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Abstract

RGB-Infrared (IR) person re-identification is very challeng-
ing due to the large cross-modality variations between RGB
and IR images. The key solution is to learn aligned fea-
tures to the bridge RGB and IR modalities. However, due
to the lack of correspondence labels between every pair
of RGB and IR images, most methods try to alleviate the
variations with set-level alignment by reducing the dis-
tance between the entire RGB and IR sets. However, this
set-level alignment may lead to misalignment of some in-
stances, which limits the performance for RGB-IR Re-ID.
Different from existing methods, in this paper, we propose
to generate cross-modality paired-images and perform both
global set-level and fine-grained instance-level alignments.
Our proposed method enjoys several merits. First, our method
can perform set-level alignment by disentangling modality-
specific and modality-invariant features. Compared with con-
ventional methods, ours can explicitly remove the modality-
specific features and the modality variation can be better re-
duced. Second, given cross-modality unpaired-images of a
person, our method can generate cross-modality paired im-
ages from exchanged images. With them, we can directly
perform instance-level alignment by minimizing distances of
every pair of images. Extensive experimental results on two
standard benchmarks demonstrate that the proposed model
favourably against state-of-the-art methods. Especially, on
SYSU-MM01 dataset, our model can achieve a gain of 9.2%
and 7.7% in terms of Rank-1 and mAP. Code is available at
https://github.com/wangguanan/JSIA-ReID.

Introduction

Person Re-Identification (Re-ID) (Gong et al. 2014; Zheng,
Yang, and Hauptmann 2016) is widely used in various appli-
cations such as video surveillance, security and smart city.
Given a query image of a person, Re-ID aims to find images
of the person across disjoint cameras. It’s very challenging
due to the large intra-class and small inter-class variations
caused by different poses, illuminations, views, and occlu-
sions. Most of existing Re-ID methods focus on visible cam-
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Figure 1: Illustration of set-level and instance-level align-
ment (please view in color). (a) There is a significant gap
between the RGB and IR sets. (b) Existing methods per-
form set-level alignment by minimizing distances between
the two sets, which may lead to misalignment of some
instances. (c) Our method first generates cross-modality
paired-images. (d) Then, instance-level alignment is per-
formed by minimizing distances between each pair of im-
ages.

eras and RGB images, and formulate the person Re-ID as a
single-modality (RGB-RGB) matching problem.

However, the visible cameras are difficult in capturing
valid appearance information under poor illumination envi-
ronments (e.g. at night), which limits the applicability of per-
son Re-ID in practical. Fortunately, most surveillance cam-
eras can automatically switch from visible (RGB) to near-
infrared (IR) mode, which facilitates such cameras to work
at night. Thus, it is necessary to study the RGB-IR Re-ID
in real-world scenarios, which is a cross-modality match-
ing problem. Compared with RGB-RGB single-modality
matching, RGB-IR cross-modality matching is more diffi-
cult due to the large variation between the two modalities. As
shown in Figure 2(b), RGB and IR images are intrinsically
distinct and heterogeneous, and have different wavelength
ranges. Here, RGB images have three channels containing
color information of visible light, while IR images have one
channel containing information of invisible light.

The key solution is to learn aligned features to bridge the
two modalities. However, due to the lack of correspondence
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Figure 2: (a) In the edge-photo task, we can get cross-
modality paired-images. By minimizing their distances in a
feature space, we can easily reduce the cross-modality gap.
(b) In RGB-IR Re-ID task, we have only unpaired-images.
The appearance variation caused by the cross-modality gap
makes the task more challenging. (c) Our method can well
generate images paired with given ones, which help us to im-
prove RGB-IR Re-ID. (d,e) Vanilla image translation mod-
els such as CycleGAN (Zhu et al. 2017) and StarGAN (Choi
et al. 2018) fail to deal with this issue.

labels between every pair of images in different modali-
ties like in Figure 2(a), existing RGB-IR Re-ID methods
(Wu et al. 2017; Ye et al. 2018a; 2018b; Dai et al. 2018;
Hao et al. 2019) try to reduce the marginal distribution di-
vergence between RGB and IR modalities, while cannot deal
with their joint distributions. That is to say, as shown in
Figure 1(b), they only focus on the global set-level align-
ment between the entire RGB and IR sets while neglecting
the fine-grained instance-level alignment between every two
images. This may lead to misalignment of some instances
when performing the global alignment (Chen et al. 2018).
Although we can alleviate this issue by using label informa-
tion, in Re-ID task, labels of training and test sets are un-
shared. Thus, simply fitting training labels may not perform
very well for unseen test labels.

