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Abstract

Online hashing methods are efficient in learning the hash
functions from the streaming data. However, when the hash
functions change, the binary codes for the database have to
be recomputed to guarantee the retrieval accuracy. Recom-
puting the binary codes by accumulating the whole database
brings a timeliness challenge to the online retrieval process.
In this paper, we propose a novel online hashing framework
to update the binary codes efficiently without accumulating
the whole database. In our framework, the hash functions are
fixed and the projection functions are introduced to learn on-
line from the streaming data. Therefore, inefficient updating
of the binary codes by accumulating the whole database can
be transformed to efficient updating of the binary codes by
projecting the binary codes into another binary space. The
queries and the binary code database are projected asymmet-
rically to further improve the retrieval accuracy. The exper-
iments on two multi-label image databases demonstrate the
effectiveness and the efficiency of our method for multi-label
image retrieval.

Introduction

With the explosive growth of the image data, finding the
nearest neighbors to a query becomes a fundamental re-
search problem in many computer vision applications (Wang
et al. 2018). Due to the efficiency in terms of space and
time, hashing methods are widely used for nearest neigh-
bor search, where the high-dimensional data are mapped to
the binary codes (Lu, Liong, and Zhou 2017; Wang, Kumar,
and Chang 2012; Liu et al. 2017).

The hashing methods (Ghasedi Dizaji et al. 2018; Wang
et al. 2018; He, Wang, and Cheng 2019) have achieved the
promising performance. By learning the hash functions ac-
cording to the data distribution and the label information, the
hashing methods can map the high-dimensional data to the
compact binary codes, and the similarity between the data
can be preserved by the Hamming distance between the bi-
nary codes. However, these methods are batch-based hash-
ing methods, which need to load the whole database into
RAM to learn the hash functions. Due to the limited mem-
ory space, the deep hashing methods (Li et al. 2019; Song
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et al. 2018) adopt minibatch-based stochastic optimization
which requires multiple passes over a given database to learn
the hash functions. However, they still have poor scalability
for the large-scale application. Since the image data keep
growing in the real application, to adapt to the change of the
data, the hash functions need to be re-trained by accumu-
lating the whole database when new data appear, which is
time-consuming.

Online hashing methods (Cakir and Sclaroff 2015; Cakir,
Bargal, and Sclaroff 2017; Cakir et al. 2017; Huang, Yang,
and Zheng 2018; Lin et al. 2018; 2019; Xie, Shen, and Zhu
2016; Xie et al. 2017) are recently proposed to employ on-
line learning techniques on the streaming data. By learning
the hash functions from the streaming data, online hashing
methods can adapt to the data variations with low compu-
tational complexity. According to their application scenar-
ios, the online hashing methods can be categorized as single
image modality retrieval (Cakir, Bargal, and Sclaroff 2017,
Cakir et al. 2017; Lin et al. 2019) and cross-modal re-
trieval (Xie, Shen, and Zhu 2016). In this paper, we focus
on the single image modality retrieval.

Online Sketch Hashing (OSH) (Leng et al. 2015) main-
tains a data sketch to preserve the properties of the streaming
data and learns the hash functions from the data sketch. But
it is an online unsupervised hashing method which cannot
use the label information to improve the retrieval accuracy.
To take advantage of the label information, following the
Passive-Aggressive algorithm (Crammer et al. 2006), On-
line Kernel-based Hashing (OKH) (Huang, Yang, and Zheng
2018) defines a structured similarity loss function and up-
dates the hash functions according to the loss function when
receiving a new pair of the data and their similarity label.
Mutual Information Hashing (MIH) (Cakir et al. 2017) uses
the mutual information as the objective function and up-
dates the hash functions according to the objective function
with each incoming data point and its corresponding class
label. Online Supervised Hashing (OSupH) (Cakir, Bargal,
and Sclaroff 2017) generates error correcting output codes
according to the label information and uses these codes
to guide the learning process of the hash functions from
the streaming data. Balanced Similarity for Online Discrete
Hashing (BSODH) (Lin et al. 2019) preserves the correla-
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Figure 1: Comparison between the online hashing framework that updates hash functions and the proposed online hashing
framework that updates projection functions. The blue box shows the online function updating and the red box shows the online
query processing. (a) The online hashing framework updates the hash functions from the streaming data. (b) The proposed
framework fixes the hash functions and updates the projection functions from the streaming data.

tion between the streaming data and the existing database
via an asymmetric graph regularization and updates the hash
functions with this correlation.

