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Abstract

Efficiency is an important issue in designing video architec-
tures for action recognition. 3D CNNs have witnessed re-
markable progress in action recognition from videos. How-
ever, compared with their 2D counterparts, 3D convolutions
often introduce a large amount of parameters and cause high
computational cost. To relieve this problem, we propose an
efficient temporal module, termed as Temporal Enhancement-
and-Interaction (TEI Module), which could be plugged into
the existing 2D CNNs (denoted by TEINet). The TEI mod-
ule presents a different paradigm to learn temporal features
by decoupling the modeling of channel correlation and tem-
poral interaction. First, it contains a Motion Enhanced Mod-
ule (MEM) which is to enhance the motion-related features
while suppress irrelevant information (e.g., background).
Then, it introduces a Temporal Interaction Module (TIM)
which supplements the temporal contextual information in
a channel-wise manner. This two-stage modeling scheme is
not only able to capture temporal structure flexibly and ef-
fectively, but also efficient for model inference. We conduct
extensive experiments to verify the effectiveness of TEINet
on several benchmarks (e.g., Something-Something V1&V2,
Kinetics, UCF101 and HMDB51). Our proposed TEINet can
achieve a good recognition accuracy on these datasets but still
preserve a high efficiency.

1 Introduction

Video understanding is one of the most important prob-
lems in computer vision (Simonyan and Zisserman 2014;
Tran et al. 2015; Wang et al. 2016). Action recognition is
a fundamental task in video understanding, as it is able to
not only extract semantic information from videos, but also
yield general video representations for other tasks such as
action detection and localization (Feichtenhofer et al. 2018;
Zhao et al. 2017). Unlike static images, the core problem of
action recognition is how to model temporal information ef-
fectively. Temporal dimension typically exhibits a different
property with respect to spatial domain. Modeling temporal
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Figure 1: TEINet building block. We present an effective
TEI module to decouple temporal modeling into a MEM to
enhance motion-related features and a TIM capture temporal
contextual information. This TEI module could be inserted
into the 2D ResNet block to construct an efficient video ar-
chitecture of TEINet.

information in a proper way is crucial for action recognition,
which has aroused great interest of research.

Recently the convolutional networks (LeCun et al. 1998)
have become the mainstream method in action recogni-
tion (Simonyan and Zisserman 2014; Carreira and Zisser-
man 2017; Tran et al. 2018). TSN (Wang et al. 2016) is an
efficient method which ignores the constraint on temporal
order information and only aggregates temporal information
at the final classifier layer. To capture temporal information
slowly and earlier, some new efficient 2D CNN based ar-
chitectures are developed such as StNet (He et al. 2019) and
TSM (Lin, Gan, and Han 2018). However, they involve some
hand-crafted designs, which lacks a clear explanation and
may be suboptimal for temporal modeling. 3D CNNs (Tran
et al. 2015; Carreira and Zisserman 2017) are more princi-
pled architectures for directly learning spatiotemporal fea-
tures from RGB frames. Unfortunately, this simple exten-
sion from a 2D convolution to its 3D version leads to a criti-
cal issue: it causes high computational cost when densely re-
placing 2D convolutions with 3D counterparts. Therefore we
hope to devise a flexible temporal modeling module which

11669



shares the capacity of learning spatiotemporal representa-
tions yet still keeps the efficiency of 2D CNNs.

Intuitively, temporal structure in video can benefit action
recognition from multiple aspects. Firstly, motion informa-
tion is able to help us focus on moving objects or people
that are discriminative for action recognition. These discrim-
inative features could be automatically determined for each
input video. Secondly, the temporal evolution of visual fea-
tures enables us to capture dynamic variation in videos and
relate adjacent frame-level features for action recognition.
Based on these analyses, we propose a new temporal mod-
eling paradigm, termed as Enhance-and-Interact. This new
design decouples the temporal module into two stages: first
enhance discriminative features and then capture their tem-
poral interaction. This unique design enables us to separately
capture the channel-level correlation and temporal relation
in a more principled and efficient way. It turns out that this
separate modeling scheme is able to not only capture tem-
poral structure flexibly and effectively, but also keeps a high
inference efficiency in practice.

