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Abstract

Image captioning is usually built on either generation-
based or retrieval-based approaches. Both ways have cer-
tain strengths but suffer from their own limitations. In this
paper, we propose an Interactive Dual Generative Adversar-
ial Network (IDGAN) for image captioning, which mutually
combines the retrieval-based and generation-based methods
to learn a better image captioning ensemble. IDGAN con-
sists of two generators and two discriminators, where the
generation- and retrieval-based generators mutually benefit
from each other’s complementary targets that are learned
from two dual adversarial discriminators. Specifically, the
generation- and retrieval-based generators provide improved
synthetic and retrieved candidate captions with informative
feedback signals from the two respective discriminators that
are trained to distinguish the generated captions from the
true captions and assign top rankings to true captions re-
spectively, thus featuring the merits of both retrieval-based
and generation-based approaches. Extensive experiments on
MSCOCO dataset demonstrate that the proposed IDGAN
model significantly outperforms the compared methods for
image captioning.

1 Introduction

Automatic image captioning aims to produce a textual de-
scription (usually a sentence) that verbalizes the visual con-
tent of an image. Image captioning methods can be roughly
divided into two categories: retrieval-based and generation-
based methods. Retrieval-based methods describe images
by retrieving pre-existing captions from a repository, while
generation-based methods synthesize a textual description
(typically a sentence) that verbalizes the query image. Both
ways have certain advantages but suffer from their own dis-
advantages.

When a user issues a query image, the retrieval-based
methods search a corresponding caption that best matches
the query image in a pre-constructed image-caption repos-
itory (Ordonez, Kulkarni, and Berg 2011; Hodosh, Young,
and Hockenmaier 2013; Gong et al. 2014). For example,
(Hodosh, Young, and Hockenmaier 2013) performed image
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captioning as a ranking or retrieval task, and introduced a
ranking-based method to evaluate systems on a sentence-
based image description. (Gong et al. 2014) associated im-
ages with descriptive sentences by projecting them into a
common latent space. Although retrieval-based methods can
produce general and syntactically correct captions, the re-
trieved captions are not tailored for the query images and
limited by the capacity of the pre-constructed repository.

To make a caption tailored appropriately for the query
image, a better way is to generate a new one accord-
ingly. A typical generation-based image captioning model
is encoder-decoder paradigm (Karpathy and Fei-Fei 2015;
Vinyals et al. 2015), which consists of two neural networks:
a convolutional neural network (CNN) based encoder en-
codes a given image into a vector representation, based on
which a long short-term memory network (LSTM) decoder
decodes the vector representation to generate a variable-
length image caption word by word. For example, (Xu et
al. 2015) proposed an attentive encoder-decoder neural net-
work to dynamically attend to different locations of the im-
ages when decoding different words in the captions. (Mun,
Cho, and Han 2017) used associated captions that were re-
trieved from training data to learn visual attention for image
captioning. These methods can synthesize a new sentence as
the caption, which brings the results of good flexibility and
quality. Nevertheless, a well-known problem for generation-
based methods is that they are prone to generate universal or
non-fluent captions, which do not appropriately reflect the
meaning of the given image.

Previously, the retrieval-based and generation-based sys-
tems with their own characteristics have been devel-
oped separately. In this paper, we are seeking to ab-
sorb their merits. We propose an Interactive Dual Genera-
tive Adversarial Network (IDGAN) for image captioning,
which bridges the communication between generation- and
retrieval-based methods by mutually reviewing each other.
The dual adversarial training mechanism is established be-
tween two generation- and retrieval-based generators, and
two generation- and retrieval-based discriminators, to make
the generated captions indistinguishable from the ground-
truth captions. Specifically, a language model (LM) gen-
erator Gθ1 synthesizes tailored captions for the query im-
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age, and a generative ranker Gθ2 ranks both retrieved and
synthetic captions. A discriminator Dφ1 not only differen-
tiates generated captions from human-written captions but
also distinguishes bad generated captions from good ones.
Another discriminative ranker Dφ2

attempts to distinguish
the ground-truth captions and the adversarial candidates pro-
vided by both generators (Gθ1 and Gθ2 ), which are trained
synchronously with the two generators using the adversarial
training framework.