Different from the existing approaches, a heuristic method
is to use cross-modality paired-images in Figure 2(a). With
the paired images, we can directly reduce the instance-level
gap by minimizing the distance between every pair of im-
ages in a feature space. However, as in Figure 2(b),all images
are un-paired in RGB-IR Re-ID task. This is because the two
kinds of images are captured at different times. RGB images
are captured at daytime while IR ones at night. We can also
translate images from one modality to another by using im-
age translation models, such as CycleGAN (Zhu et al. 2017)
and StarGAN (Choi et al. 2018). But these image translation
models can only learn one-to-one mappings, while mapping
from IR to RGB images are one-to-many. For example, gray
in IR mode can be blue, yellow even red in RGB mode. Un-
der this situation, CycleGAN and StarGAN often generate
some noisy images and cannot be used in the following Re-
ID task. As shown in Figure 2(d,e), the generated images by

CycleGAN and StarGAN are unsatisfying.
To solve the above problems, in this paper, we propose a

novel Joint Set-level and Instance-Level Alignment Re-ID
(JSIA-ReID) which enjoys several merits. First, our method
can perform set-level alignment by disentangling modality-
specific and modality-invariant features. Compared with en-
coding images with only one encoder, ours can explicitly re-
move the modality-specific features and significantly reduce
the modality-gap. Second, given cross-modality unpaired-
images of a person, our method can generate cross-modality
paired-images. With them, we can directly perform instance-
level alignment by minimizing the distances between the
two images in a feature space. The instance-level alignment
can further reduce the modality-gap and avoid misalignment
of instances.

Specifically, as shown in Figure 3, our proposed method
consists of a generation module G to generate cross-
modality paired-images and a feature alignment module F
to learn both set-level and instance-level aligned features.
The generation module G includes three encoders and two
generators. The three encoders disentangle a RGB(IR) im-
age to modality-invariant and RGB(IR) modalities-specific
features. Then, the RGB(IR) decoder takes a modality-
invariant feature from an IR(RGB) image and a modality-
specific feature from an IR(RGB) image as input. By decod-
ing from the across-feature, we can generate cross-modality
paired-images as in Figure 2(c). In the feature alignment
module F , we first utilize an encoder whose weights are
shared with modality-invariant encoder. It can map images
from different modalities into a shared feature space. Thus,
set-level modality-gap can be significantly reduced. Then,
we further import an encoder to refine the features to reduce
the instance-level modality-gap by minimizing distance be-
tween feature maps of every pair of cross-modality images.
Finally, by jointly training the generation module G and fea-
ture alignment module F with the re-id loss, we can learn
both modality-aligned and identity-discriminative features.

The major contributions of this work can be summa-
rized as follows. (1) We propose a novel method to gener-
ate cross-modality paired-images by disentangling features
and decoding from exchanged features. To the best of our
knowledge, it is the first work to generate cross-modality
paired-images for the RGB-IR Re-ID task. (2) Our method
can simultaneously and effectively reduce both set-level and
instance-level modality-variation. (3) Extensive experimen-
tal results on two standard benchmarks demonstrate that the
proposed model performs favourably against state-of-the-art
methods.

Related Works
RGB-RGB Person Re-Identification. RGB-RGB person
re-identification addresses the problem of matching pedes-
trian RGB images across disjoint visible cameras (Gong et
al. 2014). Recently, many deep ReID methods (Zheng, Yang,
and Hauptmann 2016; Hermans, Beyer, and Leibe 2017;
Wang et al. 2019a) have been proposed. Zheng et al. (Zheng,
Yang, and Hauptmann 2016) learn identity-discriminative
features by fine-tuning a pre-trained CNN to minimize a
classification loss. In (Hermans, Beyer, and Leibe 2017),
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Hermans et al. show that using a variant of the triplet loss
outperforms most other published methods by a large mar-
gin. Most of exiting methods focus on the RGB-RGB Re-ID
task, and cannot perform well for the RGB-IR Re-ID task,
which limits the applicability in practical surveillance sce-
narios.

