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Abstract

In this work, we tackle the problem of estimating 3D human
pose in camera space from a monocular image. First, we pro-
pose to use densely-generated limb depth maps to ease the
learning of body joints depth, which are well aligned with im-
age cues. Then, we design a lifting module from 2D pixel co-
ordinates to 3D camera coordinates which explicitly takes the
depth values as inputs, and is aligned with camera perspective
projection model. We show our method achieves superior per-
formance on large-scale 3D pose datasets Human3.6M and
MPI-INF-3DHP, and sets the new state-of-the-art.

Introduction

In this work, we aim to tackle the problem of estimating 3D
human pose from a monocular RGB image. The problem is
inherently ambiguous, since there could be as many 3D hu-
man poses that have the same projected 2D pose. While be-
ing hard, this task serves as foundation of many applications,
such as surveillance, human action/activity recognition, hu-
man computer/robot interaction, etc.

Existing methods typically fall into two categories. The
first one (Pavlakos et al. 2017) directly estimates 3D co-
ordinates (X,Y, Z) from images, without any intermedi-
ate 2D pose information supervision. The second one esti-
mates 2D pixel coordinates (x, y) in the images first, then
lifts to 3D pose using either learned transformation (Mar-
tinez et al. 2017), ground truth camera parameters (Sun et
al. 2018) or re-scaling (Zhou et al. 2017) by weak perspec-
tive projection assumption. Decoupling the learning process
of 3D pose coordinates (X,Y, Z) into learning the pixel co-
ordinates (x, y) first, then lifting to 3D pose shows better
generalization power. This is due to the relatively maturity
of 2D human pose estimation methods and easily annotated
large-scale 2D human pose datasets (e.g. COCO, MPII). In
contrast, 3D human pose datasets are hard to capture, often
limited in studio environment (Ionescu et al. 2014).

3D coordinates of (X,Y, Z) are not equally observed in
the sense that monocular images only have the projected
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Figure 1: Joint Depth Maps and Limb Depth Maps repre-
sentation for depth values. Both aligned with image loca-
tions. Depth values of points on limbs are interpolated from
joints of the limbs by assuming limbs are rigid parts. For
simplicity, only Joint Depth Maps of left knee and left hip
are shown, and the Limb Depth Map of the limb connecting
left knee and left hip are shown.

(X,Y ) captured. For the depth representation of joints, a
single scalar value is the common learning target among ex-
isting methods (Martinez et al. 2017). However, this repre-
sentation does not explicitly link the depth values to the im-
age locations, which indicates the learning process needs lo-
calizing the joints and estimating the depth values of them
concurrently. Nevertheless, state-of-the-art 2D human pose
estimation methods typically obtain 2D joints locations via
estimating generated heatmaps, which are well aligned with
images. Inspired by this, we choose to predict depth values
in the form of depth value maps which are aligned with im-
ages.

Naively, depth maps could be generated by assigning the
depth values of joints to the corresponding pixel locations,
leaving the value of other non-joint locations zero. We re-
fer this method as Joint Depth Maps. Joint Depth Maps
representation manages to associate depth values with im-
age cues, however it gives too sparse supervision signal
for learning. Further, we propose to composite dense-valued
depth maps by assuming the limbs are rigid and thus inter-
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polating dense values along the limbs. Figure 1 shows an
example of generated Joint Depth Maps and Limb Depth
Maps.

Many methods first obtain the 2D pixel coordinates of
human joints first, then lift to 3D camera coordinates. For
the lifting process, some methods (Sun et al. 2018) uti-
lize ground truth camera parameters, which are not gener-
ally available in the real world applications. Some meth-
ods (Zhou et al. 2017) re-scale the human skeleton using
average skeleton scale by assuming a weak perspective pro-
jection model. However, this assumption does not gener-
ally hold true and would introduce errors which cannot be
corrected since they consider the lifting process as a post-
processing stage and is not modeled in an end-to-end fash-
ion. Others (Martinez et al. 2017) (Pavllo et al. 2019) utilize
fully-connected networks or convolutional neural networks
to modeling the lifting process, often taking the vectorized
2D coordinates or 2D heatmaps as inputs. However, by look-
ing into the perspective projection model, (X,Y ) locations
in camera coordinates converted from (x, y) in pixel coordi-
nates would need camera parameters as well as depth values
of each joint. Existing methods predict (X,Y, Z) values si-
multaneously, which is a nested process. Therefore, we pro-
pose to decouple the process by first explicitly estimating
depth values from images, then predicting (X,Y ) given the
extra depth values information.