Although some progress has been made, the online hash-
ing methods discussed above simply focus on modeling the
hash functions to be updated efficiently. They ignore the
problem that the binary codes for the indexed data have
to be updated to guarantee the retrieval accuracy whenever
the hash functions change, and updating the binary codes
frequently by accumulating the ever-increasing database in-
evitably blocks the timeliness of the online retrieval process.
Though the previous work, e.g., MIH (Cakir et al. 2017)
tries to solve this problem by introducing a trigger update
module to reduce the frequency of recomputing the binary
codes. However, the calculation in the trigger update module
is time-consuming. Cross-Modal Hashing (OCMH) (Xie,
Shen, and Zhu 2016) also detects the inefficiency of ac-
cumulating the whole database to update the binary codes
and improves the updating efficiency by representing the
binary codes with the permanent latent sharing codes and
the dynamic transfer matrix. But this method is designed for
the cross-modal retrieval application, and cannot be directly
used for single image modality retrieval.

In this paper, we propose a novel online hashing frame-
work to update the binary codes without accumulating the
whole database. Different from the above online hashing
methods that learn the hash functions from the streaming
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data, in our framework, the hash functions are fixed and the
projection functions are introduced to learn from the stream-
ing data. Hence, inefficient updating of the binary codes by
accumulating the whole database can be transformed to ef-
ficient updating of the binary codes by projecting the bi-
nary codes into another binary space. The comparison of
our framework against the current online hashing methods
is shown in Fig. 1. For the current online hashing methods,
they update the hash functions from the streaming data. In
contrast, in our framework, the hash functions are fixed, and
the projection functions are updated from the streaming data.

To sum up, our contribution in this paper is three fold:

e By introducing the projection functions, a novel online
hashing framework is proposed to update the binary codes
without accumulating the whole database.

e Different from most online hashing methods using the
single-label information to learn the hash functions, our
framework takes advantage of the multi-label information
to learn the projection functions.

e To further improve the retrieval accuracy, the projection
functions for the queries and the binary code database are
learnt in an asymmetric way.



Online Hashing with Efficient Updating
Hash Function

Given a set of image features X = {xi,...,xx}, where
x; € RP and D is the dimensionality of the feature vec-
tor, hashing methods aim to map x; to a K-bit binary code
h; € {—1,1}. For a pair of data points x; and x;, the
hamming distance between them is calculated as

Su(xi,x;) =h; ® hy, (1

where ® is an xor operation.

Following (Cakir et al. 2017; Lin et al. 2019), we adopt
the linear projection-based hash functions. To encode a
given data point into a K-bit binary code, the hash function
is defined as

h; = sgn(W7x; + b), )

where W € RP*K s a projection matrix and b € R¥ is a
threshold vector.

Different from other online hashing methods that update
the projection matrix W, in our method, we fix W and learn
the projection functions to map the generated binary code
h; into another binary space, which will be elaborated in the
next subsection.

We use Iterative Quantization (PCA-ITQ) (Gong et al.
2013) to learn W. PCA-ITQ is an unsupervised hashing
method which can preserve the similarity between data ef-
fectively for both the seen and the unseen data. By set-
ting the k'" threshold value by, of b as the negative mean
of the data on the k' dimension and learning a projec-
tion matrix W, PCA-ITQ can minimize the quantization
error between the projected data and the corresponding bi-
nary codes. PCA-ITQ is traditionally a batch-based hashing
method. Nevertheless, recent advance (Li, Liu, and Huang
2018) shows that this hashing method can preserve the data
similarity well by just using a few data points as the training
data for learning the hash functions. Hence, we adopt PCA-
ITQ to learn the hash functions in the initial stage. Follow-
ing (Huang, Yang, and Zheng 2018), we assume that at least
m data points have been provided in the initial stage, and the
hash functions are learnt according to these data points.

