic-based losses. As shown
in Figure 7b, there is an apparent gap between target and
background groups while the network is trained with the
intra-class variance loss. As Shown in Figure 7c, the target
and background samples are further separated by the two
statistic-based losses. Comparing to the features learned by
the softmax cross-entropy loss, the features learned by the
proposed losses are more discriminative, which facilitate the
classifier to be more robust.

Next, we use the ’DragonBaby’ sequence as a test se-
quence to visualize the transformation of the feature space
during online-training. We showed the results in Figure 8. In
different iterations, the intra-class and the inter-class losses
draw the samples progressively. As shown in Figure 8b,
while the inter-class distance is increasing, the background

Figure 8: Visualisation of feature distribution during train-
ing. The red number in each subfigure denotes the training
iteration. Online training is conducted from left to right.

cluster is temporally torn apart, and the intra-class variation
rises correspondingly. After several training iterations, forc-
ing by the intra-class variation loss, the cluster is compact
again. These experiments not just affirm the effectiveness of
proposed statistic-based losses, but also confirm that there is
strong complementarity between the two proposed losses.

Evaluate the Proposed Framework Then, we apply the
improved online-training to DAT to affirm its efficiency. As
evaluated in OTB-2013 and shown in Table 3b, the modi-
fied DAT achieves a slight increase in both metrics. As DAT
trains an attention-aware classifier with sufficient training
data, our compact training set unavoidably degrades the per-
formance.

Table 3: Evaluation results on OTB-2013 dataset. The com-
paring trackers are DAT and DAT equipped with sample
squeezing and statistic-based losses

DAT DAT + sample squeezing
+ statistic-based losses

DP 0.944 0.952
AUC 0.704 0.705

The experiments above confirm the efficiency of our pro-
posed method and show that the squeezing method facil-
itates the statistic-based losses to obtain further improve-
ment. Thus, it is essential for the online-training methods
to maintain the distribution of both the training set and the
semantic feature space.

Conclusions

In this paper, we propose a novel discriminative tracker and
improve tracking performance through online-training. To
avoid tracker overfit to easy samples, we propose a sample
squeezing method to deliver a more compact and informa-
tive online-training set. More specifically, we evaluate the
global redundancy of training set with neighbour proxim-
ity and squeeze redundant samples with an efficient update
model. Moreover, to preserve the structure of classes in se-
mantics feature space, we introduce the class centers to the
objective function. By increasing the inter-class distance and
decreasing the intra-class variances of both classes, we con-
trol the impact of dynamic data distribution and improve the
accuracy of the tracker. Experiments on two datasets demon-
strate state-of-the-art performance. In future work, we will
apply our proposed method to the CF based trackers.
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