In this work, we propose a novel framework for 3D hu-
man pose estimation. The pipeline first estimates 2D pixel
coordinates (x, y) using existing 2D human pose estimation
modules, as well as depth values represented as densely-
generated Limb Depth Maps are predicted. Then a lifting
module is designed for converting pixel coordinates to the
target camera coordinates explicitly given the learned depth
values. Figure 2 shows the pipeline of our method.

We show that our method achieves the new state-of-the-
arts performance on the public available large-scale 3D hu-
man pose dataset Human3.6M (Ionescu et al. 2014) and in-
the-wild MPI-INF-3DHP benchmark (Mehta et al. 2017a)
with a simple pipeline. Our contributions could be summa-
rized as follows.

• We propose a new representation for depth values of hu-
man joints, Limb Depth Maps, to ease the learning. The
maps are generated by densely interpolating depth values
along limbs under the assumption that limbs are rigid.

• We design a lifting module from 2D to 3D pose, which
explicitly takes the depth values as inputs, aligned with
perspective projection model, and show empirically the
advantage of it for the learning process.

• We show that our method significantly outperforms
previous methods on Human3.6M and MPI-INF-3DHP
datasets and show the generalization ability of our method
to in-the-wild images.

Related Works

Human pose estimation has been actively studied in the
computer vision community. We review some recent and rel-
evant works on 2D and 3D pose estimation.

2D pose estimation Given the easily annotated 2D human
pose datasets, 2D human pose estimation has been greatly
improved recently. CPM (Wei et al. 2016) proposes to use
multi-stage convolution networks for refining predictions.
Hourglass (Newell, Yang, and Deng 2016) uses repeated
bottom-up, top-down architectures with intermediate super-
vision for better localizing joints. CPN (Chen et al. 2018)
adapts a cascade pyramid networks to relieve the learning
of ’hard’ keypoints. SimpleBaselines (Xiao, Wu, and Wei
2018) proposes to add a few transposed convolution lay-
ers upon the output of ResNet, achieves state-of-the-art per-
formance while keeping a relatively simple pipeline. HR-
Net (Sun et al. 2019) designs a network which could main-
tain high-resolution representation, leading to superior per-
formance on 2D human pose estimation. We utilize Simple-
Baselines (Xiao, Wu, and Wei 2018) and HRNet (Sun et al.
2019) as the feature extraction networks in this work for the
simplicity and state-of-the-art performance.

3D pose estimation from 2D keypoints A line of works
try to estimate 3D human pose directly from 2D joints coor-
dinates, which implicitly model the human structures. (Mar-
tinez et al. 2017) achieves reasonable performance by di-
rectly predicting 3D coordinates from vectorized 2D coordi-
nates with several fully-connected layers and residual con-
nections. (Chen and Ramanan 2017) builds a library of 3D
poses and find the most similar one that matches the de-
tected 2D coordinates. (Zhao et al. 2019) proposes to uti-
lize Graph Convolutional Networks with semantics to bet-
ter modeling the process of lifting from 2D coordinates to
3D pose. (Pavllo et al. 2019) adds temporal convolution
networks to incorporate multi frames’ information to obtain
temporal-consistent 3D human pose. However, these meth-
ods do not exploit the full image features for the depth esti-
mation, where many rich image cues could be used to alle-
viate the ambiguous nature of 3D human pose estimation.

3D pose estimation from images Many approaches uti-
lize the advance of deep learning methods, such as Convo-
lutional Neural Networks (CNN), to address the 3D pose es-
timation problem. (Li and Chan 2014) models the problem
as direct coordinates regression from images. (Tekin et al.
2016) uses a pose autoencoder to capture human body struc-
ture. (Pavlakos et al. 2017) represents 3D coordinates as
voxels in 3D grids, and predicts a 3D Guassian-like volu-
metric representation in a coarse-to-fine manner. (Zhou et
al. 2017) additional predicts 2D heatmaps, while adding 2D
pose dataset such as MPII to learning process for general-
ization. (Sun et al. 2017) imposes constrains by additional
predicts joint-to-joint (limb) relationships. (Sun et al. 2018)
uses a soft argmax operation to obtain the 2D locations and
the depth values. In this work, we also choose to utilize im-
age cues into the learning process.