Projection Function

Assume a stochastic environment in which data x come se-
quentially along with the class label y € Y, where Y is the
label space. For a pair of data points x; and x;, their cor-
responding binary codes are h; and h;, respectively. In our
method, as the hash functions are fixed, to use the label in-
formation, each binary code h is mapped to another binary
code g € {—1,1}, which is defined as

g =sgn(P"h), 3)

where P € RE*X ig a projection matrix.
Hence, the similarity between the data in our method is
calculated as

S(xi,x;5) = sgn(PTh;) ® sgn(PThj) =g ®g;. @

Inspired by OKH (Huang, Yang, and Zheng 2018) and
OSupH (Cakir, Bargal, and Sclaroff 2017) which generate
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the ideal binary code according to the supervised informa-
tion to guide the updating of the hash functions, we generate
the ideal binary code according to the class label y to guide
the updating of the projection functions.

Different from OKH and OSupH that consider about the
single-label situation, our method considers about the multi-
label situation, and generates the ideal binary code that con-
tains the multi-label information. In the label space of C'
classes, we use one-hot coding, and thus ¥ = {yly €
{0,1}¢} where the i*" entry is 1 if the data point belongs
to the 7" class. It has been proved in (Ding et al. 2018) that
Locality Sensitive Hashing (LSH) (Andoni and Indyk 2006)
can preserve the semantic similarity among label-based rep-
resentation. If two labels are similar, the collision probability
of the corresponding binary codes is greater than 0.5. Other-
wise, the collision probability is less than 0.5. Hence, for a
given data point x; and its label y;, the ideal binary code g
is

g =Ly, ©)
where L € RE*¥ is a random matrix of which each column
is sampled from the normal Gaussian distribution A(0, I).

The projection matrix P € RX>*X is composed of pro-
jection vectors [p1, ..., x| and each vector corresponds to
one bit of the ideal binary code. Different from other on-
line hashing methods (Cakir and Sclaroff 2015; Cakir et al.
2017) that treat the bits collectively, we treat the bits inde-
pendently. The value of each bitis 1 or -1, and the projection
vectors are learnt independently.

Inspired by (Crammer et al. 2006), we update the projec-
tion vectors from the streaming data in a Passive-Aggressive
(PA) way. For notational simplicity, we use p to denote the
kth vector py as each projection vector is learnt indepen-
dently, and g to denote the corresponding bit of the ideal
binary code g* for the label y; of the i*" data point x;. The
loss function for each coming data point x; is defined as

1—g;(pTh;) otherwise,

where h; is the corresponding binary code of x;.

For brevity, we use I; to denote the loss (g, h;) for the
ith data point. At first, p is initialized with a random value.
Then, for each round 7, we solve the following convex prob-
lem with soft margin:

gt ) — { ©)

p; = arg min %Hp*pi—1||2+cf (7)
st. ; <&and & >0,
where ||-|| is the Euclidean norm and C'is the aggressiveness
parameter that controls the trade-off between maintaining p
close to the previous parameter p;—; and minimizing the
loss on the current loss /;.

When [; = 0, p; = p;—1 satisfies Eqn.(7) directly. Other-
wise, we define the Lagrangian as:

L(p,7,\€)

%HP —pi1|]*+ C¢
+7(1-¢—g;(pThy)) — A,

with 7 > 0 and A > 0 are Lagrange multipliers.

®)



Let 2108 _ () We have

op
SLBZAS) —p—piy —7gihi = 0. (9)
Let %g’/\’&) = 0. We have
OLRIAL) — ¢ — 7 — A =0. (10)
AsA>0,7<C.
Plugging Eqn.(9) and (10) back in Eqn.(8), we obtain
L(r) = —57(g7)*[Ihil|* + 7(1 = g; (p{_1hy)).  (1D)

As g7 € {1,—-1}, (97)? = L. As h; € {-1,1}%,
||hi||2 = K.Let 227 — 0. We have

ar
S 1—97*‘;1:{‘721111') _ 1—9?(;)(111111')' (12)
Hence, the optimal p is
pP: = Pi—1 +79;h;, (13)
where
- — min{c, L9 P (14)

K
Hence, when given a query q, the similarity between the
query and the binary code is calculated as

S(q,x;) = sgn(PThq) ® sgn(PThZ-) =g, g, (15

where h, is the corresponding binary code of the query q.