Specifically, we first present the Motion Enhanced Mod-
ule (MEM), which utilizes motion information as a guide
to focus on important features. To make this enhancement
more efficient and effective, we squeeze the feature maps to
only focus on channel-level importance and exploit temporal
difference as an approximate motion map. Then, to capture
the temporal interaction of adjacent frames, we present the
Temporal Interaction Module (TIM), which model the local
temporal variations of visual features. To control the model
complexity and ensure the inference efficiency, we employ
a temporal channel-wise convolution in a local time win-
dow. These two modules are plugged sequentially to yield
a novel temporal module, namely Temporal Enhancement-
and-Interaction (TEI module), which is a generic building
block and could be plugged into the existing 2D CNNs
such as ResNets, as illustrated in Figure 1.

In experiments, we verify the effectiveness of TEI block
with the 2D ResNet on the large-scale datasets such as Ki-
netics (Kay et al. 2017) and Something-Something (Goyal
et al. 2017). The final video architecture, coined as TEINet,
obtains an evident performance improvement over previous
approaches while is still able to keep fast inference speed.
In particular, our TEINet achieves the state-of-the-art per-
formance on the dataset of Something-Something, and com-
parable performance to previous 3D CNN based methods
at a lower computational cost on the dataset of Kinetics.
We also demonstrate the generalization ability of TEINet by
fine-tuning on the datasets of UCF101 and HMDB51, where
competitive recognition accuracy is also obtained. The main
contribution in this work is summarized as follows:
• We present a new temporal modeling module, termed as

TEI module, by decoupling the task of temporal feature
learning into channel-level enhancement and local tem-
poral interaction.

• The proposed TEINet is verified on various large-scale
datasets, demonstrating that it is able to obtain an evident
improvement over previous temporal modeling methods
with a lower computational cost.

2 Related Work

2D CNNs in Action Recognition. Conventional 2D CNNs
were extensively applied on action recognition in videos (Si-
monyan and Zisserman 2014; Feichtenhofer, Pinz, and
Wildes 2016; Wang et al. 2016; Lin, Gan, and Han 2018;
Gan et al. 2015). Two stream methods (Simonyan and Zis-
serman 2014; Feichtenhofer, Pinz, and Zisserman 2016;
Zhang et al. 2016) regarded optical flow or motion vector
as motion information to make up a temporal stream CNN.
TSN (Wang et al. 2016) utilized average pooling to aggre-
gates temporal information from set of sparsely-sampled
frames. To improve the temporal reasoning ability of TSN,
the TRN (Zhou et al. 2018) was proposed by focusing on
the multi-scale temporal relations among sampled frames.
To model temporal structure efficiently, TSM (Lin, Gan, and
Han 2018) proposed a temporal shift module on the original
feature map. Sharing the same motivation with TSM, our
TEINet is also based on 2D backbones with high efficiency,
but better at capturing temporal clues for video recognition.
3D CNNs in Action Recognition. 3D convolution (Tran
et al. 2015; Carreira and Zisserman 2017) was a straight-
forward extension over 2D versions to learn the spatiotem-
poral representation directly from RGB. I3D (Carreira and
Zisserman 2017) inflated all 2D convolution kernels into
3D convolution kernels and directly utilized the pre-trained
weights on ImageNet (Deng et al. 2009). ARTNet (Wang
et al. 2018a) improved the original 3D convolutions with
higher-order relation modeling to explicitly capture motion.
3D convolution is natural and simple way for modeling tem-
poral features, yet in practice with heavy computation. Un-
like 3D CNNs, our TEINet resorts to a new temporal module
purely based on 2D CNNs for video recognition.
Efficient Temporal Modules. Some efficient temporal
models were proposed by using combination of 2D and 3D
convolutions. ECO (Zolfaghari, Singh, and Brox 2018) com-
bined the 2D convolution and 3D convolution into one net-
work to achieve a balance between 2D CNNs and 3D CNNs.
To decompose the optimization of spatial and temporal fea-
tures, pseudo-3D convolution, e.g., P3D (Qiu, Yao, and Mei
2017), S3D (Xie et al. 2018) and R(2+1)D (Tran et al. 2018),
decomposed the spatio-temporal 3D convolution into a spa-
tial 2D convolution and a temporal 1D convolution. Our
TEINet integrates a new temporal block into a purely 2D
backbone to endow network with the ability to model tem-
poral structure in videos.
Attention in Action Recognition. The attention mecha-
nism (Hu, Shen, and Sun 2018; Li, Hu, and Yang 2019) were
widely used in image classification, which can boost perfor-
mance using a small portion of extra parameters. Similarly,
there are some works (Wang et al. 2018b; Girdhar and Ra-
manan 2017) related to attention in action recognition. Non-
local network formulates the non-local mean operation as
Non-local block to capture the long-range dependencies in
video. Motion enhanced module (MEM) in our method dif-
fers from these attention methods. MEM constructs the tem-
poral attention weights by local motion tendency which can
be trained by end-to-end without using extra supervision and
give a sizable boost in accuracy.
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Figure 2: The pipeline of TEI module. We show motion enhanced module (MEM) in the left and temporal interaction module
(TIM) in the right. The � denotes element-wise multiplication, and � denotes element-wise subtraction. Notably, in TIM, we
use different box to represent kernel weights, which means each channel do not share kernel weights.