(Luo, Chu, and Yuille 2018) generates limb orientation
maps, an extension of 2D Part Affinity Fields (Cao et al.
2017), to obtain the depth value of joints. All points on the
same limb would have the same unit orientation vector in-
dicating the direction of the limb in 3D camera space, and
would need limb length information to recover the absolute
depth of joints. Different from (Luo, Chu, and Yuille 2018),
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we directly learn depth values of points on the limbs, and
during inference, no extra limb scale information is needed.

(Habibie et al. 2019) proposes to embed 3D pose cues
in latent space of the learning process, however there is
no depth supervision to the hidden feature maps. Different
from (Habibie et al. 2019), we propose to explicit give su-
pervisions of depth to make it more meaningful, and show
that it is important to do so for the lifting process to 3D pose.

3D pose estimation with constrains 3D human pose esti-
mation from monocular images is an inherently ambiguous
problem. Many works try to regularize the learning process
with various constrains. (Zhou et al. 2017) imposes geo-
metric constrain on bone length on 2D labeled only data.
(Habibie et al. 2019) adds bone length loss to the predicted
3D pose, and utilizes a 3D to 2D reconstruction module to
regularize the learned 3D pose. (Fang et al. 2018) defines
pose grammar which allows incorporating human body con-
figuration (i.e., kinematics, symmetry, motor coordination).
(Pavlakos, Zhou, and Daniilidis 2018) uses ordinal depth an-
notation of 2D datasets, which is easier to get than 3D pose
annotation, to alleviate the ambiguity of depth. These con-
straints are imposed on either 2D pixel coordinates outputs
or 3D camera coordinates outputs. Our method could bene-
fit in both situation since we have both the 2D pixel and 3D
camera coordinates as outputs.

Method

In this section, first we describe the overall pipeline of our
method. Then we elaborate two major components of the
pipeline. First, we show how our method deals with the
depth representation. Second, we show that explicitly pro-
viding depth values is necessary when converting from 2D
pixel coordinates to 3D camera coordinates.

Overall Framework

The overall pipeline of estimating 3D human joints in cam-
era coordinates from a monocular image is shown in Fig-
ure 2. First, a feature extractor takes in the image and out-
puts a set of feature maps of three kinds, namely the 2D
heatmaps, depth maps and hidden feature maps. For the
2D heatmaps and depth maps, we impose supervision using
ground truths. The hidden feature maps are used to capture
extra information besides 2D locations and depth values of
body joints, such as image features. Then a 3D lifting mod-
ule takes in all the feature maps and outputs the 3D pose
(X, Y, Z) in camera coordinates. The major difference of our
lifting module to previous ones is that ours explicitly takes
the depth values of joints as inputs for outputting X, Y in
camera coordinates.

The framework could have the advantage of introducing
large-scale 2D annotated-only data, which shows to have
generalization ability for in-the-wild images. It also explic-
itly give intermediate supervision to depth values, which will
be shown important for the lifting process in Eq. 6. The
whole framework is trained end-to-end to output the cam-
era coordinates of human joints. When inference, no ground
truth camera parameters or limb/skeleton scale information

is needed as in previous methods (Sun et al. 2018) (Zhou et
al. 2017).

Many additional constrains are adapted in previous works,
such as bone length (Zhou et al. 2017), symmetry or 3D to
2D reconstruction consistency (Habibie et al. 2019), tem-
poral consistency (Pavllo et al. 2019). We do not add them
in this work to better analyze the major components of our
method and keep it a simple pipeline. Nevertheless, these
techniques could be easily added upon our pipeline, which
should further improve the performance.

Depth Representation

We discuss three possible representation for depth values.
Given the 3D human joints locations J = {Ji}Ki=1 in cam-
era coordinates, where K is the number of joints, and the
corresponding 2D locations S = {Si}Ki=1 in pixel coordi-
nates.

