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Abstract

The small receptive field and capacity of minimal neural net-
works limit their performance when using them to be the
backbone of detectors. In this work, we find that the ap-
pearance feature of a generic face is discriminative enough
for a tiny and shallow neural network to verify from the
background. And the essential barriers behind us are 1) the
vague definition of the face bounding box and 2) tricky de-
sign of anchor-boxes or receptive field. Unlike most top-
down methods for joint face detection and alignment, the
proposed KPNet detects small facial keypoints instead of the
whole face by in the bottom-up manner. It first predicts the
facial landmarks from a low-resolution image via the well-
designed fine-grained scale approximation and scale adap-
tive soft-argmax operator. Finally, the precise face bounding
boxes, no matter how we define it, can be inferred from the
keypoints. Without any complex head architecture or metic-
ulous network designing, the KPNet achieves state-of-the-
art accuracy on generic face detection and alignment bench-
marks with only ∼ 1M parameters, which runs at 1000fps on
GPU and is easy to perform real-time on most modern front-
end chips.

Introduction

The performance of face detection has been constantly im-
proved thanks to the anchor-based mechanism (Girshick
2015; Ren et al. 2015) with the top-down strategy. By sim-
ply assigning dense anchor templates in complex models,
we can obtain a face detector with excellent performance.
In the current state-of-the-art research, the essence of face
detection is how to design the receptive field adaptive to
large scale-variance. With the emergence of some semi-
nal works (Hu and Ramanan 2017; Zhang et al. 2017d;
Najibi et al. 2017) to explore the relationship between the
receptive field and the large scale-variance, the performance
of face detection is further improved. Inspired by this, the
FPN-style framework (Lin et al. 2017) has become a prior-
ity choice for researchers and it can effectively enhance the
performance of face detectors to handle faces with differ-
ent scales. Encouraged by these insights, most of the state-
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Figure 1: Performance of different networks with variant
input resolutions on FDDB. RP# means the receptive
field and the numbers along with the points represent the
multiply-add operations. The distribution diagram in the
lower-left corner represents the scale distribution of ground
truth boxes when the input image resolution is [200, 400].

of-the-art algorithms (Tang et al. 2018; Chi et al. 2018;
Li et al. 2018) construct adaptive receptive fields to detect
faces. They either detect targets with different scales at dif-
ferent levels of the network or detect targets by fusing en-
hanced features generated by different levels. With the as-
sistance of complex deep backbone (He et al. 2016), im-
proving face detection performance with refined receptive
field (Zhang et al. 2017d; Najibi et al. 2017) or embedding
new enhanced modules (Tang et al. 2018; Chi et al. 2018;
Li et al. 2018) has become the guidance in the field of
face detection. However, these top-down approaches with
complex backbone networks lead to a heavy computational
burden, even though some novel works (Song et al. 2018;
Liu et al. 2017) are proposed to accelerate them. Under the
constraints of these current mechanisms, we naturally raise a
question: can large scale-variance be solved only through
a deeper and more complex backbone with well-designed
strategies?

Keep the bottleneck of current research in mind, this pa-
per tries to seek the answer to this question. We re-explore
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face detection from the two aforementioned essential fac-
tors: the receptive field and the large scale-variance. The
above question is decomposed into the following more de-
tailed sub-problems and different controlled experiments are
performed on FDDB to seek answers.
• It’s a common practice to up-sample the images to 480×
640 or even 800 × 1000 which facilitates better perfor-
mance based on a complex backbone network with a large
receptive field. Will the lightweight network fail in this
configuration?

• How do complex and lightweight networks with different
receptive fields perform on low-resolution input images?
We design detection backbones of various depths with

different receptive fields by modifying ResNet50 (He et al.
2016). Four detectors CNN-50L, CNN-41L, CNN-26L and
CNN-17L with depth 50, 41, 26 and 17 are performed on
FDDB. The training set is same with (Liu et al. 2017) and
the recall of top 100 proposals for each image is used for
evaluation. Results are shown in Fig. 1 and the anchor setting
is that A = {[16√2, 16

√
2], [32

√
2, 32

√
2], [64

√
2, 64

√
2]}

for image resolution [200, 400] to detect face scale [16,
128], 2A for image resolution [400, 600] to detect face scale
[32, 256] and 4A for image resolution [800, 1000] to de-
tect face scale [64, 512]. According to the results, the for-
mer questions can be explained. When the lightweight net-
work adopts the high-resolution image, even if the appropri-
ate anchor templates are assigned, it still fails in this con-
figuration due to the limitation of the receptive field. It’s
worth noting that shrinking the image to low resolution
with lightweight backbone can still lead to the compara-
ble performance to the deeper and more complex back-
bone.