Loss Bound

Based on the Lemma 1 in (Crammer et al. 2006), we can
obtain the following theorem.

Theorem 1 Let (hy, g7), - -,(h;, g7) be a sequence of
pair-wise examples with label g7 € {—1,1} for all 7. As
before, Eqn.(6) denotes by I; = I(p; (h;, g})) the instanta-
neous loss suffered by our method on round :. Let u be an
arbitrary vector that u € R¥, and define I} = I(u; (h;, g}))
as the loss suffered by u. Then, for any vector u € R¥, the
number of prediction mistakes made by our method on this
sequence of examples is bounded by

max{K,1/C}H(|[ul]> +2C > I7).

i=1

(16)

Proof According to Eqn.(6), if our method makes a pre-
diction mistake on round ¢ then [; > 1. Therefore, according
to Eqn.(14), we have

min{1/K,C} < 7;l;. 17

Let M be the number of prediction mistakes made on the

entire sequence. We have,

t

min{1/K,C}M <Y 7il;. (18)

i=1

According to Eqn.(12), we know that
7il |l [* < 1, (19)
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and
Tl < CIY. (20)

According to Lemma 1 in (Crammer et al. 2006), we

have
t

D 72l — 7| b P = 217) < [[u]]?,
i=1
Plugging Eqn.(19) and (20) into Eqn.(21), we obtain

2L

t t
S onil <l +20 )i (22)
i=1 i=1

Combining Eqn.(18) with Eqn.(22), we obtain

t
min{1/K,C}M < |[u|]> +2C > I;. (23)

i=1
Multiplying both sides of the above by max{ K, 1/C}, we
have

t
M < max{K,1/C}([ul]> +2C> I7).  (24)

i=1

Asymmetric Projection

In (Neyshabur et al. 2013), it shows that treating the query
points and the database points asymmetrically can improve
the search accuracy of the binary codes. Hence, we treat the
query points and the database points in an asymmetric way
by learning different projection functions. Instead of using
the projection matrix P after hashing the query into a binary
code, we learn a projection matrix R € RP*X that can
be directly applied on the original query feature q € RP”.
Hence, the similarity between the query and the binary code
is calculated as

S(q,x;) =sgn(R"q) @ sgn(P"h;) =g, ®g;, (25

where h; is the corresponding binary code of x;.

The projection matrix R is also composed of projection
vectors [rq, ..., rx| and each vector corresponds to one bit
of the ideal binary code. For notational simplicity, we use r
to denote the k*" vector r;. The loss function of r for each
coming data point x; is defined as:

- 0
l(inxi){ T

1—g:(r'x;)

g7 (rTx;) > 1,

otherwise. (26)

For brevity, we use I; to denote the loss (g, x;) for the
ith data point. Then, for each round 7, we solve the following
convex problem with soft margin:

r; = arg min e —ria| >+ C¢

st. [; <&and & > 0. @7
Therefore, the optimal r is
r; =ri-1+79; X, (28)
where
7 = min{C, M} (29)

[l



The derivation of Eqn.(28) is similar to the derivation of
Eqn.(13), and is provided in Appendix A of the supplemen-
tary file.

By assuming ||x;|| < R, the prediction mistake of our
method on the queries is bounded according to Theorem
2.

Theorem 2 Let (X1, g7), - -.(X4, g;) be a sequence of
pair-wise examples with label gf € {—1, 1} for all i. As be-
fore, Eqn.(26) in the manuscript denotes by I; = I(r; (x;,
g7)) the instantaneous loss suffered by our algorithm on
round i. Let u be an arbitrary vector that u € RX and de-
fine [* = I(u; (x;, g)) as the loss suffered by u. Then, by
assuming ||x;|| < R, for any vector u € R¥, the number of
prediction mistakes made by our method on this sequence of
examples is bounded by

t
max{R?, 1/C}(|[u|* +2C > I}). (30)

i=1

Proof The proof of Theorem 2 is provided in Ap-
pendix B of the supplementary file.

