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Abstract

The aim of visual relation detection is to provide a com-
prehensive understanding of an image by describing all
the objects within the scene, and how they relate to each
other, in <object-predicate-object> form; for example,
<person-lean on-wall>. This ability is vital for image
captioning, visual question answering, and many other appli-
cations. However, visual relationships have long-tailed distri-
butions and, thus, the limited availability of training samples
is hampering the practicability of conventional detection ap-
proaches. With this in mind, we designed a novel model for
visual relation detection that works in one-shot settings. The
embeddings of objects and predicates are extracted through
a network that includes a feature-level attention mechanism.
Attention alleviates some of the problems with feature spar-
sity, and the resulting representations capture more discrimi-
native latent features. The core of our model is a dual graph
neural network that passes and aggregates the context in-
formation of predicates and objects in an episodic training
scheme to improve recognition of the one-shot predicates and
then generate the triplets. To the best of our knowledge, we
are the first to center on the viability of one-shot learning
for visual relation detection. Extensive experiments on two
newly-constructed datasets show that our model significantly
improved the performance of two tasks PredCls and SGCls
from 2.8% to 12.2% compared with state-of-the-art baselines.

Introduction

A common way to define the visual relationships in an
image with a triplet, where two objects are connected by
a predicate — for example, <person-adjacent to-bike>
or <clock-attach to-building>. Identifying these rela-
tionships is useful for a wide range of image understand-
ing tasks, such as captioning (Fang et al. 2015), retrieval
(Johnson et al. 2015), reasoning (Shi, Zhang, and Li 2019;
Wang et al. 2018), and visual question answering (Xiong,
Merity, and Socher 2016). Conventional models for auto-
matically detecting these relationships typically require a
relatively large number of training instances to determine
the predicates. However, as shown in Figure 1, visual rela-
tionships tend to have long-tailed distributions, which means
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Figure 1: Frequencies of predicates in VRD dataset. There
are a large portion of predicates that have few triplets.

that most predicates, such as “attach to”, will have very
few training samples, if any, compared to the most popular
predicates, such as “on”.

For this reason, most current models (Lu et al. 2016;
Zhang et al. 2017; 2019a; 2019b) only perform well with
the most popular predicates. Dornadula et al. (Dornadula et
al. 2019) recently introduced a new model that treats a pred-
icate as a neural network transformation between two object
representations. The proposed model can, rather effectively,
detect visual relationships in few-shot learning scenarios.
However, detecting these relationships with one-shot learn-
ing is yet to be mastered. Intuitively, the fewer the number
of available training instances, the more a detection model
is needed. Therefore, we have focused our research efforts
on detecting visual relationships from one sample only, i.e.,
one-shot learning.

Our solution centers on a novel model for detecting the vi-
sual relationships in an image. The visual features of objects
and predicates are extracted first, and embeddings are gen-
erated through the feature extraction network that includes a
feature-level attention mechanism. Attention alleviates some
of the problems with feature sparsity, and the resulting rep-
resentations capture more discriminative latent features. A



dual graph neural network passes and aggregates the context
information of predicates and objects in an episodic training
scheme to improve recognition of the one-shot predicates
and then generate the triplets.

The contributions of this research are summarized below.

To the best of our knowledge, this is the first-ever one-shot
learning approach to visual relationship detection.

We introduce a novel model based on a dual-graph neural
network that exploits intra-cluster similarities and inter-
cluster dissimilarities between predicates and objects for
one-shot visual relationship detection.

We constructed two new datasets for evaluating one-shot
visual relationship detection tasks.

Extensive experiments show that our model significantly
improves one-shot performance.

Related Work

This section discusses existing related research in the fol-
lowing aspects: visual relation detection, few-shot learning
and graph neural network.