3 Method

We will introduce our proposed TEI module in this section.
First, we describe motion enhanced module and explain how
to learn a channel level attention weights. Then we present
the technical details of temporal interaction module. Finally
we combine these two modules as a TEINet building block
and integrate this block into the off-the-shelf architecture of
2D CNN.

3.1 Motion Enhanced Module

In action recognition, spatial features can only provide par-
tial information for action recognition. It is well established
that motion information is an crucial cue for understand-
ing human behavior in videos. Consequently, we first design
a Motion Enhanced Module (MEM) to focus on motion-
salient features while suppress the irrelevant information at
background.

Our method is to enhance the motion-related features
in a channel-wise way by using the temporal difference
of adjacent frame level features. To decrease the compu-
tational cost, we first construct a global representation for
each channel and then perform feature enhancement in a
channel level. As depicted in Figure 2, given an input se-
quence X = {x1, x2, ..., xT } in which xt ∈ R

C×H×W , We
first aggregate feature map xt across their spatial dimensions
(H ×W ) by using global average pooling, which produces
x̂t ∈ R

C×1×1. Then, these pooled features go through sub-
sequent processing operations to generate the channel im-
portance weights.

Basically, we observe that the overall appearance infor-
mation varies gradually and slowly over time. The pixel val-
ues in motion salient regions would change more quickly
than those in static regions. In practice, we exploit the fea-
ture difference between adjacent frames to approximately
represent the motion saliency. To reduce the model complex-
ity, the x̂t and x̂t+1 are fed into two different 2D convolu-
tions whose kernel size of 1 × 1 in which the channels of
x̂t will be compressed. This dimension reduction and differ-
ence calculation can be formulated as:

st = Conv1(x̂t,Wθ)− Conv2(x̂t+1,Wφ). (1)

Here Wθ and Wφ are learnable parameters of the convolu-
tions that reduce the number of channels in X̂ from C to C

r .
In our experiments, the reduction ratio r is set to 8.

Then another 2D convolution is applied on st, which aims
to recover the channel dimension of st as same as input st.
The attention weights are obtained by:

ŝt = σ(Conv3(st,Wϕ)), (2)

where σ(∗) denotes a sigmoid function and Wϕ are learn-
able parameters of Conv3. Finally we obtain attention
weights ŝ ∈ R

C×1×1 for different channels. We utilize
channel-wise multiplication to enhance motion-salient fea-
tures:

ut = ŝt · xt, (3)
where t ∈ [1, T − 1] and ut is our final enhanced feature
map. To keep the temporal scale consistent with input X ,
we simply copy the xT as uT , namely, uT = xT .

Discussion. We have noticed that our MEM is similar to
SE module in (Hu, Shen, and Sun 2018). However, the es-
sential difference between SE module and MEM is that SE
module is a kind of self attention mechanism by using its
own global feature to calibrate the different channels, while
our MEM is a motion-aware attention module by enhanc-
ing the motion-related features. To prove the effectiveness
of MEM, we conduct the comparative experiments in sec-
tion 4.3. Under the same setting, our MEM is better at en-
hancing temporal features for action recognition than SE
module in video dataset.