However, potential barriers still exist behind this discov-
ery. The accurate face boxes heavily rely on the tricky design
of anchor boxes or receptive field and also, the vague defi-
nition of face boxes (e.g. face boxes in FDDB are defined
by the ellipse) can easily degrade the performance. Fortu-
nately, bottom-up methods can effectively get rid of the bot-
tleneck in top-down mechanism via converting boxes to key-
points (Law and Deng 2018; Zhou, Zhuo, and Krähenbühl
2019). So these ideas naturally lead to a simple, lightweight
but accurate framework KPNet where two essential factors
are embedded into it, one is to shrink the input image to
low resolution with lightweight backbone and the other is
to shrink the face concept from box to keypoints to skip the
deficiency of general pipeline.

Beyond the general face detection pipeline, the precise
facial keypoints can be located first via the carefully de-
signed algorithm and then the accurate face boxes can be
inferred by it. So that it can perform as a bottom-up ap-
proach to joint face detection and alignment. Different from
other top-down algorithms (Zhang et al. 2016; King 2009)
for joint face detection and alignment, KPNet bypasses the
vague definition of bounding boxes and takes advantage of
the less uncertainty definition of keypoints. Moreover, it’s
different from the bottom-up approaches in pose estima-
tion where each landmark is independently predicted and
associative embedding (Newell, Huang, and Deng 2017;

Law and Deng 2018) is used to group them into an instance.
The well-designed fine-grained scale approximation in KP-
Net can potentially imply the group of landmarks and with
the scale adaptive soft-argmax, it can straightforwardly pre-
dict the landmarks belonging to the same face.

To summarize, the contributions of this paper are as fol-
lows:

1) According to the re-exploration on face detection and
the advantages of shrinking target concept from box to
keypoints, we propose a novel KPNet with the simple,
lightweight but accurate mechanism for the generic face
(>20 px) detection and alignment.

2) We propose the fine-grained scale approximation and
scale-based customization soft-argmax operator to improve
the performance by a large margin.

3) Different from all of the joint face detection and align-
ment methods that adopt the top-down pipeline, KPNet fol-
lows the bottom-up mechanism and the more precise defini-
tion of landmarks than boxes enables the better performance.

4) Without bells and whistles, KPNet can achieve the
SOTA performance on generic face detection benchmarks
FDDB, AFW, MALF, and face alignment benchmark
AFLW. And also the model inference speed with the offline
application can achieve ∼ 1000fps on GTX 1080Ti.

Related Works
Face detection. Since the emergence of the powerful
CNN (He et al. 2016), the performance of face detection
has been improved by a large margin. With the success of
anchor-based methods such as Fast RCNN (Girshick 2015)
and Faster RCNN (Ren et al. 2015) on object detection, sev-
eral different approaches (Wang et al. 2017a; 2017b) are in-
spired by them and achieve satisfactory performance on face
detection. More recently, the FPN-style framework (Lin et
al. 2017) encourages the researchers to explore the relation-
ship between the receptive field of the face detector and the
anchor design skills (Zhang et al. 2017d). Benefiting from
these explorations, detecting faces with different scales from
different layers in a single network (Najibi et al. 2017; Tang
et al. 2018; Yang et al. 2017) has determined its position
in the field of face detection. Several works (Li et al. 2018;
Chi et al. 2018) detect a face from the feature fusion of dif-
ferent layers and the enhanced feature make it robust for
scale-variance. The deeper and complex backbone with the
FPN-style framework achieves the new state-of-the-art and
this idea of detector design has dominated face detection for
many years. Unfortunately, the accurate face detection heav-
ily relies on the tricky design of anchor boxes or receptive
field. Moreover, the vague definition of face boxes makes it
hard to generalize to generic face detection.