This paper has three main contributions listed as follows.

• We introduce an interactive dual generative adversarial
framework to mutually enhance both retrieval-based and
generation-based image captioning methods, leading to a
better ensemble model for image captioning.

• We devise a copy mechanism that naturally incorporates
the retrieved guidance captions into the decoding process,
enriching the informativeness and diversity of the gener-
ated captions.

• Experimental results show that IDGAN model signifi-
cantly outperforms the state-of-the-art image captioning
methods on the widely used MSCOCO dataset.

2 Related Work

Existing image captioning methods can be roughly di-
vided into two categories: retrieval-based and generation-
based methods. Retrieval-based methods first extracted the
visually similar images with their captions from a pre-
constructed image-caption repository, forming a candidate
captions pool. The final candidate captions for the input
image are then chosen from the captions pool by rank-
ing methods (Ordonez, Kulkarni, and Berg 2011; Hodosh,
Young, and Hockenmaier 2013; Gong et al. 2014). For ex-
ample, (Hodosh, Young, and Hockenmaier 2013) treated im-
age captioning as a ranking or retrieval task, and introduced
a ranking-based method to evaluate systems on a sentence-
based image description. (Gong et al. 2014) associated im-
ages with descriptive sentences by projecting them into a
common latent space. Although retrieval-based methods can
produce general and syntactically correct captions, the re-
trieved captions are not tailored for the query images and
limited by the capacity of the pre-constructed repository.

Inspired by the great success of deep learning algo-
rithms in computer vision and natural language processing,
generation-based image captioning methods mainly exploit
the encoder-decoder architecture to produce sentences with
flexible syntactical structures (Karpathy and Fei-Fei 2015;
Vinyals et al. 2015; Gu et al. 2017). For example, Karpa-
thy and Fei-Fei (2015) learned about the inter-model cor-
respondences between language and image data by using
the training image-caption pairs. Attention mechanism has
been proved to be able to significantly improve the perfor-
mance of the underlying encoder-decoder based methods
(Mun, Cho, and Han 2017; Gu et al. 2018; Yang et al. 2018;
Zhao et al. 2018). Mun, Cho, and Han (2017) used associ-
ated captions that were retrieved from training data to learn
visual attention for image captioning. Chen et al. (2017) en-
coded the images with multi-layer feature maps, capturing

the spatial locations and channels via visual attention mech-
anisms.

There were also several recent generation-based studies
exploring GAN and reinforcement learning techniques for
image captioning (Liu et al. 2017; Rennie et al. 2017). Ren-
nie et al. (2017) introduced an SCST algorithm by using the
REINFORCE algorithm to optimize the model. Rather than
estimating a “baseline” to reduce the model variance, SCST
used its output to normalize the expected rewards. Recently,
some works proposed to employ GAN to generate text de-
scriptions for the input images. Xu et al. (2019) proposed an
adversarial learning method for image captioning, which en-
hances the caption generation with retrieved guidance cap-
tions.

3 Our Methodology

3.1 Problem Definition and Model Overview

Given an image x, image captioning aims to generate a text
description y = {w1, w2, ..., wT } for image x, where T is
the length of the text sequence.

As depicted in Figure 1, IDGAN consists of the fol-
lowing components: (1) Generative sequence-to-sequence
(seq2seq) model Gθ1 , which is responsible for synthesiz-
ing M1 image caption candidates {ŷM1

m=1} given an im-
age x by the Monte Carlo (MC) roll-out policy. Such pro-
cess is also noted as Gθ1(ŷ|x); (2) Generative ranking
model Gθ2 , which computes a relevance score between
each image-caption pair and retrieves M2 caption candidates
{〈x, ỹM2

m=1〉}. Such process is denoted as Gθ2(ỹ|x); (3) Dis-
criminative classification model Dφ1 , which tries to distin-
guish the human-written captions from adversarial captions
generated by Gθ1 ; (4) Discriminative ranking model Dφ2

,
which inherits from the same ranking model as Gθ2 , try-
ing to distinguish the true image-caption pairs from adver-
sarial candidates provided by both generators. By learning
over symmetric feedback signals from two dual adversarial
discriminators, the generation- and retrieval-based models
mutually benefit from each other’s complementary targets,
leading to better image captioning. For each test image, we
use the sentences generated by the generative model Gθ1 as
the final output caption.