As our method can update the binary codes efficiently,
our method is called Online Hashing with Efficient Updat-
ing (OHWEU). The pseudo-code of our method is shown in
Algorithm 1.

Algorithm 1 OHWEU

Input: streaming data (x;,y;), C, K

Output: Pand R
1: Learn {W;€7 bk}i(:(]j
2: Initialize P° = [p!,
3: for:=1,2,...do

by PCA-ITQ in the initial stage
s P%] and RO = [rY, ... 1% ]

4:  Obtain the binary code g} according to Eqn.(5)
5. forj=1to K do
6: Update p; according to Eqn. (13)
7: Update r§ according to Eqn. (28)
8:  end for
9: end for
Experiments
Datasets

We compare our method on two commomly-used multi-
label image datasets, MS-COCO and NUS-WIDE.

(a).MS-COCO dataset (Lin et al. 2014). The MS-COCO
dataset is a multi-label dataset consisting of training im-
ages and 40,504 validation images. Each image is labeled
by some of the 80 concepts. We obtain 122,218 images af-
ter we filter the images that do not contain any concept label
and combine the training images with the validation images.
Each images is represented by a 4096-D feature extracted
from the fc7 layer of a VGG-16 network (Simonyan and
Zisserman 2014) pretrained on ImageNet (Deng et al. 2009).
We randomly take 4000 images as the queries, and the rest
for training and searching.

(b). NUS-WIDE dataset (Chua et al. ). The NUS-WIDE
dataset is also a multi-label dataset, which consists of
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Figure 2: The mAP results of differnt hashing methods.

269,648 web images associated with tags. Following (Kang,
Li, and Zhou 2016), we only select the images that belong
to the 21 most frequent concepts. Hence, we have 195,834
images. Each images is represented by a 4096-D feature ex-
tracted from the fc7 layer of a VGG-16 network (Simonyan
and Zisserman 2014) pretrained on ImageNet. We randomly
take 2000 images as the queries, and the rest for training and
searching.

The experiments are run on a computer with CPU 17, 24-
GB memory. Mean Average Precision (mAP) is used to mea-
sure the performance of the online hashing methods. If two
images share at least one common label, they are defined as a
groundtruth neighbor. The results are averaged by repeating
the experiments 3 times.

Comparison of Accuracy

We compare our method with BSODH (Lin et al. 2019),
MIH (Cakir et al. 2017), OSupH (Cakir, Bargal, and Sclaroff
2017), OKH (Huang, Yang, and Zheng 2018), OSH (Leng et
al. 2015), The key parameters in each compared method are
set as the ones recommended in the corresponding papers.
In MIH, the reservoir size is set to 200 as the reservoir size
is related to the training time cost of MIH. As OKH does,
we have m = 300 data points to train the hash functions in
the initial stage.

Fig. 2 shows the mAP results from 32 bits to 128 bits.
On MS-COCO, our method outperforms other online hash-
ing methods. And OSupH is the second best online hashing
method. On NUS-WIDE, our method is still the best method
among the online hashing methods. From 32 bits to 96 bits,
MIH is the second best online hashing methods, while OS-
upH is the second best online hashing method for 128 bits.

Fig. 3 shows the mAP performance of different online
hashing methods with the training data increasing from 32
bits to 128 bits on MS-COCO. According to the results, we
can see that our method outperforms other online hashing
methods after taking only a few training data for training.
And our method has a stable generalization ability as our
method can achieve the satisfactory performance with only
a few training data.

Fig. 4 shows the mAP performance of different online
hashing methods with the training data increasing from 32
bits to 128 bits on NUS-WIDE. For 32 bits, the curves of our
method, MIH, and BSODH are very close, our method has
a close performance to MIH and BSODH. From 64 bits to
128 bits, our method obviously outperforms MIH, BSODH,
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and other online hashing methods.