Face alignment. Face alignment refers to facial landmark
detection and it mainly focuses on identifying the geometry
structure of the human face. The CNN-based face alignment
methods can be divided into two categories, i.e., coordinate
regression model and heatmap regression model.

The coordinate regression model directly regresses the fa-
cial landmarks from the input image. Many works (Dong
et al. 2018b; Feng et al. 2018) have the advantage of ex-
plicit inference of landmarks without any post-processing.
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Figure 2: Overview of KPNet. The backbone is followed by two specific modules, one for generating the landmarks response
map and the other for approximating the fine-grained face scale. Utilizing the predictions from both modules, the landmarks
extractor locates the facial keypoints and infer the face boxes. K and S represent the channel numbers of the feature maps.

However, these regression-based methods are not perform-
ing as well as heatmap regression models. The heatmap re-
gression models generate likelihood heatmaps for each key-
point, respectively. In these heatmap-based methods, hour-
glass networks (Newell, Yang, and Deng 2016) becomes the
backbone of many works (Newell, Yang, and Deng 2016;
Deng et al. 2017) due to its capabilities of obtaining multi-
scale information. Some works (Lv et al. 2017; Sun, Wang,
and Tang 2013) have adopted facial parts to aid face align-
ments tasks and LAB (Wu et al. 2018) uses more precise
facial boundary to assist in detecting facial landmarks.

Joint face detection and alignment. Face alignment and
face detection are closely related, yet few works (Zhang et
al. 2016; King 2009) jointly perform them. The popular al-
gorithm MTCNN (Zhang et al. 2016) follows the general
top-down mechanism which first regresses the face boxes
and then generates the corresponding landmarks. However,
the accurate face boxes generation relies on the tricky de-
sign of anchor boxes and is weak against the vague defini-
tion of face boxes. Comparing with it, KPNet first predicts
the facial landmarks with unambiguous definition and then
inference the face boxes by it. The more precise definition of
landmarks than face boxes enables it to achieve better per-
formance than top-down methods.

KPNet

Overview

In KPNet, we adopt the bottom-up mechanism to perform
face detection and alignment simultaneously. Fig. 2 provides
an overview of KPNet. Firstly, the potential face scale pro-
posals can be predicted by the fine-grained scale approx-
imation. Secondly, the keypoints can be computed by the
scale adaptive soft-argmax with the scalemap and the output
heatmap of landmarks response generation. Finally, we ap-
ply a simple transformation algorithm (Song et al. 2018) to
infer the final bounding boxes from the landmarks.

Fine-grained scale approximation

To better detect the facial keypoints, we need to locate the
focus regions where existing faces are. The anchor-based
mechanism is undoubtedly an appropriate solution, but its’

sophisticated design techniques make it a departure from the
simplicity and flexibility of our framework. Inspired by (Hao
et al. 2017; Liu et al. 2017) where CNN is capable of approx-
imating the scale information in the low-resolution image,
we convert the boxes regression to fine-grained face scale
classification for each pixel in a feature map. Different from
(Liu et al. 2017) where only the existing scales are predicted
to select valid layers from the image pyramid, in KPNet, we
add additional spatial information to scale approximation.

The scalemap is generated by fine-grained scale approx-
imation that consists of only one convolutional layer with
kernel size 3 is used. It is a probability map M with dimen-
sion H ′ × W ′ × S, where S is the predefined number of
scales. Given an image I with face boxes [x, y, h, w] where
(x, y) means the face center and h,w represent the height
and width of the face, the M is firstly initialized to 0 and
then we calculate the active channel index b as:

b = 10× (log2
max(h,w)× 2048

Imax
− 5), (1)

where b is the index from 1 to S and Imax represents the max
edge of I . The minimum detected face size for Imax=1280
in 720P image is 20px. In Eq. 1, the face size from 25 to
211 can be mapped into the different channel indexes in M .
For simplicity, we divide the [2t, 2t+1], t ∈ [5, 10] into 10
scale bins and thus the total scale number S = 60. With the
computed b, the value at coordinate (� x