3.2 Generative Seq2Seq module

The sequence to sequence (seq2seq) (Karpathy and Fei-Fei
2015; Vinyals et al. 2015) framework is used as the back-
bone of our generation-based image captioning model. In
encoding, we retrieve the candidate captions to augment the
semantic information of the image and thus learn better rep-
resentation of the image. In the decoding stage, we integrate
the guidance captions into the word generation process by
designing a copy mechanism so as to enrich the meaning of
the generated captions. Next, we will describe the encoder
and decoder in detail.

Pre-retrieval Model for Retrieving Candidate Captions
The candidate captions are defined as the ground-truth cap-
tions of k nearest training images for the query image based
on visual similarity. The image features are computed for
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Figure 1: IDGAN architecture consists of two generators Gθ1 and Gθ2 , and two discriminators Dφ1 and Dφ2 .

every image in the training dataset with Eq.(2). The neigh-
bor images are found by exhaustively computing the co-
sine similarity between the query image and the training
images. We maintain a set of top k captions, denoted as
{c1, c2, . . . , ck}, in terms of the similarity score as candi-
date captions, which are concatenated into a guidance cap-
tion C = [c1, c2, . . . , ck].

LSTM network is then employed to extract the semantic
meanings of the guidance caption. Formally, given the in-
put word embedding e(wr

i ), the hidden state gi is computed
from the previous hidden state gi−1 as:

gi = LSTM(gi−1, e(w
r
i )) (1)

where e(wr
i ) denotes the embedding of the i-th word in

retrieved guidance caption. The hidden states of the guid-
ance caption C is represented as Hg = [g1, . . . ,gm] and
m denotes the length of guidance caption C. We use ḡ =
1
m

∑m
i=1 gi to represent the average vector of the guidance

caption.

Image Encoder Following the similar strategy as in
(Karpathy and Fei-Fei 2015; Vinyals et al. 2015; Anderson
et al. 2018), in this paper, we use the Faster R-CNN (Ren et
al. 2015) that is pre-trained on Visual Genome (Krishna et
al. 2017) to compact the raw image x into L vectors (with
size D), where each vector represents the features learned
at different detection of x. Formally, we refer to these anno-
tated vectors as:

zinit = {zinit,1, zinit,2, ..., zinit,L} = R-CNN(x) (2)

An attention mechanism is employed to capture the cru-
cial information from the input image. In particular, we take
as input the average representation of the guidance caption
C as attention source to learn knowledge-aware image rep-
resentation z as:

z =
L∑

i=1

αizinit,i, αi =
exp (σ(ḡ, zinit,i))∑L
j=1 exp (σ(ḡ, zinit,j))

(3)

where σ is a feed-forward neural network that converts a
vector to a real-valued score, αi is attention weight for the
i-th image feature zinit,i.

Caption Decoder The generation of image captions is
performed by an LSTM decoder based on the learned im-
age representations and the guidance caption representation.

Two-layer Attention Networks Similar to (Anderson et al.
2018), caption decoder contains a two-layer LSTM network.
The first LSTM layer (denoted as LSTM(1)) is character-
ized as a top-down attention model, and the second LSTM
layer (denoted as LSTM(2)) is a language model. The first
LSTM model takes the concatenation of the previous output
of the language LSTM (i.e., h(2)

t−1), the image vector zinit,
the attentive image feature z, the average feature vector of
the guidance caption ḡ, and the word embedding of the pre-
vious word (i.e., e(wt−1)) as input:

x
(1)
t =

[
h
(2)
t−1, ẑ, ḡ, e(wt−1)

]
(4)

where x
(1)
t denotes the input of LSTM(1) at time t; ẑ =

[z̄init, z] and z̄init =
1
L

∑L
i=1 zinit,i. At time step t, the hid-

den state of LSTM(1) can be calculated as:

h
(1)
t = LSTM(1)