3.2 Temporal Interaction Module

In MEM, we enhance the motion-related features, but our
model is still incapable of capturing temporal information
in a local time window, namely the temporal evolution of
visual pattern over time. Consequently, we propose the Tem-
poral Interaction Module (TIM) which aims to capture tem-
poral contextual information at a low computational cost.
More specifically, we here use a channel-wise convolution
to learn the temporal evolution for each channel indepen-
dently, which preserves low computational complexity for
model design.
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As illustrated in Figure2, given a input U =
{u1, u2, ..., uT }, we first transform its shape from
UT×C×H×W to ÛC×T×H×W (denoted by Û to avoid
ambiguity). Then we apply the channel-wise convolution to
operate on Û as follows:

Yc,t,x,y =
∑

i

Vc,i · Ûc,t+i,x,y, (4)

where V is the channel-wise convolutional kernel and
Yc,t,x,y is the output after temporal convolution. The
channel-wise convolution tremendously decreases the com-
putation costs comparing with 3D convolution. In our set-
ting, the kernel size of the channel-wise convolution is
3×1×1, which implies the features are only interacting with
features in adjacent time, but the temporal receptive fields
will gradually grow when feature maps pass through deeper
layers of network. After convolution, we will transform the
shape of output Y back to T×C×H×W . The parameters of
vanilla 3D convolution is Cout×Cin×t×d×d, and the tem-
poral 1D convolution in (Tran et al. 2018) is Cout×Cin× t,
but the parameters of TIM is Cout × 1 × t. The number of
parameters in TIM is greatly reduced when compared with
other temporal convolutional operators.

Discussion. We figure out our TIM is related to the re-
cent proposed TSM (Lin, Gan, and Han 2018). In fact, TSM
could be viewed as a channel-wise temporal convolution,
where temporal kernel is fixed as [0, 1, 0] for non shift,
[1, 0, 0] for backward shift, and [0, 0, 1] for forward shift.
Our TIM generalizes the TSM operation into a flexible mod-
ule with a learnable convolutional kernel. In experiment, we
find that this learnable scheme is more effective than random
shift to capture temporal contextual information for action
recognition.

3.3 TEINet

After introducing the MEM and TIM, we are ready to
describe how to build the temporal enhancement-and-
interaction block (TEI) and integrate it into the existing net-
work architecture. As shown in Figure 1, the TEI module is
composed of MEM and TIM introduced above, which could
be implemented efficiently. First the input feature maps will
be fed into MEM to learn attention weights for different
channels, which aims to enhance the motion-related fea-
tures. Then the enhanced features will be fed into the TIM
to capture temporal contextual information. Our TEI module
is a generic and efficient temporal modeling module, which
could be plugged into any existing 2D CNN to capture tem-
poral information, and the resulted network is called Tempo-
ral Enhancement-and-Interaction Network (TEINet).

Our TEI module is directly inserted into the 2D CNN
backbone, while other methods (Tran et al. 2018; Qiu, Yao,
and Mei 2017; Xie et al. 2018) replace the 2D convolutions
with more expensive 3D convolutions or (2+1)D convolu-
tions. This new integration method is able to not only use the
pre-trained ImageNet model for initialization but also bring
a smaller number of extra computational FLOPs compared
with 3D CNNs. In our experiments, to trade off between
performance and computational cost, we instantiate the tem-
poral enhancement-and-interaction network (TEINet) using

ResNet-50 (He et al. 2016) as backbone. We conduct exten-
sive experiments to figure out the optimal setting of TEINet
for action recognition in Section. 4.

Discussion. Our paper proposed enhancement-and-
interaction is a factorized modeling method to endow net-
work with a strong ability to learn the temporal features in
videos. We find that our module is effective for both types
of video datasets: motion dominated one such as Something-
Something V1&V2 and appearance dominated one such as
Kinetics-400. MEM and TIM focus on different aspects
when capturing temporal information, where MEM aims to
learn channel level importance weights and TIM tries to
learn temporal variation pattern of adjacent features. These
two modules are cooperative and complementary to each
other as demonstrated in Table 1a.

4 Experiments

4.1 Datasets

Something-Something V1&V2. (Goyal et al. 2017) is a
large collection of video clips containing daily actions in-
teracting with common objects. It tries to focuses on mo-
tion itself without differentiating manipulated objects. V1
includes 108499 video clips, and V2 includes 220847 video
clips. They both have 174 classes.
Kinetics-400. (Kay et al. 2017) is a large-scale dataset in ac-
tion recognition, which contains 400 human action classes,
with at least 400 video clips for each class. Each clip is col-
lected from YouTube videos and then trimmed to around
10s. The newest version of Kinetics has updated to Kinetics-
700 which approximately includes 650k video clips that
covers 700 human action classes. For fair comparison with
previous methods, we conduct experiments on Kinetics-400.
UCF101 and HMDB51. Finally, to verify the generaliza-
tion ability to transfer to smaller scale datasets, we report
the results on the datasets of UCF101 (Soomro, Zamir,
and Shah 2012) and HMDB51 (Kuehne et al. 2011). The
UCF101 contains 101 categories with around 13k videos,
while HMDB51 has about 7k videos spanning over 51 cat-
egories. On UCF101 and HMDB51, we follow the common
practice that reports the accuracy by averaging over three
splits. Different from Something-Something, the datasets of
Kinetics-400, UCF101 and HMDB51 are less sensitive to
temporal relationship.