Ns
�, � y

Ns
�, b) can be

defined as:

M(� x

Ns
�, � y

Ns
�, b) = 1, (2)

where Ns means the stride of the network. Encouraged
by (Wu et al. 2018; Law and Deng 2018), to alleviate the
difficulty of feature learning in the discrete distribution, we
introduce the 2D Gaussian function to refine it. Given the ra-
dius r = � b

10� and the host point (xh, yh) = (� x
Ns

�, � y
Ns

�),
the values of its neighbouring points can be formulated as:

M(xi, yi, b) = e
(
xi−xh

r
)2+(

yi−yh
r

)2

2σ2 , (3)

where (xi, yi) belongs to the neighbour set N (xh, yh, b) and
σ is set to 0.1 in our experiments. During training, the input
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image is resized with the higher dimension equal to 256 and
the loss of the scalemap training is a binary multi-class cross
entropy loss:

Lscale = − 1

|M |
∑
i

pilogp̂i + (1− pi)log(1− p̂i), (4)

where pi, p̂i are the ground truth label and prediction of the
i-th pixel in M . |M | indicates the pixel number in feature
map M .

For inference, given a threshold, we select all of the valid
coordinates (xv, yv, bv) from M and compute the scale sv =
max(h,w) by Eq. 1 based on its channel index bv . Finally,
the scale proposal [xv, yv, sv, sv] can be obtained.

Scale adaptive soft-argmax operator

As shown in (Wu et al. 2018), heatmap regression models
can achieve better performance than coordinate regression
models do. With this conclusion in mind, instead of regress-
ing the keypoint coordinates, we detect them from the land-
mark response map. At the end of the backbone, the land-
mark response generation is used to generate a response map
with dimension H ×W ×K where K is the number of fa-
cial keypoints. It only consists of one convolutional layer
with kernel size 3. Instead of the argmax function, which
is not differentiable, breaking the learning chain on neural
networks (Luvizon, Tabia, and Picard 2017), we propose
the scale adaptive soft-argmax operator which keeps the
properties of specialized part detectors while being fully dif-
ferentiable. Different from the usage in (Luvizon, Tabia,
and Picard 2017) where it applies to the global response
map cooperated with top-down methods, the proposed scale
adaptive soft-argmax is performed on the scale aware lo-
cations cooperated with the bottom-up pipeline.

Given a scale proposal S=[x1, y1, x2, y2] where
x1, y1, x2, y2 mean the top left and bottom right corner, we
define the Softmax operation on it h ∈ R

H×W×K as:

Φ(hi,j,c) =

⎧⎪⎨
⎪⎩

ehi,j,c∑x2

m=x1

∑y2

n=y1
ehm,n,c

, (i, j) ∈ S,

0, others.

(5)

where hi,j,c is the value of heat map h at location (i, j)
of channel c. The coordinates of the landmarks Pc =
(Ψc,x,Ψc,y) corresponding to the S are given by:

Ψc,x =

W∑
i=1

H∑
j=1

P(i− x1, w)

w
Φ(hi,j,c)

Ψc,y =
W∑
i=1

H∑
j=1

P(i− y1, h)

h
Φ(hi,j,c),

(6)

where w, h indicate the width and height of S . P(x, y) re-
turns x when 0 ≤ x ≤ y and 0 otherwise.

For keypoints regression based on each h, we adopt the
Lkeypoint loss function as follows:

Lkeypoint =
1

2K

K∑
c=1

‖Ψc,∗ − Gc,∗‖22 , (7)

Figure 3: Details of DRNet. ‘C’ means the concatenate oper-
ation and other skip operations represent element-wise sum.

where Gc,∗ means the ground truth keypoints. After obtain-
ing the facial keypoints, the face boxes can be inferred by it
conforming to the definition of us. Define the probability of
a scale proposal as Ps, the score of the corresponding face
box is formulated as:

P = Ps +

3∑
c=1

max(Φ(h∗,∗,c)), (8)

where max(·) means the maximum operation on the spatial
resolution and c from 1 to 3 represents the channels corre-
sponding to left eye, right eye, and nose. We empirically uti-
lize the keypoints information to weaken some false positive
scale proposals.