(
h
(1)
t−1,x

(1)
t

)
(5)

Given the output of the first LSTM at time step t (i.e.,
h
(1)
t ), we learn the attentive image representation z̃t, which

is then fed into LSTM(2). The attentive image vector z̃t en-
sures that, at each time step, the decoder is capable of getting
full information of the initial image representation zinit . We
compute z̃t when we decode the t-th word as:

z̃t =

L∑
i=1

βt,izinit,i, βt,i =
exp(σ(h

(1)
t−1, zinit,i))∑L

j=1 exp(σ(h
(1)
t−1, zinit,j))

(6)

where σ is a feed-forward neural network, as defined in Eq.
(3). The attention weight βt,i represents the alignment be-
tween the i-th location in the image and the t-th generated
word.

We employ LSTM(2) to generate an image caption word
by word. The concatenation of the output of LSTM(1) and
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the attentive image representation (z̃t) is used as the input of
LSTM(2), which is represented as:

x
(2)
t =

[
z̃t,h

(1)
t

]
(7)

At time step t, the hidden state of LSTM(2) is calculated
as:

h
(2)
t = LSTM(2)

(
x
(2)
t ,h

(2)
t−1

)
(8)

Caption Generation We assume a vocabulary Vc =
{wc

1, . . . , w
c
N}. The generation model is typically a classi-

fier over the vocabulary Vc. In particular, we feed the rep-
resentation h

(2)
t into a fully connected layer followed by a

softmax layer to generate the image caption. Formally, the
generation probability of the t-th word is computed by

P c
θ1(wt = wc) = softmax(Wch

(2)
t ), wc ∈ Vc (9)

where W c is the parameter to be learned, θ1 denotes the pa-
rameters of the generation-based model.

Copy Mechanism We also employ copy mechanism to ex-
plicitly extract words form the retrieved guidance caption.
We assume another set of words Vg = {wg

1 , . . . , w
g
M} for

all the unique words in the guidance captions. Since Vg may
contain words not in Vc, copying words in Vg enables the
decoder to output some out-of-vocaulary (OOV) words.

Given the hidden states Hg = [g1, . . . ,gm] for the guid-
ance caption C, we computed the context vector for the
guidance caption as a weighted sum of the hidden states Hg:

cgt =

m∑
i=1

γt,igi, γt,i =
exp(�(gi,h

(2)
t ))∑m

j=1 exp(�(gj ,h
(2)
t ))

(10)

where h(2)
t is defined in Eq. (8), � is a multilayer perceptron.

Formally, the generator selects a word wg from Vg at time
step t as follows:

P g
θ1
(wt = wg) = softmax(Wg[h

(2)
t ; cgt ]), wg ∈ Vg (11)

where Wg indicates the learnable parameter.
Finally, at each time step, the caption generator selects a

generic word from Vc or copies a word from Vg with the
following distribution:

λt = sigmoid(Uo[h
(2)
t ; cgt ]) (12)

ŵt ∼ Pθ1(wt) =

[
(1− λt)P

c
θ1
(wt = wc)

λtP
g
θ1
(wt = wg)

]
(13)

λt ∈ [0, 1] is a scalar to balance the choice between generat-
ing a content word wc and copying a word wg from guidance
captions. Pθ1(yt) is the final word probability distribution.
Uo is learnable parameter.

3.3 Generative Ranking Model

For the retrieval-based approach, we devise a generative
ranking model Gθ2 to retrieve l competitive candidate cap-
tions. We first extract the visually similar images with their
captions from the training data set by using the pre-retrieval

module defined in Section 3.2. The generated and retrieved
captions are denoted as candidate captions P . The cap-
tions for the query image are selected from these candi-
date captions pool P by a ranking model. Specifically, given
a query image x, pre-retrieved candidate captions D =
{d1, d2, . . . , dl}, and the captions ŷ = {ŷ1, ŷ2, . . . , ŷM1

}
generated by Gθ1 , we compute a relevance score for each
(x, pi) pair, where pi ∈ D ∪ ŷ. Each candidate caption p is
first encoded into a distributed representation o by using an
LSTM network:

hp
i = LSTM(hp

i , e(w
p
i )), o = μ(

[
hp
1,h

p
2, ...,h

p
Lp

]
) (14)

where hp
i is the i-th hidden state for p, e(wp

i ) denotes the
word embedding of the i-th word in the caption p, Lp is the
length of the caption p, μ is the averaging operation.