Comparison of Efficiency

Table 1 and 2 show the training time of different online hash-
ing methods on NUS-WIDE and MS-COCO, respectively.
From the results, we can see that our method is faster than
other online hashing methods. OSupH and MIH are much
slower than other hashing methods. In addition to learning
the hash functions, MIH introduces a trigger update module
to determine whether to update the binary codes by evalu-
ating the performance of the hash functions on the reservoir
sample, and the calculation in the trigger update module is
time-consuming. OSupH adopts the online boosting algo-
rithm and needs to consider the hash functions on the pre-
vious bits when learning one hash function, which is ineffi-
cient, especially for the long bits.

Table 1: The training time (in second) on NUS-WIDE.

32 bits 64 bits 96 bits 128 bits

OHWEU 181.34 353.84 550.40 687.52

OSH 484.39 524.09 599.66 693.28
OSupH 296477  14146.94 33543.83 60548.74
MIH 17759.40 27008.53 40120.89 64800.35
BSODH 2116.42  2404.66  2881.74  3498.40

Table 2: The training time (in second) on MS-COCO.

32 bits 64 bits 96 bits 128 bits

OHWEU 125.12 245.35 208.02 466.08

OSH 335.28 387.80 485.61 606.08
OSupH 3650.17  12230.75 25880.18  53348.59
MIH 43091.97 60450.99 73379.56 80787.40
BSODH 305227 325155  3617.38  3786.90

Following the setting in (Leng et al. 2015), we assume

the data come in chunks. Each chunk is composed of 1000
data points. We simulate a situation that exchanges the data
between the hard disk and RAM to compute the new binary
codes, which is implemented by C++ code. It takes 3.97s to
transfer 1000 4096-D data points from the hard disk to RAM
averagely. Fig. 5 shows the accumulated time cost of differ-
ent online hashing methods with the data samples increasing
for different online hashing methods on NUS-WIDE from
32 bits to 128 bits. IO’ denotes the time cost of accumu-
lating all the received data to update the binary codes. The
experiments are run on a PC with Intel i7 3.4 GHz CPU, 24
GB memory.

According to the results in Fig. 5, our method has the low-
est time cost among the online hashing methods, since our
method has a low time cost for learning the projection func-
tions and does not need to accumulate the whole database
to update the binary codes. For OSupH, OSH, and IO, the
accumulated time cost rises as an quadratic function of the
number of data. Comparing OSH with IO, we can see that
most of the time cost of OSH comes from transferring the
data from the disk to RAM for the updating of the binary
codes. MIH adopts the trigger update module to automati-
cally determine when to recompute the binary codes, and its
time cost is approximately linear to the data size. However,
its time cost is still high as using the trigger update module
to determine whether to update is time-consuming.

Parameter Analysis

As indicated in Eqn. (6), C' is used to control the trade-off
between maintaining the projection vectors close to the pre-
vious ones and minimizing the current loss. We investigate
the influence of the parameter C'. Fig. 6 shows our method
with different C' on MS-COCO and NUS-WIDE. From the
results, we can see that on both datasets, the performance
of the proposed method becomes better when C' increases at
first. However, when C reaches some threshold, further in-
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Figure 5: The time cost of different methods with training data increasing on NUS-WIDE.
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Figure 7: The comparison between symmetric processing
and asymmetric processing.

creasing C' leads to the performance degradation. Based on
the results, we set C' = 0.1 for MS-COCO and NUS-WIDE.

Fig. 7 shows the comparison of our method with different
ways to process the queries and the binary code database.
“sym” denotes that our method treats the queries and the bi-
nary code database symmetrically, and compares the query
with the database points according to Eqn. (15). “asym” de-
notes that our method uses an asymmetric way and com-
pares the query and the database points according to Eqn.
(25). According to the results, “asym” outperforms “sym”,
which shows that treating the query and the database asym-
metrically can improve the search accuracy.

Conclusions

In this paper, we propose a new online hashing framework to
update the binary codes efficiently without accumulating the
whole database. Different from the widely-used online hash-
ing methods, in our framework, the hash functions are fixed
and the projection functions are updated from the streaming
data to project the binary codes into another binary space.
Hence, the binary codes can be updated efficiently. The ex-
periments show that our method can achieve better retrieval
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accuracy with lower time cost compared to other online
hashing methods for multi-label image retrieval.
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