Backbone architecture

We use two different CNN architectures as the backbones
of KPNet, respectively. One is the robust stacked hourglass
network and the other is DRNet with faster inference speed.
The hourglass network only consists of one stacked hour-
glass and the channel number is reduced to 64. The first
convolution layer with kernel size 7× 7, stride 2 is replaced
by two small convolution layers without BN and ReLU be-
tween them. Kernel size 3 × 3 with stride 2 and kernel size
3×3 with stride 1 are assigned to them, respectively. Further-
more, we upsample the spatial resolution by a factor of 2 (us-
ing nearest neighbor upsampling for simplicity) at the end
of the hourglass to reduce the bias caused by heavy down-
sample operations. Finally, the total stride of the hourglass is
2 and the parameter is ∼ 1.04M . Even though the network
has become very lightweight after these specific modifica-
tions, abundant operations on large resolution feature maps
still limit the inference speed of the network.

Following the principle of reducing the redundant opera-
tion on high-resolution feature maps, we design a simple and
fast De-redundancy Net (DRNet). It can achieve ∼ 5× faster
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inference speed than the former hourglass with the same
number of parameters. The details of DRNet are shown in
Fig 3. DRNet is a simple and lightweight network with only
11 layers. Given an input image, we first reduce it 4× via
a 3 × 3 convolution layer with stride 2 and a 2 × 2 max
pooling layer with stride 2. Then some residual blocks are
followed and two nearest neighbor upsampling layers with
factor 2 are used to upsample the spatial resolution. The to-
tal stride of DRNet is 2 and the large-span skip layer enables
the network to retain as much input information as possible
which makes it comfortable for low-resolution input. The
lightweight structure without redundant operations on high-
resolution feature maps ensures that it can achieve the faster
inference speed.

Advantage insights of KPNet

All of the joint face detection and alignment algo-
rithms (Zhang et al. 2016; King 2009) first generate the face
boxes and then predict the corresponding landmarks. Lim-
ited by face detection accuracy which heavily relies on the
tricky design of anchor boxes and is easily influenced by the
ambiguous definition of bounding boxes, it’s hard to achieve
better performance with faster speed. Compared with these
top-down pipelines, KPNet has the following advantages.
First of all, KPNet adopts the bottom-up mechanism that
first locates the landmarks with the unambiguous definition,
and then the face boxes can be inferred from keypoints. The
precise definition of landmarks compared with face boxes al-
lows it to easily achieve higher performance. Secondly, KP-
Net skips anchor designing and thusly is flexible to deploy
this network without complicated design skills. Finally, dif-
ferent from the most face detection methods (Li et al. 2018;
Liu et al. 2017), KPNet does not depend on high-resolution
input. Through the combination of low-resolution input
and lightweight network, it can achieve SOTA performance
on both of the generic face detection (>20px) and align-
ment with fast inference speed (offline application with ∼
1000fps).

Experiments

Implement details

We implement KPNet in PyTorch. Both of the hourglass and
DRNet are randomly initialized under the default setting of
PyTorch without pretraining on any external dataset. Dur-
ing training, we set the input resolution of the network to
256×256, which leads to an output resolution of 128×128.
For training on generic face detection, we adopt the training
set the same as (Liu et al. 2017) and none of the data aug-
mentations is performed. For joint face detection and align-
ment, K is set to 5 representing the left eye, right eye, nose,
left corner of the mouth and right corner of the mouth. We
joint optimize the loss function Lscale and the Lkeypoint

with lossweight 1:1 via SGD. Due to the huge pixels in
scalemap M ∈ R

128×128×60, the weight of Lscale is set
to 10000 for faster convergence. Benefiting from the low-
resolution input and lightweight backbone, we use a batch
size of 128 and train the network on 4 GTX 1080Ti GPUs.
For training on AFLW, because of the missing annotation

of some face boxes in the training set, we only train the
Lkeypoint for the annotated facial landmarks. K is set to 19
to correspond to the annotated facial landmarks in AFLW.
We adopt the data augmentation strategy the same as (Feng
et al. 2018) for preventing over-fitting. We train the network
for 150k iterations with a learning rate warmup strategy. The
learning rate is linearly increased to 0.01 from 0.00001 in the
first 50k iterations and we reduce it to 0.001 for the last 50k
iterations.