RGB-IR Person Re-Identification. RGB-IR Person re-
identification attempts to match RGB and IR images of a
person under disjoint cameras. Besides the difficulties of
RGB-RGB Re-ID, RGB-IR Re-ID faces a new challenge
due to cross-modality variation between RGB and IR im-
ages. In (Wu et al. 2017), Wu et al. collect a cross-modality
RGB-IR dataset named SYSU RGB-IR Re-ID and explores
three different network structures with zero-padding for au-
tomatically evolve domain-specific nodes in the network. Ye
et al. utilize a dual-path network with a bi-directional dual-
constrained top-ranking loss (Ye et al. 2018a) and modality-
specific and modality-shared metrics (Ye et al. 2018b).
In (Dai et al. 2018), Dai et al. introduce a cross-modality
generative adversarial network (cmGAN) to reduce the dis-
tribution divergence of RGB and IR features. Hao et al. (Hao
et al. 2019) achieve visible thermal person re-identification
via a hyper-sphere manifold embedding model. In (Wang et
al. 2019b) and (Wang et al. 2019c), they reduce modality-
gap in both image and feature domains. Most above meth-
ods mainly focus on global set-level alignment between the
entire RGB and IR sets, which may lead to misalignment of
some instances. Different from them, our proposed method
performs both global set-level and fine-grained instance-
level alignment, and achieves better performance.

Person Re-Identification with GAN. Recently, many
methods attempt to utilize GAN to generate training sam-
ples for improving Re-ID. Zheng et al. (Zheng, Zheng, and
Yang 2017) use a GAN model to generate unlabeled images
as data augmentation. Zhong et al. (Zhong et al. 2018) trans-
late images to different camera styles with CycleGAN (Zhu
et al. 2017), and then use both real and generated images
to reduce inter-camera variation. Ma et al. (Ma et al. 2018)
use a cGAN to generate pedestrian images with different
poses to learn features free of influences of pose variation.
All those methods focus on single-modality RGB Re-ID and
cannot deal with cross-modality RGB-IR Re-ID. Different
from them, ours generate cross-modality paired-images and
learn both set-level and instance-level aligned features.

Image Translation. Generative Adversarial Network
(GAN) (Goodfellow et al. 2014) learns data distribution in a
self-supervised way via the adversarial training, which has
been widely used in image translation. Pix2Pix (Isola et al.
2017) solves the image translation by utilizing a conditional
generative adversarial network and a reconstruction loss su-
pervised by paired data. CycleGAN (Zhu et al. 2017) and
StarGAN (Choi et al. 2018) learn images translations with
unpaired data using cycle-consistency loss. Those methods
only learn one-to-one mapping among different modalities
and cannot be used in RGB-IR Re-ID, where the map-
ping from IR to RGB is one-to-many. Different from them,
our method first disentangles images to modality-invariant
and modality-specific features, and then generates cross-
modality paired-images by decoding from exchanged fea-

tures.

The Proposed Method

Our method includes a generation module G to gener-
ate cross-modality paired-images and a feature alignment
module F to learn both global set-level and fine-grained
instance-level aligned features. Finally, by training the two
modules with re-id loss, we can learn both modality-aligned
and identity-discriminative features.

Cross-Modality Paired-Images Generation Module

As shown in Figure 2(b), in RGB-IR task, the training im-
ages from two modalities are unpaired, which makes it more
difficult to reduce the gap between the RGB and IR modali-
ties. To solve the problem, we propose to generate paired-
images by disentangling features and decoding from ex-
changed features. We suppose that images can be decom-
posed to modality-invariant and modality-specific features.
Here, the former includes content information such as pose,
gender, clothing category and carrying, etc. Oppositely, the
latter has style information such as clothing/shoes colors,
texture, etc. Thus, given unpaired-images, by disentangling
and exchanging their style information, we can generate
paired-images, where the two images have the same content
information such as pose and view but with different style
information such as clothing colors.