4.2 Experimental Setup

We here choose the ResNet-50 as our backbone for the trade
off between performance and efficiency. Unless specified,
our model is pre-trained on ImageNet (Deng et al. 2009).
Training. We applied a similar pre-processing method
to (Wang et al. 2018b): first resizing the shorter side of raw
images to 256 and then employing a center cropping and
scale-jittering. Before being fed into the network, the im-
ages will be resized to 224× 224. In our model, We attempt
to stack 8 frames or 16 frames as a clip. On the Kinetics
dataset, we train our models for 100 epochs in total, start-
ing with a learning rate of 0.01 and reducing to its 1

10 at 50,
75, 90 epochs. For fair comparisons with the state-of-the-
art models, we follow the testing strategy in (Lin, Gan, and
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model Top-1 Top-5
Res50+TSN 19.7% 46.6%
Res50+TSM 43.4% 73.2%
Res50+MEM 33.5% 61.5%
Res50+TIM 46.1% 74.7%

Res50+SE+TIM 46.1% 75.2%
Res50+MEM+TIM 47.4% 76.6%

(a) Exploration on MEM and TIM, and
comparison with other baseline methods.

stage Top-1 Top-5
res2 41.6% 70.1%
res3 43.1% 72.1%
res4 45.4% 74.6%
res5 45.3% 74.3%

(b) The TEI blocks in different
stage of ResNet-50

stages Blocks Top-1 Top-5
res5 3 45.3% 74.3%

res4−5 9 46.7% 76.3%
res3−5 13 47.3% 75.2%
res2−5 16 47.4% 75.8%

(c) The number of TEI block inserted into
ResNet-50.

Table 1: Ablation studies on Something-Something V1.

Method Frame Params FLOPs Latency Throughput Sthv1
I3D (Carreira et al. 2017) 64 35.3M 360G 165.3ms 6.1 vid/s 41.6%

ECO16f (Zolfaghari et al. 2018) 16 47.5M 64G 30.6ms 45.6 vid/s 41.4%
TSN (Wang et al. 2016) 8 24.3M 33G 15.5ms 81.5 vid/s 19.7%
TSM (Lin et al. 2018) 8 24.3M 33G 17.4ms 77.4 vid/s 43.4%
TSM (Lin et al. 2018) 16 24.3M 65G 29.0ms 39.5 vid/s 44.8%

Res50+TIM 8 24.3M 33G 20.1ms 61.6 vid/s 46.1%
TEINet 8 30.4M 33G 36.5ms 46.9 vid/s 47.4%

Res50+TIM 16 24.3M 66G 34.9ms 31.4 vid/s 48.5%
TEINet 16 30.4M 66G 49.5ms 24.2 vis/s 49.9%

Table 2: Quantitatively analysis on latency and throughput Something-Something V1. ”vid/s” represents videos per second.
The larger latency and the smaller throughput represent higher efficiency.

Han 2018), which uniformly samples 8 or 16 frames from
the consecutive 64 frames randomly sampled in each video.
We observe that the duration of most videos in Something-
Something V1&V2 normally has less than 64 frames. Thus
we use the similar strategy to TSN (Wang et al. 2016) to
train our model. Specifically, we uniformly sample the 8
or 16 frames from each video. On Something-Something
V1&V2, We train the TEINet for 50 epochs starting with
a learning rate 0.01 and reducing it by a factor of 10 at 30,
40, 45 epochs. For all of our experiments, we utilize SGD
with momentum 0.9 and weight decay of 1e-4 to train our
TEINet on Tesla M40 GPUs using a mini batch size of 64.
Inference. We follow the widely used settings in (Wang et
al. 2018b; Lin, Gan, and Han 2018): resizing shorter side to
256 and taking 3 crops (left, middle, right) in each frame.
Then we uniformly sample 10 clips in each video and com-
pute the classification scores for all clips individually. The fi-
nal prediction will be obtained by utilizing the average pool-
ing to aggregate the scores of 10 clips.