Visual Relation Detection. In recent years, there have
been some works for visual relation detection (Lu et al.
2016; Zhang et al. 2017; 2019a; 2019b). Language prior is
thought to provide useful information to detect visual rela-
tionships. In the earlier work, Lu ef al. (Lu et al. 2016) fine-
tuned the likelihood of the predicted relationship through
the language. Inspired by TransE which has great success
in representation learning on knowledge graph, Zhang et
al. (Zhang et al. 2017) proposed the VTransE model which
computes embedding of predicates by mapping the visual
features into the predicate space. Some models also pro-
posed to utilize the statistical information to improve de-
tection performance. For instance, Dai ef al. (Dai, Zhang,
and Lin 2017) proposed a model to exploit the statistical
dependencies among predicates, subjects, and objects. Con-
text messages passing also plays a crucial role in recent re-
searches, e.g., Xu et al. (Xu et al. 2017) predicted each vi-
sual relationship with joint inference by iterative message
passing. Compared to previous models which focus on mes-
sage passing in the same image, our work achieves messages
passing from different images.

Few-shot Learning. Metric based approaches (Koch,
Zemel, and Salakhutdinov 2015; Vinyals et al. 2016;
Snell, Swersky, and Zemel 2017) and meta-learner based
approaches (Finn, Abbeel, and Levine 2017; Ravi and
Larochelle 2017; Sung et al. 2018) are the most impor-
tant two ways to achieve few-shot learning. For metric-
based approaches, the Siamese Network, which works in
two shared weighted networks, is proposed by Gregory et
al. (Koch, Zemel, and Salakhutdinov 2015) to compare two
different images. In addition, Matching Networks (Vinyals
et al. 2016) can also make predictions by comparing the
input example with the small labeled support set and or-
ganize the train and test data in ’episodes’. Prototypical
Network (Snell, Swersky, and Zemel 2017) usually rec-
ognizes the image by computing the prototypical of each
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class in metric space. Differently, meta-learner based ap-
proaches aim to learn the optimization of model parame-
ters to achieve the few-shot learning. For example, MAML
(Finn, Abbeel, and Levine 2017) aimed to meta-learn an ini-
tial condition in a model-agnostic way. Ravi et al. (Ravi and
Larochelle 2017) used the LSTM-based meta-learner for re-
placing the stochastic gradient descent optimizer. Sung et
al. (Sung et al. 2018) put forward a Relation Network that
preforms few-shot recognition by learning to compare query
images against few-shot labeled sample images. Most few-
shot learning researches are on the task of image recogni-
tion. Unlike image recognition tasks, visual relationship de-
tection is more complicated and cannot be recognized by
only using visual features. Determining visual predicates
usually needs both visual features and non-visual features
such as context, geometrical layout, and semantics.

Graph Neural Network. Graph neural network is pro-
posed to process graph structure data (Zhou et al. 2018).
Recently, graph neural networks are applied to more sce-
narios such as social network mining (Hamilton, Ying, and
Leskovec 2017), recommender systems (Xie et al. 2016),
graph representation learning (Ying et al. 2018), as well as
non-structural data scenarios like image classification (Kipf
and Welling 2016), text classification (Peng et al. 2018),
and program verification (Li et al. 2016). Besides, some ap-
proaches (Garcia and Bruna 2018; Liu et al. 2019) have also
explored graph neural networks for few-shot learning. Gar-
cia et al. (Garcia and Bruna 2018) cast few-shot learning as a
supervised message passing task which is trained end-to-end
by using graph neural networks. Liu et al. (Liu et al. 2019)
proposed a transductive propagation network to propagate
labels form labeled instances to unlabeled test instances. In
this paper, our model will also use the dual graph structure
to pass the message from different predicates or objects and
improve the one-shot predicate recognition.

Method

Next, we will describe the one-shot setting and our visual
relation detection model in detail. As illustrated in Figure
3, the proposed model includes the visual feature extraction
module and the dual graph module.