At the inference stage, we first generate the scale pro-
posals through the predefined threshold from scalemap, and
then compute the corresponding keypoints via then scale
adaptive soft-argmax according to Eq. 5 and Eq. 6. Finally,
NMS with IOU 0.6 is adopted on the face boxes inferred
from these keypoints.

Test benchmarks

We evaluate KPNet on the generic face detection bench-
marks FDDB (Jain and Learned-Miller 2010), AFW, MALF,
and face alignment benchmark AFLW (Koestinger et al.
2011). We adopt the relabeled version provided by (Liu et
al. 2017) where some missing faces are re-annotated. We
follow (Feng et al. 2018) to adopt the AFLW-Full in our ex-
periments where 20,000 and 4,386 images are used for train-
ing and testing, respectively. For face detection, we follow
the protocol of (Liu et al. 2017).

Network FDDB (%) AFW (%) MALF (%)
RSAbase 96.0 100.0 96.49
DRNet 96.6 99.6 97.1

Hourglasslight 96.7 99.8 97.59

Table 1: Recall on FDDB, AFW, and MALF. All of the re-
sults are evaluated on the top 100 proposals.

Ablation study

Fine-grained scale approximation. Fine-grained scale ap-
proximation is a key component of KPNet. To under-
stand its performance, we directly evaluate its recall on
FDDB, AFW, and MALF. Similar to the evaluation metric
in Sec. , we compute the recall of the top 100 scale propos-
als. Furthermore, we implement the anchor-based detector
RSAbase (Liuetal.2017), which is the SOTA algorithm on
generic face detection. According to their claimed configu-
ration, we evaluate the recall for comparison with the same
protocol. The result is shown in Tab. 1. Hourglasslight is the
modified hourglass network in Sec. The fine-grained scale
approximation can achieve a comparable recall to the SOTA
anchor-based algorithm without relying on the experience
design.

Advantage of scale adaptive soft-argmax operator. We
introduce the scale adaptive soft-argmax (SS) to predict
the facial keypoints coordinates from the heatmap. In or-
der to better evaluate the superiority of SS over coordinate
regression and argmax, We conduct different experiments
with DRNet. For coordinate regression, we replace the
SS by a fully connected layer to directly regress the key-
points coordinates. We adopt the global average pooling on
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Methods FDDB FDDB−90◦ FDDB90◦ PFDDB
RSAbase 92.15 57.67 56.78 92.8/59.93

regression 90.86 68.96 67.2 90.94/ 47.97
argmax 88.98 50.65 49.9 83.51/43.9

SS 91.6 69.32 69.97 91.29/61.44

Table 2: Performance on different test sets. We report the
recall at false positive number 50. All of the experiments
except RSAbase are based on DRNet. The two values in
PFDDB mean the evaluation on IOU 0.7 and 0.8, respec-
tively.

Backbone SP SS GT box FDDB
DRNet � 90.7/47.3
DRNet � � 91.6/81.1
DRNet � � 96.6/96.6

Hourglasslight � 91.64/12.52
Hourglasslight � � 92.61/80.9
Hourglasslight � � 96.72/96.72

Table 3: Ablation study for error analysis. The recall values
are evaluated at false positive number 50 and 1 on FDDB.
SP, SS and GT box mean the scale proposal, scale adaptive
soft-argmax and ground-truth face boxes.

the scale proposal S indicated in Sec. to convert it to a fea-
ture vector with the fixed size. A fully connected layer with
output 2K is applied to regress the keypoint coordinates
where K means the keypoint number and L2 loss is used
for optimization. For argmax, each channel in the specific
location S of M corresponding to a specific keypoint and
only the coordinates existing keypoints will be set to 1. The
loss function is the same as Eq. 4. In the ablation study, we
further conduct FDDB−90◦ , FDDB90◦ and PFDDB as the
additional benchmarks. FDDB−90◦ and FDDB90◦ are gener-
ated by rotating the FDDB with −90◦ and 90◦, respectively.
PFDDB is assigned by all of the images from FDDB which
containing profile faces (Roll > 30◦ or Yaw > 30◦ or Pitch
> 30◦).