Features Disentanglement. We disentangle features with
three encoders. The three encoders are the modality-
invariant encoder Ei of learning content information from
both modalities, the RGB modality-specific encoder Es

rgb

of learning RGB style information, and the IR modality-
specific encoder Es

ir of learning IR style information. Given
RGB images Xrgb and IR images Xir, their modality-
specific features Ms

rgb and Ms
ir can be learned in Eq.(2).

Similarly, their modality-invariant features M i
rgb and M i

ir

can be learned in Eq.(1).

Ms
rgb = Es

rgb(Xrgb), M
s
ir = Es

ir(Xir) (1)

M i
rgb = Ei(Xrgb), M

i
ir = Ei(Xir) (2)

Paired-Images Generation. We generate paired-images us-
ing two decoders including a RGB decoder Drgb of gen-
erating RGB images and an IR decoder Dir of generating
IR images. After getting the disentangled features in Eq.(1)
and Eq.(2), we can generate paired-images by exchanging
their style information. Specifically, to generate RGB im-
ages Xir2rgb paired with real IR images Xir, we can use
the content features M i

ir from the real IR images Xir and
the style features Ms

rgb from the real RGB images Xrgb. By
doing so, the generated images will contain content infor-
mation from the IR images and style information from the
RGB image. Similarly, we can also generate fake IR images
Xrgb2ir paired with real RGB images Xrgb. Note that to en-
sure that the generated images have the same identities with
their original ones, we only exchange features intra-person.
This processes can be formulated in Eq.(3).

Xir2rgb = Dir(M
i
ir,M

s
rgb), Xrgb2ir = Drgb(M

i
rgb,M

s
ir)

(3)
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Figure 3: Our proposed framework consists of a cross-modality paired-images generation module G and a feature alignment
module F . G first disentangle images to modality-specific and modality-invariant features, and then decode from the exchanged
features. F first use the modality-invariant encoder to perform set-level alignment, then further perform instance-level alignment
by minimizing distance of each pair images. Finally, by training the two modules with re-id loss, we can learn both modality-
aligned and identity-discriminative features.

Reconstruction Loss. A simple supervision is to force the
disentangled features to reconstruct their original images.
Thus, we can formulate the reconstruction loss Lrecon as
below, where || · ||1 is L1 distance.

Lrecon = ||Xrgb −Drgb(E
i(Xrgb), E

s
rgb(Xrgb))||1

+ ||Xir −Dir(E
i(Xir), E

s
ir(Xir))||1

(4)

Cycle-Consistency Loss. The reconstruction loss Lrecon in
Eq.(4) cannot supervise the cross-modality paired-images
generation, and the generated images may not contain the
expired content and style information. For example, when
translating IR images Xir to its RGB version Xir2rgb via
Eq(3), the translated images Xir2rgb may not keep the poses
(content information) from Xir, or don’t have the right
clothing color (style information) with Xrgb. This is not the
case we want and will harm the feature learning module.
Inspired by CycleGAN (Zhu et al. 2017), we introduce a
cycle-consistency loss to guarantee that the generated im-
ages can be translated back to their original version. By do-
ing so, the consistency loss further limits the space of the
generated samples. The cycle-consistency loss can be for-
mulated as below:

Lcyc = ||Xrgb−Xrgb2ir2rgb||1+ ||Xir−Xir2rgb2ir||1 (5)

where Xir2rgb2ir and Xrgb2ir2rgb are the cycle-
reconstructed images as in Eq.(6).