4.3 Ablation Studies

This section provides ablation studies on TEI module design
and integration with ResNet50 on the Something-Something
V1 dataset. In this section, we report the experimental results
using the testing scheme of center crop and one clip, the
results are summarized in Table 1.
Study on MEM and TIM. We first conduct a separate study
on the effect of each individual module (MEM or TIM) on
action recognition. We find that the TIM is able to yield a
better recognition accuracy than MEM (46.1% vs. 33.5%),
indicating that temporal contextual information is more im-
portant for action recognition in the Something-Something

dataset. Then, we compare our TIM with other efficient tem-
poral modeling baselines such as TSN and TSM, which
demonstrates that our TIM is more effective than these base-
line methods. Finally, we compare the performance of MEM
with SE on action recognition, and we see that MEM+TIM
is better than SE+TIM by 1.3%, which confirms our moti-
vation that motion-aware attention is better at capturing dis-
criminative temporal features for action recognition.
Which stage to insert TEI blocks. As shown in Table 1b,
we find that a clear performance improvement will be ob-
tained when inserting TEI block in the later stages. It is
worth noting that res4 has 3 more blocks than res5, but
integration at both locations achieves a similar result. The
temporal modeling based on higher level features may be
more beneficial to recognition, which agrees with the find-
ings from (Xie et al. 2018).
The number of TEI block inserted into network. Effi-
ciency is an important issue and sometimes we may focus on
improving recognition accuracy with a limited extra compu-
tation consumption. We here expect to figure out how many
TEI blocks can obtain a trade-off performance. Specifically,
We attempt to gradually add TEI blocks from res5 to res2
in ResNet50. As shown in Table 1c where we use the same
inference settings as Table 1a, we can boost the performance
by inserting more TEI blocks. We also see that res2−5 only
outperforms res4−5 by 0.7%, but with extra 7 TEI blocks.
Therefore, in practice, we recommend to use TEI block sim-
ply in stages of res4−5 as it is more efficient. But our default
choice of the remaining experiments are ready to use the
ResNet50 equipped with TEI blocks in all stages.
Analysis on runtime. The runtime of model has also drawn
considerable attention from researchers in recent years. Sev-
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Method Backbone Pre-train Frames FLOPs Val Test
Top-1 Top-1

TSN-RGB (Wang et al. 2016) ResNet2D-50 ImgNet 8f 33G 19.7% -
TRN-Multiscale-RGB (Zhou et al. 2018) BNInception

ImgNet
8f 33G 34.4% 33.6%

TRN-Multiscale-RGB (Zhou et al. 2018) ResNet2D-50 8f 33G 38.9% -
TRN-Multiscale-2Stream (Zhou et al. 2018)∗ BNInception 8f + 8f - 42.0% 40.7%

S3D-G-RGB (Xie et al. 2018) Inception ImgNet 64f 71G 48.2% -
I3D-RGB (Wang and Gupta 2018) ResNet3D-50

ImgNet+K400 32f × 2
306G 41.6% -

NL I3D-RGB (Wang and Gupta 2018) ResNet3D-50 334G 44.4% -
NL I3D+GCN-RGB (Wang and Gupta 2018) ResNet3D-50+GCN 606G 46.1% 45.0%

ECO-RGB (Zolfaghari et al. 2018)
BNIncep+Res3D-18 K400

16f 64G 41.6% -
ECO-RGB (Zolfaghari et al. 2018) 92f 267G 46.4% -

ECOEnLite-2Stream (Zolfaghari et al. 2018)∗ 92f + 92f - 49.5% 43.9
TSM-RGB (Lin, Gan, and Han 2018)

ResNet2D-50 ImgNet+K400

8f 33G 43.4% -
TSM-RGB (Lin, Gan, and Han 2018) 16f 65G 44.8% -

TSMEn-RGB (Lin, Gan, and Han 2018) 16f + 8f 98G 46.8% -
TSM-2Stream (Lin, Gan, and Han 2018)∗ 16f + 16f - 50.2% 47.0

TEINet-RGB ResNet2D-50 ImgNet

8f 33G 47.4% -
8f × 10 990G 48.8% -
16f 66G 49.9% -

16f × 10 1980G 51.0% 44.7%
TEINetEn-RGB ResNet2D-50 ImgNet 16f + 8f 99G 52.5% 46.1%

Table 3: Comparison with the state-of-the-art on Something-Something V1. The ∗ represents that they use two stream method
and can not directly compare with our method.