One-shot Learning Settings

Following the standard one-shot learning settings (Vinyals
et al. 2016; Ravi and Larochelle 2017), we split the visual
relation dataset D into two sets T},qi, and Ti.s based on
different predicates, i.e., the same predicate does not ap-
pear in the training set and the test set at the same time.
Tirain has a relatively large labeled dataset whereas Tjqst
has only a few labeled examples. We employ the episodic
learning paradigm for our one-shot classification task. Dur-
ing the episodic learning, a small subset of visual rela-
tions contains N predicates will be sampled from 7},.qin
to construct a support set S and a query set (). The sup-
port set S = {(x1,71), (X2,72),..., (XN, 7N)} contains N
predicates and each predicate has only one sample (i.e., N-
way one-shot setting). For a sample (x;,7;) € S, x;

{x, xbbor zbbor} indicates the visual information about the
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Figure 2: Illustration of 3-way I-shot problem with one
query example addressed by our model.

visual relation r;, where = is the image where 7; comes
from, 22%°% and 22%°* are bounding boxes of visual objects
in z. Note that different relations may exist in the same im-
age x due to the different of bounding boxes. The query set
Q = {(x},71), (X9, 79), - - ., (X3, 727)} contains M visual
triples with the same predicates in S. The support set S is
used to train the model to achieve minimize the loss of the
predictions for the query set (). The T4 uses the same ap-
proach to achieve visual relation detection, as shown in Fig-
ure 2. The idea of episodic training is making the training
process imitate the testing phase. Because the distribution of
training tasks is assumed to be similar to the test task, the
performance of the test tasks can be improved by learning a
model to work well on the training tasks.

Visual Feature Extraction Module

This module aims to extract visual features and obtain the
embeddings of visual objects and predicates.

Inspired by VTransE (Zhang et al. 2017), we represent
a visual relation < h — p — t > as low-dimensional vec-
tors vy, vp,, and v, where h and ¢ indicate the head object
and tail object, p is the predicate. Suppose f;,, f, € R are
the D-dimensional features of i and ¢ in the bounding box
zpbor, xbbor respectively, we aim to learn projection matri-
ces W, and W,, from the feature space to the relation space,
and obtain the v, and vy, i.e., W, f;, and W,f;. Then, a vi-
sual relation can be represented as follows:

W, + v, & Wf,. (1)

Labels of the head object, tail object, as well as spatial
information are always useful to identify the predicate (Xu
et al. 2017). For instance, some predicates can often be in-
ferred by using spatial information, such as “on” and “un-
der”. Therefore, we utilize the information mixed with vi-
sual features as follows:

f, = f*%(by,, b)) ®f, Dy,

ft/ = fSpa(bha bt)@ft@ct,

@)
3
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where fP% is a 3-layers CNN to encode binary mask fea-
tures, (¥ denotes vectors connection. The ¢;, and ¢, are the
N-dimensional vectors of objects classification probabilities
(i.e., N classes of objects) from the object detection net-
work. We obtain the binary masks by, and b; by inputting
bounding boxes of visual objects 25°°% and z?*°% .
Moreover, it has been verified that some dimensions of
the learned latent representations are more discriminative for
classifying in the low-dimensional space (Gao et al. 2019).
We further propose an attention mechanism to enhance the
representations of visual predicates. Then, the problem of
feature sparsity can be alleviated by using the feature-level
attention mechanism. Formally, Equation (1) becomes:

vy = [UE,) - (Wi, — W, f)), )

where £ is the feature attention network, f,, is predicate
visual features under the combination of the head object
bounding box and the tail object bounding box.

Dual Graph Module

This module aims to achieve massages passing from pred-
icates or objects in different images. As illustrated in Fig-
ure 3, the dual fully-connected graph is the core of our
model. A predicate graph consists of nodes and edges. Each
node is the embedding of the predicate. Each edge is a
2-dimensional vector which contains intra-cluster similar-
ity and inter-cluster dissimilarity of predicates. The object
graph is analogous to the predicate graph, except that nodes
are replaced by object embeddings. Through this graph
structure, intra-cluster similarity and inter-cluster dissimilar-
ity can be simultaneously maximizing in node/edge updates.
Particularly, a small neural network is used to aggregate and
pass messages from object nodes to predicate nodes. The in-
formation transmission among different types of nodes can
increase the amount of information on predicates and im-
prove the recognition performance of predicates.