Xir2rgb2ir = Dir(E
i
rgb(Xir2rgb), E

s
ir(Xrgb2ir))

Xrgb2ir2rgb = Drgb(E
i
ir(Xrgb2ir), E

s
rgb(Xir2rgb))

(6)

GAN loss. The reconstruction loss Lrecon and cycle-
consistency loss Lcyc lead to blurry images. To make the
generated images more realistic, we apply the adversarial

loss (Goodfellow et al. 2014) on both modalities, which
have been proved to be effective in image generation tasks
(Isola et al. 2017). Specifically, we import two discrimina-
tors Disrgb and Disir to distinguish real images from the
generated ones on RGB and IR modalities, respectively. In
contrast, the encoders and decoders aim to make the gener-
ated images indistinguishable. The GAN loss can be formu-
lated as below:

Lgan =E[logDisrgb(Xrgb) + log(1−Disrgb(Xir2rgb))]

+E[logDisir(Xir) + log(1−Disir(Xrgb2ir))]
(7)

Feature Alignment Module

Set-Level Feature Alignment. To reduce the modality-gap,
most methods attempt to learn a shared feature-space for dif-
ferent modalities by using dual path (Ye et al. 2018a; 2018b),
or GAN loss (Dai et al. 2018). However, those methods
do not explicitly remove the modality-specific information,
which may be encoded into the shared feature-space and
harms the performance (Chang et al. 2019). In our method,
we utilize a set-level encoder Esl to learn set-level aligned
features. The weights Esl are shared with the modality-
invariant encoder Ei. As we can see, in the cross-modality
paired-images generation module, our modality-invariant
encoder Ei is trained to explicitly remove modality-specific
features. Thus, given images X from any modality, we can
learn their set-level aligned features M = Esl(X).
Instance-Level Feature Alignment. Even so, as we discuss
in the introduction, only performing global set-level align-
ment between the entire RGB and IR sets may lead to mis-
alignment of some instances. To overcome this problem, we
propose to perform instance-level alignment by using the
cross-modality paired-images generated by the generation
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module. Specifically, we first utilize instance-level encoder
Eil to map the set-level aligned features M to a new fea-
ture space T , i.e. T = Eil(M). Then, based on the feature
space T , we align every two cross-modality paired-images
by minimizing their Kullback-Leibler Divergence. Thus, the
loss of the instance-level feature alignment can be formu-
lated in Eq.(8).

Lalign = E(x1,x2)∈(Xir,Xir2rgb)[KL(p1||p2)]
+ E(x1,x2)∈(Xrgb2ir,Xrgb)[KL(p1||p2)]

(8)

where p1 = C(t1) and p2 = C(t2) are the predicted prob-
abilities of x1 and x2 on all identities, t1 and t2 are the fea-
tures of x1 and x2 in the feature space T , C is a classifier
implemented with a fully-connected layer.
Identity-Discriminative Feature Learning. To overcome
the intra-modality variation, following (Zheng, Yang, and
Hauptmann 2016; Hermans, Beyer, and Leibe 2017), we av-
eragely pool the feature maps T in instance-level aligned
space T to corresponding feature vectors V . Given real im-
ages X , we optimize their feature vectors V with a classifi-
cation loss Lcls of a classifier C and a triplet loss Ltriplet.

Lcls = Ev∈V (−log p(v)) (9)

Ltriplet = Ev∈V [m−Dva,vp +Dva,vn ]+ (10)
where p(·) is the predicted probability predicted by the clas-
sifier C that the input feature vector belongs to the ground-
truth, va and vp are a positive pair of feature vectors be-
longing to the same person, va and vn are a negative pair of
feature vectors belonging to different persons, m is a margin
parameter and [x]+ = max(0, x).

Overall Objective Function and Test

Thus, the overall objective function of our method can for-
mulated as below:

L = λcycLcyc + λganLgan

+ λalignLalign + λreid(Lcls + Ltriplet)
(11)

where λ∗ are weights of corresponding terms. Following
(Zhu et al. 2017), we set λcyc = 10 and λgan = 1. λreid

is set 1 empirically and λalign is decided by grid search.
During the test stage, only feature learning module F is

used. Given images X , we use the set-level alignment en-
coder Esl and the instance-level encoder Eil to extract fea-
tures, i.e. V = Eil((Esl(X)). Finally, matching is con-
ducted by computing cosine similarities of feature vectors
V between the probe images and gallery ones.