Method Val Test
TSN16f×10 (Wang et al. 2016) 30.0% -
TRN-RGB8f (Zhou et al. 2018) 48.8% 50.9%

TRN-2Stream8f (Zhou et al. 2018) 55.5% 83.1%
TSM-RGB8f×10 (Lin et al. 2018) 59.1% -
TSM-RGB16f×10 (Lin et al. 2018) 59.4% 60.4%

TSM-2Stream16f×10 (Lin et al. 2018) 64.0% 64.3%
TEINet-RGB8f 61.3% -

TEINet-RGB8f×10 64.0% 62.7%
TEINet-RGB16f 62.1% -

TEINet RGB16f×10 64.7% 63.0%
TEINet RGB16f+8f 66.5% 64.6%

Table 4: Comparison with the state-of-the-art on Something-
Something V2. The subscript 8f×10 denotes we sample 10
clips and each clip contain 8 frames.

eral experiments are conducted on Something-Something
V1 to manifest the latency and throughput for our models.
For the fair comparisons with other models, we follow the
inference settings in (Lin, Gan, and Han 2018) by using
a single NVIDIA Tesla P100 GPU to measure the latency
and throughput. We use a batch size of 1 to measure the la-
tency and a batch size of 16 to measure the throughput. Data
loading time is not considered in this experiment. As shown
in Table 2, Our models achieve the acceptable latency and
Throughput comparing with other models.

4.4 Comparison with the State of the Art

Results on Something-Something V1. We compare our
TEINet with the current state-of-the-art models in Table 3.
It is worth noting that our proposed models are only pre-

trained on ImageNet. For fair and detailed comparison, the
results of TEINet apply center crop when sampling 1 clip,
and 3 crops when sampling 10 clips. We notice that our
TEINets dramatically outperform TSN (Wang et al. 2016),
which demonstrates the effectiveness of TEI Block. When
using 16 frames as input our proposed TEINet outperforms
TSM (Lin, Gan, and Han 2018) by 5.1% on validation set
and even achieves superior performance to TSMEn which
ensembles the results of 8 frames and 16 frames. As man-
ifested in Table 3, Our TEINetEn which has the same set-
ting as TSMEn can surpass all existing RGB or RGB+Flow
based models on Something-Something V1. When it comes
to computational costs, we also list FLOPs for most models,
We find that our model achieves the superior performance
with reasonable FLOPs during testing. More analyses on
runtime comparing with other models have been mentioned
in Section 4.3.

Results on Something-Something V2. As shown in Ta-
ble 4, We report the results on Something-Something V2
which is a new release of V1. The training setting and in-
ference protocol of Table 4 are consistent with Table 3.
Our proposed TEINets obtain the similar performance gain
on Something-Something V2 by only using RGB as in-
put. The TEINet8f even achieves 61.3% and outperforms
TSM16f×10 as inputs by 1.9%. Furthermore, our proposed
TEINet16f+8f which ensembles the models using 16 frames
and 8 frames as inputs outperforms TSM-2Stream by 2.5%,
and achieves superior performance to the previous state-of-
the-art models, which demonstrates that our TEINet is able
to capture temporal features on this motion sensitive dataset.

Results on Kinetics-400. The Kinetics is currently the most
popular dataset in action recognition, due to its large num-
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Method Backbone Pre-train GFLOPs×views Top-1 Top-5
I3D64f (Carreira et al. 2017) Inception V1 ImgNet 108×N/A 72.1% 90.3%

I3D64f+TSN (Wang et al. 2019) Inception V1 ImgNet 108×N/A 73.5% 91.6%
ARTNet16f+TSN (Wang et al. 2018a) ResNet-18 From Scratch 23.5×250 70.7% 89.3%

NL+I3D32f (Wang et al. 2018b) ResNet-50 ImgNet 70.5×30 74.9% 91.6%
NL+I3D128f (Wang et al. 2018b) ResNet-101 ImgNet 359×30 77.7% 93.3%

Slowfast (Feichtenhofer et al. 2018) ResNet-50 From Scratch 36.1×30 75.6% 92.1%
Slowfast (Feichtenhofer et al. 2018) ResNet-101 From Scratch 106×30 77.9% 93.2%