The predicate graph and object graph have different types
of nodes but the same graph structure. Therefore, a graph
can be denoted as G = {V, E'}, where the V and F indicate
the sets of nodes and edges of the graph. For each layer of
dual graph network, the predicate graph G, and object graph
G, update nodes and edges in the same way. We use vﬁ to
represent the node in the predicate graph and object graph
together in layer [ as follows:

l_
-]

For edges E, each edge e;; = {e;ja}3_; € .[O, 1] is used
to connect node v; and node v;. The more similar two nodes
are, the greater the value of e;;;. We initialize the edge e;;
by using the ground-truth node labels as:

[1,0]3 if Yi =Y; andi,j < Na
[0,1], if y; #yjand i, j < N,
[0.5,0.5],

vy, in Gp,

vy orvy, in G,.

(&)

eij =

(6)
otherwise,
where y; is the label of node v?.

Our dual graph network contains L layers to process the
graph. The nodes and edges are updated through each layer
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Figure 3: Our model architecture for a 3-way 1-shot problem with one query example. Different shapes represent different
objects and different colors represent different predicates.

in the forward propagation. On each layer, nodes are up- For the one-shot task, distance metric learning methods
dated by the neighborhood aggregation procedure both in with Euclidean distance or cosine similarity are common
predicate graph and object graph. In the aggregation pro- ways to achieve it (Chen et al. 2019). However, they fo-
cedure, the edges features are multiplied as coefficients in cus on learning shallow linear metrics for fixed feature rep-
each dimension of the neighborhood nodes. The more sim- resentations which may be not discriminative. Inspired by
ilar neighborhood nodes are, the more information sends to (Sung et al. 2018) using Relation Network to learn a deep
the current node. For different label nodes, a higher dissim- distance metric to compare a small number of images within
ilarity coefficient can bring more dissimilarity information. episodes, we use a metric network as the distance metric.
The updating process of nodes features is defined as follows: Metric networks f,,, combines a 4-layer CNN to encode the
difference between two nodes and a fully connected layer to
Z €ij1 V ol Z ”2 @) out the similarity. The similarity is computed as follows:

mi; = fm(vi' = ;D) ©)

where ff) is used to update node features, and €;;4 =
ﬁ ;Nhere m! ;; 18 the similarity between V "and v in the layer

i €i

The labels of head object and tail object are always con-
sidered useful to identify the predicate in visual relation.
However, it is impossible to always obtain a correct label
through the object detection network. The object graph can
improve the performance of object recognition by using ex-
plicit intra-cluster similarity and inter-cluster dissimilarity.

Edge features containing intra-cluster similarity and inter-
cluster dissimilarity is updated by re-obtained nodes. New
edge features can be computed by using the current layer
edge information and the node information connected by
this edge. The updating process of new edge features is:

Message passing network between different graphs can up- L g1
. . . 1 m; eljl
date the predicate representations. In this way, not only the €ij1 = a1 (10)
information that may be wrong at first is compensated, but 2k zkezkl '/ 2ok Cikt
also more object information is integrated into the predicate Iy -1
: ol T : : ~ . (1 _m")eijQ
representations. Only v;,, v; and v, in the same visual re el = —, (1)
lationship triplet can transmit information. The information ! Sl —ml el /S, ey
transfer mechanism between different graphs is defined as _ _
follows: €ij = eij/”eikulv (12)
l . o _
N ft (Vpthth) , in Gy, ®) where ||€l, ||1 is the normalization of &, .
V% or v,lf, in G, The prediction of predicate podes can be obtamed' by edge
) features. For each edge, e;;; is denoted the probability that
where v ! is a new node after the update in layer I. f/ is the two nodes belong to the same class. We predict query set
message passing network between different graphs. nodes by nodes belong to support sets. For the confidence of
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the predicate node belonging to each class can be computed

as follows:

{7:5#i N(xj,mj) €S}

&

= softmax( (Pijo(pj = Cn))), (13)

where p;; = e;;1 is the edge feature in the last layer. cgn)

is the probability that v; belong to the class C,. d(p; = C,,)
is equal to one when p; = C,, and zero otherwise. p; is the
ground-true of the predicate in visual relation triplet 7; in
the support set.