Instead of an absolute relevance, we optimize IDGAN by
using a pair-wise ranking method since relative preference
is usually more easily learned. The probability of a caption
pair 〈p1, p2〉 with p1 more relevant than p2 being correctly
ranked can be measured by the distance of their matching
degree to the query image x:

Pθ2(〈p1, p2〉|x) = ρ(g(fFC (zinit), fFC (op1))

− g(fFC (zinit), fFC (op2)))
(15)

where ρ is the sigmoid function, fFC is a fully connected
layer, g is any scoring function (i.e., cosine similarity), θ2
denotes the parameters of the retrieval-based model. zinit ,
op1 and op2 are representations of the image x, caption p1
and caption p2.

We define a triplet ranking-based loss, which maximizes
the relevance between the query image x and the true caption
y+, and minimizes the relevance between the query image x
and sampled negative caption y−:

Lrank = max(0, �+ g(fFC (zinit), fFC (oy+))

− g(fFC (zinit), fFC (oy−)))
(16)

where � denotes the desired margin between the similarities,
y− is the negative caption randomly chosen from the entire
captions with true and candidate captions excluded.

3.4 Discriminative Classification Model

Ideally, a good image caption should be assigned a high ad-
equacy score and contribute more to updating the generator
Gθ1 . Therefore, we expect the language model discrimina-
tor to not only differentiate generated captions from human-
written captions but also distinguish bad generated captions
from good ones. We propose a new objective of the language
model discriminator to assign a precise score for each gener-
ated caption, which is consistent with their adequacy score:

Dφ1(ŷ|x) = Dbinary(x, ŷ) +Dscore(x, ŷ) (17)

where Dbinary(x, ŷ) is a binary classifier implemented by
LSTM that aims at distinguishing the input caption as orig-
inally generated by humans or synthesized by the generator
Gθ1 . Dscore(x, ŷ) is computed by an evaluation metric (i.e.,
CIDEr score) that compares the generated caption ŷ to the
corresponding ground-truth caption y+.
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3.5 Discriminative Ranking Model

The discriminator adopts the same ranking model as Gθ2 ,
which aims to distinguish the ground truth captions from the
candidate captions produced by both generators (Gθ1 and
Gθ2 ). Concretely, the discriminative model aims to learn the
image and caption representations such that the probability
that the positive pair 〈x, y+〉 is assigned larger similarity
score than the negative pair 〈x, ygen〉, where y+ and ygen

indicate the true caption and the caption generated by the
two generators. Here, we have ygen ∈ {ỹ ∪ ŷ}. Similar to
Eq.(15), given the query image x, the probability of a cap-
tion pair 〈x, ygen〉 being correctly ranked can be computed
using the distance of their relevance scores to the query im-
age x:

Dφ2(〈y+, ygen〉|x) = ρ(g(fFC (zinit), fFC (oy+))

− g(fFC (zinit), fFC (oygen )))
(18)

where ρ, g, and fFC are defined in Eq. (15). We adopt the
same training loss as defined in Eq. (16) to optimize the dis-
criminative ranking model Dφ2

.

4 Adversarial Dual Objective

In IDGAN framework, the two generators Gθ1 , Gθ2 and the
two discriminators Dφ1 , Dφ2 form two interactive dual gen-
erative adversarial networks, where the two generators at-
tempt to produce fake captions that achieve high scores so
as to fool the two discriminators respectively, while the two
discriminators on the contrary are expected to score down
the generated and retrieved captions. Their minimax game
is summarized as the following objective function L:

L = min
θ1,θ2

max
φ1,φ2

(Lg + Lr) (19)

Lg = Ey+∼pdata
[logDφ1

(y+)] + Eŷ∼Gθ1
[log(1−Dφ1

(ŷ))]
(20)

Lr = E〈y+,y−〉∼pdata
[logDφ2(〈y+, y−〉)]

+ Eygen∼Gθ2
,Gθ2

,Gθ1
[log(1−Dφ2(〈y+, ygen))]

(21)

where E indicates the mathematical expectation, y+ is the
ground-truth caption for the query image, y− is the negative
caption randomly chosen from the entire captions with true
and candidate captions excluded.