Experiment

Dataset and Evaluation Protocol

Dataset. We evaluate our model on two standard bench-
marks including SYSU-MM01 and RegDB. (1) SYSU-
MM01 (Wu et al. 2017) is a popular RGB-IR Re-ID dataset,
which includes 491 identities from 4 RGB cameras and 2
IR ones. The training set contains 19,659 RGB images and
12,792 IR images of 395 persons and the test set contains
96 persons. Following (Wu et al. 2017), there are two test
modes, i.e. all-search mode and indoor-search mode. For the

all-search mode, all images are used. For the indoor-search
mode, only indoor images from 1st, 2nd, 3rd, 6th cameras
are used. For both modes, the single-shot and multi-shot set-
tings are adopted, where 1 or 10 images of a person are
randomly selected to form the gallery set. Both modes use
IR images as probe set and RGB images as gallery set. (2)
RegDB (Nguyen et al. 2017) contains 412 persons, where
each person has 10 images from a visible camera and 10 im-
ages from a thermal camera.
Evaluation Protocols. The Cumulative Matching Charac-
teristic (CMC) and mean average precision (mAP) are used
as evaluation metrics. Following (Wu et al. 2017), the re-
sults of SYSU-MM01 are evaluated with official code based
on the average of 10 times repeated random split of gallery
and probe set. Following (Ye et al. 2018a; 2018b), the results
of RegDB are based on the average of 10 times repeated ran-
dom split of training and testing sets.

Implementation Details

In generation module G, following (Radford, Metz, and
Chintala 2016), we construct our modality-specific encoders
with 2 strided convolutional layers followed by a global
average pooling layer and a fully connected layer. For de-
coders, following (Wang et al. 2017), we use 4 residual
blocks with Adaptive Instance Normalization (AdaIN) and
2 upsampling with convolutional layers. Here, the param-
eters of AdaIN are dynamically generated by the modality-
specific features. In GAN loss, we use discriminator and LS-
GAN as in (Mao et al. 2016) to stable the training.

In feature learning module F , for a fair comparison, we
adopt the ResNet-50 (He et al. 2016) pre-trained with Im-
ageNet (Russakovsky et al. 2015) as our CNN backbone.
Specifically, we use the first two layers of the ResNet-50 as
our set-level encoder Esl, and use the remaining layers as
our instance-level encoder Eil. For the classification loss,
the classifier C takes the feature vectors V as inputs, fol-
lowed by a batch normalization, a fully-connected layer and
a soft-max layer to predict the inputs’ labels.

Please see our code1 for more implementation details.

Comparision with State-of-the-arts

Results on SYSU-MM01 Datasets. We compare our model
with 10 methods including hand-crafted features (HOG
(Dalal and Triggs 2005), LOMO (Liao et al. 2015)), fea-
ture learning with the classification loss (One-Stream, Two-
Stream, Zero-Padding) (Wu et al. 2017), feature learning
with both classification and ranking losses (BCTR, BDTR)
(Ye et al. 2018a), metric learning (D-HSME (Hao et al.
2019)), and reducing distribution divergence of features
(cmGAN (Dai et al. 2018), D2RL (Wang et al. 2019c)). The
results are shown in Table 1. Firstly, LOMO only achieves
3.64% and 4.53% in terms of Rank-1 and mAP scores, re-
spectively, which shows that hand-crafted features cannot
be generalized to the RGB-IR Re-ID task. Secondly, One-
Stream, Two-Stream and Zero-Padding significantly out-
perform hand-crafted features by at least 8% and 8.3% in
terms of Rank-1 and mAP scores, respectively. This verifies

1https://github.com/wangguanan/JSIA-ReID
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Table 1: Comparison with the state-of-the-arts on SYSU-MM01 dataset. The R1, R10, R20 denote Rank-1, Rank-10 and Rank-
20 accuracies (%), respectively. The mAP denotes mean average precision score (%).