For the prediction of object nodes, we use a fully con-
nected layer to compute the confidence of each class. Be-
cause the support set and the query set constructed by differ-
ent predicates, it can not guarantee that objects in the query
set also appear in the support set. The probability of the ob-
ject node belongs to each class can be computed as follows:

o=17f c(v/l),

in G,. (14)

Loss

The set of ground-truth edge labels Y depends on the labels
of the nodes connected by the edge. Each ground-truth edge
label is defined by the ground-truth node label:

yij—{

For the predicate graph, Yzf is the set of similarity in the

1
0, otherwise. (15

first dimension of edge features in layer /. Similarly, Yol is
the set of similarity for the object graph. The loss functions
of the visual relation prediction are defined as follows:

2XN+2x M

D

i=1

L
0ilog(6,) + > Lc(Y,,V}), (16)
=1

Lo=—X

L
Ly = ALe(Y,,Y)), (17)
1=1
where L. is the binary cross-entropy loss. A, and A, are the
hyperparameters to control the loss. o; is the ground true
label of the object node.
The total loss function is defined as follows:

Etotal = Ep + Lo; (18)

in which the total loss combines all losses that are computed
in all layers to improve the gradient flow in the lower layers.

Experiments

We constructed two new datasets for the task of one-shot
visual relationship detection and compared our model with
state-of-the-art approaches. Our codes and datasets are avail-
able at https://github.com/Witt- Wang/oneshot.

Experiments Settings

Datasets. Compared with previous works, we focus on the
recognition of tail data in the long-tail distribution datasets.
Existing datasets consider the same set of visual predicates
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Table 1: Statistics of VRD-One and VG-One.

Dataset Objects  Predicates  Visual Relations
VRD-One 99 29 2554
VG-One 127 164 27170

during training and testing and often include sufficient train-
ing visual relations for every predicate. To construct datasets
for one-shot learning, we go back to the original datasets and
select those visual predicates that do not have too many vi-
sual relations as one-shot task predicates.

The detailed statistics of two new datasets are summarized
in Table 1. In our datasets, each sample contains a visual re-
lation label, ground truth bounding boxes of objects and the
image. For dataset VRD-One, we selected visual relations
to construct our datasets. The visual relations formed by the
visual predicates are less than 300 but more than 20 in the
original dataset VRD. We follow a similar process to build
another larger dataset based on VG, but visual predicates are
less than 500 more than 50. For the original VG dataset, a
substantial fraction of the object annotations have poor qual-
ity and overlapping bounding boxes and/or ambiguous ob-
ject names (Xu et al. 2017). We further process the extracted
dataset from VG to construct our dataset. For VRD-One, we
use 19/10 to divide visual predicates for training/testing. For
VG-One, the division ratio is 115:49.

Tasks. Following (Xu et al. 2017), we evaluate the pro-
posed model with two tasks: predicate classification and
scene graph classification. Predicate classification (PredCls)
is to predict the predicates of all pairwise relationships of a
set of localized objects. Scene graph classification (SGCls)
is to predict the class labels for the set of objects with ground
truth bounding boxes, and to predict the relationship label of
each object pair.

Evaluation metrics. Unlike most previous work, we do
not use the image-wise recall evaluation metrics R@50 and
R@100. The RQk metric measures the fraction of ground-
truth relationship triplets that appear among the top £ most
confident triplets in an image. For our data, the relationships
on each picture are more sparse, and the quantity variance of
each relationship is smaller than that in the original datasets.
We only focus on visual relationships in specific areas of
the image. Accuracy as an evaluation metrics is more suit-
able for our task than recall. Following the standard one-shot
learning setting, we will compare the accuracy in 5-way 1-
shot, and 10-way 1-shot.