The results are shown in Tab. 2. All of the models are
trained on normal faces without rotation augmentation. SS
performs better than others, even the anchor-based RSAbase

with high-resolution input and image pyramid, KPNet can
achieve comparable performance, even more, robust in face-
rotation scenarios. In actually, detecting face boxes from key
points is important for the lightweight network than directly
regressing bounding boxes. Key points have less uncertain
information which is easier for lightweight models to fit.
Besides, the semantic information of the landmarks is fixed,
even if the face angle/pose changes. This ensures its robust-
ness to face angle/ pose variance.

Error analysis. KPNet simultaneously outputs fine-
grained scale heatmap and landmarks response map. To un-
derstand how each part contributes to the final error, we per-
form an error analysis by replacing the predicted scale pro-
posal with the ground-truth boxes. Furthermore, to evaluate
the SS contribution to KPNet, we detect the faces only by
scale proposal.

method average normalized error
PCD-CNN (Kumar and Chellappa 2018) 2.40

TSR (Lv et al. 2017) 2.17
LAB (Wu et al. 2018) 1.25

SAN (Dong et al. 2018a) 1.91
PFLD 1X (Guo et al. 2019) 1.88

Wing (Feng et al. 2018) 1.65
CPM+SBR (Dong et al. 2018b) 2.14

KPNet+DRNet 1.87
KPNet+Hourglasslight 1.45

Table 4: A comparison of different approaches in terms of
the average error normalized (×10−2) on AFLW.

Tab. 3 shows that the proposed SS can effectively improve
the quality of scale proposal and provide the more precise fa-
cial location, especially the recall at false positive number 1.
Replacing the SP by GT box improves the recall by 4 ∼ 5%.
This suggests that there is still ample room for improvement
in both SP and SS.

Comparisons with SOTA algorithms

For face detection, we compare our KPNet with state-of-the-
art methods (Liu et al. 2019; Li et al. 2018; Zhang et al.
2017a; Tang et al. 2018; Zhang et al. 2017b; Wang et al.
2017b; Zhang et al. 2017c; Li et al. 2015; Liu et al. 2017;
Yang et al. 2015; Yu et al. 2016; Mathias et al. 2014; Chen
et al. 2016; Farfade, Saberian, and Li 2015; Yang et al. 2014;
Zhang et al. 2016) and the DLIB c++ library (King 2009),
which supports for joint face detection and alignment. Fig. 4
shows the comparison with other approaches on three bench-
marks. On AFW, our algorithm KPNet can achieve 99.53%
AP and 98.72% AP by Hourglasslight and DRNet, respec-
tively. On FDDB, KPNet+Hourglasslight recalls 92.61%
faces with 50 false positives as shown in Fig. 4a which out-
performs most of the approaches. On MALF, our methods
can also achieve a comparable result with the state-of-the-
art. It should be noticed that the shape and scale definition
of the bounding box on each benchmark varies. KPNet can
be easily applied to these benchmarks without complicated
design choices.

For face alignment, we compared KPNet with other state-
of-the-art methods on AFLW. AFLW is a challenging dataset
that has been widely used for evaluating face alignment al-
gorithms. As shown in Tab. 4, our KPNet+Hourglasslight
outperforms all of the other approaches and KPNet+DRNet
can also achieve comparable performance.

Furthermore, we compare KPNet+DRNet with the
bottom-up associative embedding (AE) (Newell, Huang,
and Deng 2017; Law and Deng 2018) and top-down
RPN+DRNet. As shown in Tab 6, whether adopting anchor-
based RPN or AE, the performance is strictly limited by
the capacity of lightweight backbone. It’s in stark contrast
that KPNet with fine-grained scale approximation and scale
adaptive soft-argmax achieve excellent performance. To bet-
ter understand the performance of KPNet, we visualize some
images sampled from FDDB and AFLW in Fig. 5.
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(a) FDDB (b) AFW (c) MALF

Figure 4: Comparison to the state-of-the-art on face detection benchmarks. The proposed KPNet with low-resolution input and
lightweight architecture can achieve comparable results with other well-designed anchor-based algorithms.