Methods
All-Search Indoor-Search

Single-Shot Multi-Shot Single-Shot Multi-Shot
R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP R1 R10 R20 mAP

HOG 2.76 18.3 32.0 4.24 3.82 22.8 37.7 2.16 3.22 24.7 44.6 7.25 4.75 29.1 49.4 3.51
LOMO 3.64 23.2 37.3 4.53 4.70 28.3 43.1 2.28 5.75 34.4 54.9 10.2 7.36 40.4 60.4 5.64

Two-Stream 11.7 48.0 65.5 12.9 16.4 58.4 74.5 8.03 15.6 61.2 81.1 21.5 22.5 72.3 88.7 14.0
One-Stream 12.1 49.7 66.8 13.7 16.3 58.2 75.1 8.59 17.0 63.6 82.1 23.0 22.7 71.8 87.9 15.1

Zero-Padding 14.8 52.2 71.4 16.0 19.2 61.4 78.5 10.9 20.6 68.4 85.8 27.0 24.5 75.9 91.4 18.7
BCTR 16.2 54.9 71.5 19.2 - - - - - - - - - - - -
BDTR 17.1 55.5 72.0 19.7 - - - - - - - - - - - -

D-HSME 20.7 62.8 78.0 23.2 - - - - - - - - - - - -
cmGAN 27.0 67.5 80.6 27.8 31.5 72.7 85.0 22.3 31.7 77.2 89.2 42.2 37.0 80.9 92.3 32.8
D2RL 28.9 70.6 82.4 29.2 - - - - - - - - - - - -
Ours 38.1 80.7 89.9 36.9 45.1 85.7 93.8 29.5 43.8 86.2 94.2 52.9 52.7 91.1 96.4 42.7

Table 2: Comparison with state-of-the-arts on the RegDB
dataset under different query settings.

Methods thermal2visible visible2thermal
Rank-1 mAP Rank-1 mAP

Zero-Padding 16.7 17.9 17.8 31.9
TONE 21.7 22.3 24.4 20.1
BCTR - - 32.7 31.0
BDTR 32.8 31.2 33.5 31.9
D2RL 43.4 44.1 43.4 44.1
Ours 48.1 48.9 48.5 49.3

that the classification loss contributes to learning identity-
discriminative features. Thirdly, BCTR and BDTR further
improve Zero-Padding by 1.4% in terms of Rank-1 and by
3.2% in terms of mAP scores. This shows that the ranking
and classification losses are complementary. Additionally,
D-HSME outperforms BDTR by 3.6% Rank-1 and 3.5%
mAP scores, which demonstrates the effectiveness of metric
learning. In addition, D2RL outperform D-HSME by 8.1%
Rank1 and 6.0% mAP scores, implying the effectiveness of
adversarial training. Finally, Our method outperforms the
state-of-the-art method by 9.2% and 7.7% in terms of Rank-
1 and mAP scores, showing the effectiveness of our model.

Results on SYSU-RegDB Dataset. We evaluate our
model on RegDB dataset and compare it with Zero-Padding
(Wu et al. 2017), TONE (Ye et al. 2018b), BCTR (Ye et
al. 2018a), BDTR (Ye et al. 2018b) and D2RL (Wang et
al. 2019c). We adopt visible2thermal and thermal2visible
modes. Here, the visible2thermal means that visible images
are query set and thermal images are gallery set, and so on.
As shown in Table 2, our model can significantly outperform
the state-of-the-arts by 4.7% and 5.1% in terms of Rank-1
scores with thermal2visible and visible2thermal modes, re-
spectively. Overall, the results verify the effectiveness of our
model.

Table 3: Analysis of set-level (SL) and instance-level (IL)
alignment. Please see text for more details.

index SL IL R1 R10 R20 mAP
1 × × 32.1 75.7 87.0 31.9
2 � × 35.1 78.6 88.2 33.8
3 × � 36.0 79.8 89.0 35.5
4 � � 38.1 80.7 89.9 36.9
5 - � 36.8 80.2 89.4 36.0

Model Analysis

Ablation Study. To further analyze effectiveness of the set-
level alignment and the instance-level alignment, we eval-
uate our method under four different settings, i.e. with or
without set-level (SL) and instance-level (IL) alignment.
Specifically, when removing set-level alignment, we use
separate set-level encoder Esl, i.e. we don’t share weights
of set-level encoder Esl with modality-invariant encoder Ei.
When removing instance-level alignment, we set λalign =
0. Moreover, to analyze whether the feature disentanglement
contributes to set-level alignment, we remove the disentan-
glement strategy by using separate set-level encoder Esl and
training it with a GAN loss as in (Dai et al. 2018).