Details. Our model was trained by Adam optimizer with
an initial learning rate of 1x 10~2 and weight decay of 1075,
The batch sizes for training were set to be 10 and 5 for 5-
way and 10-way experiments, respectively. All our code was
implemented in PyTorch (Paszke et al. 2017) and ran with 4
GPUs.

Quantitative Evaluation

To validate the effectiveness of our model, we compare it
with several state-of-the-art methods on VG and VRD. The
details of methods are described as follows:



Table 2: Comparison with state-of-the-art baselines on the VRD-One and VG-One datasets.

VRD-One VG-One
PredCls SGCls PredCls SGCls
5-way 1-shot 10-way l-shot 5-way l-shot 10-way l-shot | 5-way l-shot 10-way l-shot 5-way l-shot 10-way l-shot
VRD 37.4% 24.7% 14.7% 12.5% | 41.4% 27.2% 10.8 % 9.6 %
VTransE 37.3% 24.3% 15.8% 13.4% | 39.7% 23.4% 10.1% 9.4 %
LSVRU 40.3% 27.1% 16.9% 14.0% | 43.4% 27.0% 10.7% 10.1%
RelDN 40.1% 26.4% 17.2% 14.3% | 43.7% 28.3% 11.3% 10.1%
RelDN w/o sem  40.6% 27.3% 17.4% 14.9% | 44.1% 28.2% 11.6% 10.4%
Ours 48.4% 33.5% 22.3% 20.9% | 56.3% 37.5% 14.9% 13.2%

Table 3: Predicate classification accuracy in 5-way-1-shot.
We compare our final model with VTransE on the VRD-One
dataset and the PredCls task.

Predicates VTransE  Ours Predicates VTransE  Ours
talk 34.67% 63.51% lean on 26.43% 39.02%
pull 29.26% 40.25%  at 42.46% 51.39%
drive 21.89% 38.23%  watch 31.94% 42.85%
attach to 35.61% 56.96%  siton 36.36%  44.44%
fly 34.21% 44.87% use 49.29% 51.47%

Table 4: Ablation studies on our model.
5-way 1-shot

| PredCls | SGCls

ours w/o Object Graph | 473% | 20.4%

ours w/o Message Passing Network | 47.2% | 21.8%

ours w/o Attention Network | 457% | 21.6%

ours All | 48.4% | 22.3%

VRD (Lu et al. 2016): This method uses language prior
knowledge to help detect visual relationships.

VTransE (Zhang et al. 2017): This method is a novel
visual relation learning model that incorporates translation
embedding and knowledge transfer.

LSVRU (Zhang et al. 2019a): This method achieves vi-
sual relation detection by projecting visual and linguistic
features into a common space.

RelDN (Zhang et al. 2019b): This method uses graphical
contrastive losses which explicitly force the model to disam-
biguate related and unrelated instances. This method is the
state-of-the-art method on VG and VRD.

For fairness, we adjusted these models to avoid the impact
of sample imbalance on our datasets. The training of these
models is divided into two stages: the training stage and the
fine-tuning stage. In the training stage, we use 7},.q;y, to train
these models. In the fine-tuning stage, for each episode, we
use support set in 73 to fine-tune these models. All models
use ResNet101 (He et al. 2016) as a feature extractor.

For results of other models on our datasets in Table 2, the
classical methods and state-of-the-art methods do not show
a significant difference in accuracy rate. Good accuracy can
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be obtained by simple visual information and semantic in-
formation. Besides, we find that statistical information may
not help the model, and removing the statistical information
can improve the accuracy. This may be related to the fact that
the distribution of the support set and query set is not con-
sistent in the one-shot learning setting. Our model achieves
state-of-the-art results on the two new datasets and demon-
strates its efficacy in one-shot visual relation detection. For
each task, our model outperforms the strong baseline by a
large margin.