Direct Scalar One naive way of getting depth values is
through direct regression. Many previous works (Martinez
et al. 2017) (Pavllo et al. 2019) use fully-connected layers
or convolutional layers to obtain a vectorized representation
for each joint, and a single scalar value for the depth dimen-
sion. It is used in methods in the category of lifting from
images and lifting from 2D pixel coordinates. However, di-
rect regression does not align depth values with images cues,
which makes it of less generalization power, e.g. not scale
invariant.

Joint Depth Maps Depth values for each joint could be
linked with pixel coordinates by assigning the depth values
of joints to corresponding pixel locations, resulting maps
of depth values. Specifically, joint depth maps DJoint =
{DJoint

k }Kk=1, at an image point p = (x, y), are defined as
the following formula:

DJoint
k (p) =

{
Zk if (xk, yk) = (x, y)

0 otherwise
, (1)

where (xk, yk) is the corresponding pixel location of joint
k, Zk is the depth value for joint k. In total, K joint depth
maps are generated, one for each joint. Figure 1 shows an
example of Joint Depth Maps.

Limb Depth Maps Joint depth maps associate depth val-
ues with image locations. However, it is too sparse as super-
vision signal, since for each joint depth map, there is at most
one pixel location that has non-zero value. Take a step fur-
ther, we propose to generate depth maps in a dense manner.

Typically, the depth values for two points in pixel coordi-
nates are irrelevant with respect to the relationship of their
locations. By assuming human body limbs as rigid parts, we
could obtain coarse depth values of the points along limbs
by interpolation. More specifically, given the 3D locations
Jk1

= (Xk1
, Yk1

, Zk1
), Jk2

= (Xk2
, Yk2

, Zk2
) of joints k1,

k2 belong to a limb Lk1,k2
, and the corresponding 2D pixel

coordinates Sk1 = (xk1 , yk1), Sk2 = (xk2 , yk2), for an im-
age point p, the depth value of it is defined as

DLimb
l (p) =

{
u·v̂
v ΔZk1,k2

+ Zk1
if p on limb Lk1,k2

0 otherwise
(2)
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Figure 2: Overall pipeline of the proposed method. 2D heatmaps, Limb Depth Maps are first generated and supervised, along
with hidden features. Then the 3D Lifting module takes 2D heatmaps, Limb depth maps, as well as hidden feature maps as
inputs, and outputs the predicted 3D pose. State-of-the-art 2D pose estimation networks are adapted as 2D and Depth Regression
Module. 3D Lifting Module consists of a sequence of convolutional layers, followed by an average pooling layer and the final
linear layer for outputs.

where u = p − pk1
is vector from pk1

to point p, v =
pk2

− pk1
is the vector from point pk1

to pk2
, and v̂ =

v/‖v‖2 is the unit vector, ΔZk1,k2
= Zk2

− Zk1
is depth

value difference of joints k1, k2. A point is defined as on
the limb when its distance to the limb is within a certain
threshold. DLimb = {DLimb

l }Ll=1 is the Limb Depth Maps
for in total L limbs. Figure 1 shows an example of Limb
Depth Map. We generate depth maps for each limb, which
could avoid conflicts when joints or limbs are overlapping
to each other. Densely-generated depth maps provide dense
supervisions which are aligned with image cues. In some
bad poses (e.g. occluded), the depth value of joints might
not be easily inferred, while other points on the limb might
be in good shape to infer with, and then propagate through
the limb. Note that for the generated depth maps, the depth
values of areas that do not belong to any limbs are actually
unknown. Here we define their values as zero, and we ignore
losses in these areas during training.

Explicit Depth Values for 3D Pose Estimation

In this section, we describe why and how depth values are
explicitly used in the lifting process from 2D pixel coordi-
nates to 3D camera coordinates.

Camera projection model First we review how points in
camera coordinates are projected to pixel coordinates. For
any point (X,Y, Z) in camera coordinates, the correspond-
ing pixel coordinates (x, y) could be obtained using camera
parameters by assuming a perspective projection model:

[x, y, 1]ᵀ = K[X,Y, Z, 1]ᵀ/Zc, (3)

K =

[
αx 0 px
0 αy py
0 0 1

]
, (4)

where K is the camera calibration matrix, αx, αy , px, py are
camera parameters.