As shown in Table 3, when removing both SL and IL
(index-1), our method only achieve 32.1% Rank-1 score. By
adding SL (index-2) or IL (index-3), the performance is im-
proved to 35.1% and 36.0% Rank-1 score, which demon-
strate the effectiveness of both SL and IL. When using both
SL and IL (index-4), our method achieves the best per-
formance at 38.1% Rank-1 score, which demonstrates that
SL and IL can be complementary with each other. Finally,
when removing the disentanglement from set-level align-
ment (index-5), Rank-1 score drops by 1.3%. This illustrates
that disentanglement is helpful for set-level alignment.

To better understand set-level alignment (SL) and
instance-level alignment (IL), we visualize the distribution
of intra-person similarity and inter-person similarity under
different variants. The similarity is calculated with cosine
distance. Firstly, when comparing with Figure 4(a) and Fig-
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Figure 4: Distribution of cross-modality similarities of
intra-person and inter-person. The instance-level alignment
(IL) can enhance intra-person similarity while keep inter-
person similarity unchanged, which improves performance.
w/ means with and w/o means without.

Figure 5: Rank-1 and mAP scores with different λalign on
SYSU-MM01 under single-shot&all-search mode.

ure 4(b), we can find that even using no SL and IL, model
can easily fit training set, while fails to generalize to test
set. As we can see in Figure 4(b), the two kind of simi-
larities are seriously overlapped. This shows that the cross-
modality variation cannot be well reduced by simply fitting
identity information in training set. Secondly, in Figure 4(c),
we find that although the similarity of intra-person becomes
more concentrated, the similarity of inter-person also be-
come larger. This shows that SL imports some misalignment
of instances which may harm the performance. Finally, in
Figure 4(c) we can see that, IL boosts intra-person similarity,
meanwhile keeps the inter-person similarity unchanged. In
summary, experimental results and analysis above show the
importance and effectiveness of instance-level alignment.

Parameters Analysis. We evaluate the effect of the
weights, i.e. λalign. As shown in Figure 5, we analyze our
method with respect to the λalign on SYSU-MM01 dataset
under single-shot&all-search mode. We can see that, with
different λalign, our method can stably have an signifi-
cant improvement. The experimental results show that our
method is robust to different weights.

Person A
ir(ir2rgb) rgb(rgb2ir)

Person B
ir(ir2rgb) rgb(rgb2ir)

(a)
real

(b)
Ours

(c)
Cycle
GAN

(d)
Star

GAN

Figure 6: Comparision among generated images from ours,
CycleGAN (Zhu et al. 2017) and StarGAN (Choi et al.
2018). Ours can stably generate paired-images with given
real ones, while CycleGAN and StarGAN fail.

Visualization of Images

In this part, we display the generated cross-modality paired-
images from ours, CycleGAN (Zhu et al. 2017) and Star-
GAN (Choi et al. 2018). From Figure 6(a), we can see that,
images of a person in the two modalities are significant dif-
ferent, even human beings cannot easily identify them. In
Figure 6(b), our method can stably generate fake images
when given cross-modality unpaired-images from a person.
For example, in person A, ours can translate her IR images
to RGB version with right colors (yellow upper and black
bottom clothes). However, in Figure 6(c) and Figure 6(d),
CycleGAN and StarGAN cannot learn the right colors even
poses. For example, person B should have blue upper cloth-
ing. However, images generated by CycleGAN and Star-
GAN are red and black, respectively. Those unsatisfying im-
ages cannot be used to learn instance-level aligned features.

Conclusion

In this paper, we propose a novel Joint Set-Level and
Instance-Level Alignment Re-ID (JSIA-ReID). On the one
hand, our model performs set-level alignment by disen-
tangling modality-specific and modality-invariant features.
Compared with vanilla methods, ours can explicitly remove
the modality-specific information and significantly reduce
the modality-gap. On the other hand, given cross-modality
unpaired images, we we can generate cross-modality paired-
images by exchanging their features. With the paired-
images, instance-level variations can be reduced by mini-
mizing the distances between every pair of images. Experi-
mental results on two datasets show the effectiveness of our
proposed method.
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