4.1 Optimizing Discriminative Models

The objective of discriminative models Dφ1
and Dφ2

are
to maximize the probability of correctly distinguishing the
ground truth captions from the generated captions. For the
two generators fixed, we can obtain the optimal parameters
for the discriminative models Dφ1 and Dφ2 with the follow-
ing formulation:

φ∗
1, φ

∗
2 = argmaxφ1,φ2

(Lg + Lr) (22)

where Lg and Lr are defined in Eq.(20)-(21). This optimiza-
tion problem is typically solved with gradient descent since
Dφ1

and Dφ2
are differentiable with respect to φ1 and φ2,

respectively.

4.2 Optimizing Generative Models

Generative Seq2seq Model Given a query image x, a
caption sequence ŷ = [ŵ0, ŵ1, ..., ŵT ] is generated, which
can be treated as a decision making process by policy
Pθ1(wt|ŵ1:t−1, x). It is difficult to back-propagate the gradi-
ents from the two discriminators to the generator Gθ1 , thus
we use the policy gradient method to tackle this problem.
With the true caption y+ for image x, the reward of the gen-
erated image caption ŷ is as follows:

Jθ1 (ŷ|x) = Eŷ∼Gθ1
{[1− logDφ1

(ŷ)] + [1− logDφ2
(〈y+, ŷ〉)]}

(23)

Generative Ranking Model We train Gθ2 to generate
competitive image caption ỹ that achieves high ranking
score from Dφ2

. More precisely, when given an image x and
a scoring function, the probability of Gθ2 choosing a caption
ỹ from candidate captions pool P is computed by Eq.(15).
Formally, we ameliorate Gθ2 with the objective function as
below:

Jθ2(ỹ|x) = Eỹ∼Gθ2|θ1 [log(1−Dφ2(〈y+, ỹ〉|x))] (24)

Policy Gradient We apply the policy gradient algorithm
(Williams 1992) to update the parameters of the two gener-
ators since the sampling process of the generators is non-
differential. Formally, with Dφ1

and Dφ2
fixed, for each

query image x with true caption y+, the minimization of
L defined in Eq.(19) in response to θ1 and θ2 could be com-
puted as follows:

min
θ1,θ2

L = max
θ1,θ2

[Eŷn∼Gθ1
Jθ1(ŷn|xn)

+Eỹn∼Gθ2|θ1Jθ2(ỹn|xn)]
(25)

where Jθ1 and Jθ2 are defined in Eq.(23) and Eq.(24) respec-
tively. T indicates the length of the training sample. Similar
to (Rennie et al. 2017), the proximity gradient of the ex-
pected rewards of Jθ1 can be calculated as follows:

∇θ1Jθ1 (ŷ|x) �
T∑

t=1

(R1(ŷ)−R1(y
′))∇θ1 logPθ1 (wt|ŵ1:t−1, x)

(26)

where y′ is a generated caption by the greedy decoding pro-
cess used as the baseline to reduce the training variance in
reinforcement learning. R1 is the reward function during ad-
versarial training of Gθ1 , which is defined as:

R1(ŷ) = γ1Dφ1
(ŷ|x)+γ2Dφ2

(〈y+, ŷ〉|x)+γ3Dscore(ŷ|x)
(27)

where γ1, γ2, γ3 are parameters that controls the effect of the
three kinds of rewards. Dscore(ŷ|x) is computed by an eval-
uation metric (i.e., CIDEr score) by comparing the generated
caption ŷ to the corresponding ground-truth caption.