Inversely, the camera coordinates (X,Y ) could be com-
puted as [

X
Y

]
=

[
(x− px)Z/αx

(y − py)Z/αy

]
. (5)

Explicit depth value for 2D to 3D conversion We con-
sider the lifting process of converting 2D joints from pixel
coordinates to 3D coordinates in camera space. As we could
see from Eq. 5, converting pixel coordinates to camera co-
ordinates for X and Y axes would need the value of Z axis
(depth) first. Previous methods typically estimate (X,Y, Z)
simultaneously, which makes the learning process nested.
Thus, we propose to estimate depth values for each joint
first, as well as the 2D pixel coordinates. Then lifting to 3D
camera coordinates via learned transformation taking into
account both the 2D pixel coordinates and depth values. The
transformation process could be modeled as

J = f(g(S), h(Z), N(I)), (6)
where J = {Ji}Ki=1 is the camera coordinates of human
joints, S = {Si}Ki=1 is the pixel coordinates of joints, g(S)
is function of 2D pixel coordinates, e.g. g(Sk) = H(Sk)
is 2D heatmap function. h(Z) is function of depth values
of joints, e.g. h(Z) = D is the depth maps function. N(I)
is function of images, which indicates the hidden feature
maps of feature extraction networks, other than 2D heatmaps
and depth maps. f represents the lifting module, a general
transformation function, which could be modeled as fully-
connected layers or convolutional neural networks with non-
linear activations.

Lifting module from 2D to 3D The lifting function f in
Eq. 6 could be modeled as various networks. In this work,
we instantiate f as convolutional neural networks. More
specifically, the module takes into previous feature maps
containing 2D heatmaps and depth maps, as well as the rest
hidden feature maps. Three convolutional layers of kernel
size 3 x 3, stride 2 are used to downsample the resolution.
Then one residual block (He et al. 2016) is used to upsam-
ple the channel dimension. A sequence of five bottleneck
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blocks (He et al. 2016) are used to increase the receptive
fields, then an average pooling and the final fully-connected
layer are used to output the targets. We choose to use convo-
lutional layers instead of fully-connected layers in (Martinez
et al. 2017) for fewer parameters and higher speed.

Experiments

We evaluate our method and perform ablation study on the
large-scale Human3.6M dataset (Ionescu et al. 2014), and
show generalization ability on the in-the-wild MPI-INF-
3DHP benchmark (Mehta et al. 2017a) and 2D MPII (An-
driluka et al. 2014) test set. We solve the problem of estima-
tion 3D pose in the camera space, more specifically, pevis-
centered camera coordinates.

Datasets and evaluation metrics

Human3.6M is currently the largest 3D human pose bench-
mark, which contains 3.6 million video frames for in total 11
subjects. Accurate 3D annotations are provided, as well as
the camera parameters. Following previous works, we split
the dataset into training set of five subjects (S1, S2, S3, S4,
S5) and test set of two subjects (S9, S11). Every 5 frames of
the training set are used for training, while we test on every
64 frames of test set following (Sun et al. 2018).

We consider the evaluation metrics mean per-joint posi-
tion error (MPJPE), and also reports the error after rigid
alignment, denoted as P-MPJPE. Specially, we use two ad-
ditional evaluation metrics in our ablation study to better an-
alyze the behavior, which are denoted as MPJPE (X, Y) and
MPJPE (Z), considering (X, Y) axes and Z axes separately.
For one frame, the error metrics are calculated as follows.

MPJPE =
1

K

K∑
k=1

‖(Xk, Yk, Zk)pred − (Xk, Yk, Zk)gt‖2

MPJPE (X, Y) =
1

K

K∑
k=1

‖(Xk, Yk)pred − (Xk, Yk)gt‖2

MPJPE (Z) =
1

K

K∑
k=1

‖(Zk)pred − (Zk)gt‖2

K is the number of joints, Xk, Yk, Zk is the camera coordi-
nates of joint k. For a set of frames, the error is the average
over MPJPE of all frames.