Method Face detection Face alignment Online speed Offline speed # Param FDDB AFLW
RSAbase (Liu et al. 2017) � ∼ 19.7msTi W/o ∼ 4M 92.15% W/o
S2AP (Song et al. 2018) � ∼ 23.1msP100 W/o ∼ 13.3M 93.5% W/o

S3FD (Zhang et al. 2017d) � ∼ 27.8msXP - ∼ 22.46M 92.9% W/o
MTCNN (Zhang et al. 2016) � � ∼ 31.3msTi - ∼ 1.4M 90.44% 6.9∗

DLIB (King 2009) � � ∼ 66.7msTi - - - 78.1% -
PFLD 1X (Guo et al. 2019) � ∼ 3.5msTi - - ∼ 3.1M W/o 1.88

LAB (Wu et al. 2018) � ∼ 60msX - - ∼ 12.6M W/o 1.25
SAN (Dong et al. 2018a) � ∼ 343msTi - - ∼ 199.6M W/o 1.91
Wing (Feng et al. 2018) � ∼ 5.9msX - - ∼ 12.3M W/o 1.65
KPNet+Hourglasslight � � ∼ 10.3msTi ∼ 1.6msTi ∼ 1.04M 92.61% 1.45 (4.45∗)

KPNet+DRNet � � ∼ 2.6msTi ∼ 1.0msTi ∼ 1.02M 91.6% 1.87 (5.77∗)

Table 5: Comparison with different approaches in terms of the inference speed and performance on FDDB and AFLW. The
online speed means we evaluate it with batch size 1 and the offline speed means we evaluate it with batch size (> 32). W/o
means this application is not supported (e.g. S2AP can only support the batch size 1 due to its’ high-resolution input.). T i,
P100, XP and X indicate the GTX 1080Ti, NVIDIA P100, TITAN X Pascal and TITAN X GPU. The ∗ in MTCNN means
this result is normalized by inter-ocular distance and other results on AFLW are normalized by face size.

Figure 5: Visualization of joint face detection and alignment.
Images are sampled from FDDB and AFLW.

Method FDDB (%) AFW (%) MALF (%) AFLW
RPN+DRNet 75.82 88.82 58.68 2.12
AE+DRNet 46.96 76.8 32.57 2.12

KPNet+DRNet 91.6 98.72 88.92 1.87

Table 6: Comparison with top-down method and bottom-up
methods AE proposed in pose estimation.

Analysis of the inference speed

In this section, we explore the performance and speed in de-
tail compared with other approaches as shown in Tab. 5. We
report the recall at false positive number 50 on FDDB and
the NME (×10−2) on AFLW.

In the offline applications, KPNet with DRNet can
achieve ∼1000 fps at GTX 1080Ti, faster than other face de-
tectors with a large margin. Even compared with the state-

of-the-art algorithms on face alignment, KPNet still has a
faster model inference speed.

Both the MTCNN and DLIB are the popular frameworks
for joint face detection and alignment. KPNet outperforms
them with a large margin in terms of inference speed and
performance. No complex hyperparameter designing is re-
quired so that it can be easily applied to different scenarios.

Conclusion

This paper proposes a simple, lightweight but accurate
framework KPNet which does away with anchor boxes. It
focuses on joint generic face (> 20px) detection and align-
ment. Unlike most face detection methods and top-down
joint face detection and alignment methods, KPNet adopts
the bottom-up mechanism. It first predicts the facial land-
marks from a low-resolution image via the well-designed
fine-grained scale approximation and scale adaptive soft-
argmax operator. Finally, the precise face bounding boxes,
no matter how we define it, can be inferred from the land-
marks. KPNet can effectively alleviate the vague definition
of the face bounding box. Without bells and whistles, KPNet
achieves state-of-the-art accuracy on generic face detection
and alignment benchmarks with only ∼ 1M parameters. The
model inference speed can achieve ∼ 1000fps on GPU and
it’s easily deployed to most modern front-end chips.
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