Compared with the VRD-One dataset, the VG-One
dataset has more visual relations. More data can improve
the generalization ability and performance in our model. For
other models, more data can not improve the performance
because the number of support set is constant. For the SG-
Cls task, the results of our model on the VRD-One dataset
are better than that on the VG-One dataset, because a sub-
stantial fraction of the object annotations have poor quality
and overlapping bounding boxes and/or ambiguous object
names on original VG dataset. Our VG-One dataset is se-
lected from VG, the accuracy of object recognition declines
on the VG-One dataset.

We compare the accuracy of every predicate on our
VRD-One dataset with VTransE, as shown in Table 3.
The accuracy of all predicate in our model is higher than
that in VTransE. For some predicates, our model outper-
forms VTransE by a large margin, such as “talk” and
“attach to”. It indicates that our model has the great abil-
ity for one-shot learning in different predicates.

Ablation Study

To evaluate the effectiveness of our model, we consider sev-
eral ablations in Table 4. We validate the effect of attention
mechanism, object graph and message passing from differ-
ent graphs on the model. We remove each module to verify
the effectiveness of utilizing all the proposed modules. As
shown in Table 4, we can see the performance improvement
when we use all modules jointly. This indicates that each
module plays a critical role in the recognition of visual rela-
tionships.

In this experiment, the attention mechanism can help the
model improve accuracy. On the one hand, features that are
obtained by the feature extraction network from the support
set have the problem of data sparsity. Several dimensions
of the representation of predicate are more discriminative
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Figure 4: Sample results from our model trained with different numbers of layers of dual graph network. Green indicates the

correct result of prediction, red indicates the wrong result.

for classifying in the embedding space. The attention mech-
anism can enhance the representation of predicate. On the
other hand, the attention mechanism also brings more visual
information to predicate embedding.

For object graph and message passing from different
graphs, the accuracy of the scene graph classification (SG-
Cls) task is greatly improved. There is no object label in
SGCls task, but annotation information is important for in-
ferring the visual relationship. When the model uses wrong
object recognition information, it will not only lead to the
wrong recognition of visual relations, but also affect the
recognition of visual predicates. Although objects in visual
relations are not small sample data, intra-cluster similarity
information and inter-cluster dissimilarity information can
be added to the embedding of objects by object graph. The
accuracy of object recognition can be improved. Message
passing mechanism can also bring more accurate object in-
formation for predicate recognition. The accuracy of visual
relationship is greatly improved through these modules.

Qualitative Results

Figure 4 illustrates the qualitative results. we compare our
final model trained with different numbers of layers in our
dual graph network and show several wrong cases. Although
the prediction of visual predicates in the query set relies on
the visual predicates in support set, the results show visual
predicates are easy to make wrong predictions when the ob-
ject in the same visual relation is incorrectly identified, such
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as <person-at-table>. For objects, obscured or confus-
ing objects are easily misidentified, such as <person-at-
desk> and <person-fly-kite>. The dual graph network
plays a key role in one-shot visual relation detection, and
it enables our model to outperform previous state-of-the-
art methods. For the effect of the number of layers on the
network, our final model trained with one layer is also
able to recognize the visual relationships in images, such
as <person-pull-luggage>, but several predicates or ob-
jects which are easy to make confusion can cause wrong pre-
dictions like <person-use-phone>, <tower-attach to-
building. The final model trained with three layers can
make semantically correct predictions.

Conclusion

In this paper, we address the problem of one-shot visual re-
lation detection by a novel model. Our model first extracts
visual features and obtains the embedding of predicates by
visual feature extraction network. Then, a dual graph net-
work is employed to achieve message passing and detect the
visual relation. We construct two new datasets, i.e., VRD-
One and VG-One, for the one-shot experiment. The experi-
mental results show that our model achieves state-of-the-art
results. Moreover, through extensive ablation experiments,
we demonstrate the efficacy of our approach. In the future,
a possible improvement direction would be able to explore
its capability in other prediction problems in visual relation
detection. We hope our model becomes a generic framework



for the one-shot visual relation detection problem.
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