MPI-INF-3DHP dataset (Mehta et al. 2017a) is a recently
released 3D human pose dataset, which contains in the wild
images with general backgrounds, both indoors and out-
doors. It is captured with marker-less motion capture, al-
lowing for wearing everyday apparel. It has 8 subjects per-
forming 8 activity sets, covering more pose classes than Hu-
man3.6m (Mehta et al. 2017a). We use the original images
and do not add augmented ones used in (Mehta et al. 2017a).
The percentage of correct 3D Keypoints (3D PCK) and the
Area under curve (AUC) as in (Mehta et al. 2017a) are used
as evaluation metrics for this benchmark.

Implementation details

2D pose estimation module We use two state-of-the-art
2D human pose estimation modules as the feature extractor
networks for our methods. SimpleBaselines (Xiao, Wu, and
Wei 2018) and HRNet (Sun et al. 2019) are used. We con-
ducted ablation study using SimpleBaselines with ResNet-
50 as backbone, and report final results using HRNet-W32.

Training details We train all the methods for 20 epochs
using Adam optimizer, with of initial learning rate of 0.001,
and decreases 10 times at the 15th, 17th epochs. Rotation,
synthetic occlusion (Sárándi et al. 2018) and Photo metric
distortion are used as data augmentation. The input size of
images is 256 x 256. The training targets are the pelvis-
centered camera coordinates of human joints. Our methods
could benefit from the large-scale 2D datasets, we choose to
add MPII dataset into the training set. For methods trained
with both the 3D datasets (Human3.6m or MPI-INF-3DHP)
and 2D MPII dataset, the sampling ratio for the two sources
is 1:1. Only 2D heatmaps loss is added when training on 2D
annotated datasets.

Ablation study

In this section, we study various components of our methods
and show the effectiveness of the proposed depth maps rep-
resentation and the lifting module with explicit depth values.

Target types Joint Depth Maps Limb Depth Maps

MPJPE (Z) 37.9 36.3↓1.6
MPJPE 50.2 49.3↓0.9
P-MPJPE 41.0 39.3↓1.7

Table 1: Error on Human3.6M test set using Joint Depth
Maps or Limb Depth Maps as regression targets. Error met-
rics MPJPE (Z), MPJPE and P-MPJPE are shown in table,
the lower the better. Method trained with Limb Depth Maps
shows lower error on the depth dimension MPJPE (Z), and
is overall better than method using Joint Depth Maps.

Effectiveness of depth map We show that our densely-
generated limb depth maps helps the learning of the Z val-
ues. For estimating depth values, we experimented with joint
depth maps and the limb depth maps representation as de-
scribed in Eq. 1 and Eq. 2. We only change the depth maps
supervision targets in the pipeline, while keeping others the
same to study the difference.

To better analyze the learning process of depth values
alone, we decouple the learning of (X, Y) and Z by recover-
ing (X, Y) using estimated (x, y) from learned 2D heatmaps
and camera parameters, reducing the possible influence of
depth values when estimating (X, Y). Table 1 shows the
results on Human3.6m validation set. Method using limb
depth maps as target has 0.9 mm MPJPE and 1.7 mm P-
MPJPE lower error that method using joint depth maps. Spe-
cially, limb depth maps method has 1.6 mm MPJPE (Z)
lower error that using joint depth maps, which shows the
effectiveness of our proposed densely-generated limb depth
maps for inferring the depth values. The improvement could
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come from densely supervision signal compared to joint
depth maps which only have one non-zero value per joint
depth map. It could also benefit from situations that joints
are in bad cases (e.g. occluded) that other points on the limb
have better (image) clues to infer the depth values.

Method (a) (b) (c)

2D Heatmaps � �
Limb Depth Maps �
MPJPE (X, Y) 30.1 27.7↓2.4 25.9↓4.2

MPJPE (Z) 37.5 37.9↑0.4 36.3↓1.2

MPJPE 52.9 51.7↓1.2 48.8↓4.1

Table 2: Error on Human3.6M test set for methods w/o 2D
heatmaps or limb depth maps loss as supervision. Best re-
sults are shown in bold. The relative gains (drops) are com-
pared to the baseline are shown in the subscript. The lower
the better for MPJPE metrics. Adding limb depth maps as
supervision clearly outperforms other methods and shows
much lower error for (X, Y) axes.