NL+Slowfast (Feichtenhofer et al. 2018) ResNet-101 From Scratch 234×30 79.8% 93.9%
LGD-3D128f (Qiu et al. 2019) ResNet-101 ImgNet N/A×N/A 79.4% 94.4%

TSN (Wang et al. 2016) Inception V3 ImgNet 3.2×250 72.5% 90.2%
ECOEn (Zolfaghari, Singh, and Brox 2018) BNIncep+Res3D-18 From Scratch N/A×N/A 70.7% 89.4%

R(2+1)D32f (Tran et al. 2018) ResNet-34 Sports-1M 152×10 74.3% 91.4%
S3D-G64f (Xie et al. 2018) Inception V1 ImgNet 71.4×30 74.7% 93.4%
StNet25f (He et al. 2019) ResNet-50 ImgNet 189.3×1 69.9% -

TSM16f (Lin, Gan, and Han 2018) ResNet-50 ImgNet 65×30 74.7% 91.4%
TEINet8f ResNet-50 ImgNet 33×30 74.9% 91.8%
TEINet16f ResNet-50 ImgNet 66×30 76.2% 92.5%

Table 5: Comparison with the state-of-the-art models on Kinetics-400. Similar to (Feichtenhofer et al. 2018), we report the
inference cost by computing the GFLOPs (of a single view) × the number of views (temporal clips with spatial crops). The
subscript 8f denotes each clip contains 8-frame and N/A denotes the numbers are not available for us.

Method UCF HMDB
TSN-RGB (Wang et al. 2016) 93.2% -

I3D-RGB (Carreira et al. 2017) 95.6% 74.8%
P3D-RGB (Qiu, Yao, and Mei 2017) 88.6% -

S3D-G-RGB (Xie et al. 2018) 96.8% 75.9%
R(2+1)D-RGB (Tran et al. 2018) 96.8% 74.5%

TSM-RGB (Lin et al. 2018) 96.0% 73.2%
ECOEn (Zolfaghari et al. 2018) 94.8% 72.4%

ARTNet-RGB (Wang et al. 2018a) 94.3% 70.9%
StNet-RGB (He et al. 2019) 93.5% -

TEINet-RGB 96.7% 72.1%

Table 6: Comparison with the state-of-the-art models on
UCF101 and HMDB51. The results are followed common
practice that reports accuracy by averaging over all 3 splits.
For fair comparison, we only list the models using RGB as
inputs.

bers of videos and various categories. The results are sum-
marized in Table 5. The upper part of Table 5 lists the current
state-of-the-art models based on 3D convolutions, which are
with expensive computational costs. The middle part of Ta-
ble 5 lists several slightly lightweight models which are
mainly composed of 2D convolutions or a few 3D convolu-
tions in network. Notably, our models based on 2D ResNet-
50 only utilize ImageNet as pre-training dataset. We here
only list the models only using RGB as inputs to perform
comparisons. As shown in Table 5, our TEINet obtain a
better performance gain among lightweight models. Mean-
while, our models even achieve competitive performance
when comparing with computationally expensive models.
For example, the TEINet using 16-frame as inputs outper-
forms NL I3D using 32-frame as inputs by 1.3%.
Transferring to UCF101 and HMDB51. To verify the gen-
eralization of TEINet on smaller datasets, we evaluate the
performance for our models on UCF101 and HMDB51. We

fine-tune our TEINet on the UCF10 and HMDB51 datasets
using model pre-trained on Kinetics-400, and report the per-
formance using 10 clips and 3 crops per video. We here only
list our model using 16-frame as inputs. As shown in Table 6,
our proposed TEINet also achieves competitive performance
when comparing with I3D-RGB and R(2+1)D-RGB, which
demonstrates the the generalization ability of our method.

5 Conclusion

In this work, we have proposed an efficient temporal mod-
eling method, i.e., TEINet, to capture temporal features in
video frames for action recognition. The vanilla ResNet can
be converted into TEINet by inserting the TEI blocks which
are composed of a motion enhanced module (MEM) and a
temporal interaction module (TIM). The MEM focuses on
enhancing the motion-related features by calculating tem-
poral attention weights, and TIM is to learn the temporal
contextual features with a channel-wise temporal convolu-
tion. We conducted a series of empirical studies to demon-
strate the effectiveness of TEINet for action recognition in
videos. The experimental results show that our method has
achieved the state-of-the-art performance on the Something-
Something V1&V2 dataset and competitive performance on
the Kinetics dataset with a high efficiency.
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