Effectiveness of explicit depth for 3D pose estimation
We show that explicitly introducing depth values contributes
positively for 3D lifting process from 2D pixel coordinates.
We conducted experiments by taking out the 2D heatmaps
regression or limb depth maps regression components. More
specifically, we choose to add or not 2D heatmaps loss or
limb depth maps loss to the input of the lifting module, while
keeping other the same. To better analyze the learning pro-
cess, we additionally report the evaluation metric MPJPE
(X, Y) and MPJPE (Z), which consider the error for (X, Y)
axes and Z separately. The results are shown in Table 2.

Method (a) shows the performance of baseline direct
regression method without any intermediate supervision.
Method (b) adds 2D heatmaps regression supervision to the
intermediate feature maps. By adding 2D heatmaps supervi-
sion, Method (b) outperform method (a) by 2.4 mm MPJPE
(X, Y), which benefits from better localization of 2D joints.
Method (c) is our proposed one, which takes both 2D pixel
coordinates and depth values for consideration by adding 2D
heatmaps and limb depth maps supervision to the interme-
diate feature maps. We could see that method (c) has 4.2
mm lower MPJPE (X, Y) error than method (a), and 1.8 mm
lower MPJPE (X, Y) than method (b). Method (c) has 4.2
mm lower error in the X and Y axes, while 1.2 mm in the
Z axis, compared to method (a). The major improvement of
method (c) compared to others comes from more accurate
localization of X, Y axes. This shows the effectiveness of
explicitly introducing depth values into the learning process
of (X, Y), which coincides with Eq. 6.

Comparison with state-of-the-art methods

We compare our method with current state-of-the-art meth-
ods. Results are shown in Table 3a and Table 3b. We could
see that our method outperforms previous ones by a large
margin under all settings. Equipped with 2D MPII dataset,
and HRNet-W32 as feature extraction network, our method

achieves the best result of 44.6 mm MPJPE, 36.3 mm P-
MPJPE, which sets the new state-of-the-art performance.
Note that the pipeline of our method is relatively simple
compared to many previous state-of-the-art ones. Bone con-
strains (Zhou et al. 2017), 3D to 2D reconstructions (Habi-
bie et al. 2019) and are used in (Habibie et al. 2019), our
method is able to outperform it by a large margin. Also,
our method manages to achieve on better performance than
multi frame method (Pavllo et al. 2019), which utilizes tem-
poral convolution and has a receptive field of 243 frames,
while ours only look at single frame. Our method can eas-
ily plug into these techniques, which could further improve
upon our methods.

Evaluation on MPI-INF-3DHP

We also test our method on MPI-INF-3DHP bench-
mark (Mehta et al. 2017a), which has more in-the-wild el-
ements compared to Human3.6M. Following previous The
results are shown in Table 4. We could see that our method
achieves the new state-of-the-art performance under any
evaluation metrics, which shows our method could gener-
alize to in-the-wild situations. Our method is able to out-
perform (Habibie et al. 2019) by 1.9 3DPCK and 4.9 AUC,
which is trained on the hybrid of MPI-INF-3DHP, Hu-
man3.6M 3D datasets, MPII and LSP 2D datasets, while
ours is trained on MPI-INF-3DHP train set alone.

Visualization results on in-the-wild images

We test our method on in-the-wild images, where the 3D
ground truth labels are not available. Figure 3 shows some
visualization results on MPII test set. We could see that our
method is able to produce reasonable 3D pose results on
these images, where the backgrounds are much more com-
plicated than current available 3D pose datasets. This indi-
cates our method generalizes well for in the wild situations.

Figure 3: Visualization results of our method on MPII
test set. Left: images. Right: our 3D pose predictions. Our
method generalizes well on 2D in-the-wild datasets, even
the 3D ground truth labels are not available.

Conclusion

In this work, we propose a framework for 3D human pose
estimation by tackling the depth values representation and
the lifting process from pixel coordinates to camera coor-
dinates. We show the effectiveness of our proposed depth
representation and lifting process. Our proposed framework
achieves the state-of-the-art performance on two large-scale
3D human pose datasets, while keeping a clean pipeline.
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Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

(Pavlakos et al. 2017) 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
(Tekin et al. 2017) 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107.3 69.3 70.3 74.3 51.8 63.2 69.7
(Habibie et al. 2019) 54.0 65.1 58.5 62.9 67.9 75.0 54.0 60.6 82.7 98.2 63.3 61.2 66.9 50.0 56.5 65.7
(Martinez et al. 2017) 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
(Sun et al. 2017) 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1
(Fang et al. 2018) 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
(Pavlakos, Zhou, and Daniilidis 2018) 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
(Yang et al. 2018) 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
(Luvizon, Picard, and Tabia 2018) 49.2 51.6 47.6 50.5 51.8 60.3 48.5 51.7 61.5 70.9 53.7 48.9 57.9 44.4 48.9 53.2
(Pavllo et al. 2019) (single-frame) 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8
(Lee, Lee, and Lee 2018) (†) 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8
(Rayat Imtiaz Hossain and Little 2018) (†) 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3
(Pavllo et al. 2019) (243 frames)(†) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Ours (ResNet-50) 36.9 43.9 39.5 60.4 45.3 51.6 38.1 41.9 54.1 79.9 44.4 57.6 45.2 32.2 36.5 47.3
Ours (HRNet-W32) 34.9 40.8 37.5 47.2 41.5 46.6 35.9 39.5 52.6 72.5 42.3 45.8 42.0 31.6 33.8 43.2

(a) Reconstruction error (MPJPE).
Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg

(Habibie et al. 2019) 43.7 46.9 45.4 48.0 50.2 40.6 41.6 60.7 75.6 48.8 54.9 46.8 47.5 36.9 43.9 49.2
(Martinez et al. 2017) 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
(Sun et al. 2017) 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3
(Fang et al. 2018) 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
(Pavlakos, Zhou, and Daniilidis 2018) 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8
(Yang et al. 2018) 26.9 30.9 36.3 39.9 43.9 47.4 28.8 29.4 36.9 58.4 41.5 30.5 29.5 42.5 32.2 37.7
(Pavllo et al. 2019) (single-frame) 36.0 38.7 38.0 41.7 40.1 45.9 37.1 35.4 46.8 53.4 41.4 36.9 43.1 30.3 34.8 40.0
(Rayat Imtiaz Hossain and Little 2018) (†) 35.7 39.3 44.6 43.0 47.2 54.0 38.3 37.5 51.6 61.3 46.5 41.4 47.3 34.2 39.4 44.1
(Pavllo et al. 2019) (243 frames) (†) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5
Ours (ResNet-50) 32.1 36.2 33.9 41.2 37.4 40.6 30.7 33.4 45.0 55.0 37.4 38.8 36.8 25.7 30.6 37.3
Ours (HRNet-W32) 29.9 33.6 31.4 37.1 33.9 36.8 28.4 30.7 42.6 52.2 35.3 35.2 34.0 24.9 27.9 34.6

(b) Reconstruction error after rigid alignment with the ground truth (P-MPJPE).

Table 3: Reconstruction error on Human3.6M. (†) indicates use of multi-frame temporal information. Lower is better, best in
bold. Some results borrowed from (Pavllo et al. 2019). Our methods outperform all single-frame methods, as well as multi-
frame methods.

Method 3DPCK AUC
(Mehta et al. 2017a) 76.5 40.8
(Mehta et al. 2017b) 76.6 40.4
(Rogez, Weinzaepfel, and Schmid 2017) 59.6 27.6
(Zhou et al. 2017) 69.2 32.5
(Mehta et al. 2018) 75.2 37.8
(Luo, Chu, and Yuille 2018) 81.8 45.2
(Kanazawa et al. 2018) 77.1 40.7
(Yang et al. 2018) 69.0 32.0
(Wandt and Rosenhahn 2019) 82.5 58.5
(Habibie et al. 2019) 91.3 57.5

Ours 93.2 62.4

Table 4: Results for the MPI-INF-3DHP test set. A higher
value is better for 3D PCK and AUC. The best results are
marked in bold. Some results borrowed from (Wandt and
Rosenhahn 2019). Ours are trained on MPI-INF-3DHP only.
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