The gradient of the objective function Eq. (25) with re-
spect to parameters θ2 is:

∇θ2Jθ2(ỹ|x) �
∑
ỹ

∇θ2 logGθ2|θ1(ỹ|x)R2(〈y, ỹ〉) (28)

where R2 is the reward function during adversarial training
of Gθ2 , computed as:

R2(〈y, ỹ〉) ≡ Dφ2(〈y, ỹ〉|x) (29)
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Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr

Hard-Attention (Xu et al. 2015) 71.8 50.4 35.7 25.0 23.0 - -
VAE (Pu et al. 2016) 72.0 52.0 37.0 28.0 24.0 - 90.0
Attributes-CNN (Wu et al. 2016) 74.0 56.0 42.0 31.0 26.0 - 94.0
CNNL+RNN (Gu et al. 2017) 72.3 55.3 41.3 30.6 26.0 - 94.0
PG-SPIDEr-TAG (Liu et al. 2017) 75.4 59.1 44.5 33.2 25.7 55.0 101.3
Adaptive (Lu et al. 2017) 74.2 58.0 43.9 33.2 26.6 54.9 108.5
SCST:Att2all (Rennie et al. 2017) 77.4 60.9 46.0 34.1 26.7 55.7 114.0
TopDown (Anderson et al. 2018) 79.8 63.4 48.4 36.3 27.7 56.9 120.1
StackCap (Gu et al. 2018) 78.4 62.5 47.9 36.1 27.4 56.9 120.4
TextAtt+ResNet (Mun, Cho, and Han 2017) 74.9 58.1 43.7 32.6 25.7 - 102.4
CNN+Att (Aneja and Deshpande 2018) 71.1 53.8 39.4 28.7 24.4 52.2 91.2
GroupCap (Chen et al. 2018) 74.4 58.1 44.3 33.8 26.2 - -
NBT (Lu et al. 2018) 75.5 - - 34.7 27.1 - 107.2
DHEDN (Xiao et al. 2019) 80.8 63.7 48.8 36.7 27.2 57.2 117.0
IDGAN (ours) 81.3 65.4 50.7 38.5 28.5 58.8 123.5
w/o Dφ1

80.7 64.5 49.4 37.5 27.9 58.1 122.1
w/o Gθ2 80.2 64.2 49.0 36.8 27.5 57.5 121.7
w/o Dφ2

79.8 63.6 48.7 36.9 27.7 57.6 121.3
w/o copy 80.9 64.9 50.3 38.2 28.1 58.5 122.7

Table 1: The automatic evaluation results of IDGAN and the compared methods on MSCOCO Karpathy test split.

Methods Informativeness Fluency
Adaptive 2.86 2.97

SCST 2.94 2.92
TopDown 3.25 3.18
StackCap 3.21 3.15
TextAtt 2.97 3.14

CNN+Att 2.75 2.83
GroupCap 3.09 3.12

NBT 3.14 3.11
IDGAN (Ours) 3.32 3.35

Table 2: Human evaluation results of the captions generated
by our model and several strong baselines.

However, the logarithm may lead to instability of training
(Goodfellow et al. 2014). We thus follow (Wang et al. 2017)
with the reward advantage function:

R2(〈y, ỹ〉) = 2 ∗Dφ2(〈y, ỹ〉|x)− 1 (30)

5 Experimental Setup

Dataset We adopt the widely used MSCOCO 2014 (de-
noted as MSCOCO) image captions dataset (Karpathy and
Fei-Fei 2015) as the experimental data. In total, MSCOCO is
composed of 82,783 training images, 40,504 validation im-
ages, and 40,775 testing images. Each image is correspond-
ing to five reference descriptions. For the off-line testing, we
use the Karpathy split setting (Karpathy and Fei-Fei 2015),
which has been widely adopted in previous studies. There
are 113,287 images for training, 5,000 images for validation,
and 5,000 images for testing.

Baseline Methods In this study, we compare IDGAN
with several state-of-the-art models, and some representa-
tive compared methods are Adaptive model (Lu et al. 2017),
SCST (Rennie et al. 2017), Bottom-Up and Top-Down At-

tention (TopDown) model (Anderson et al. 2018), Stack-
Cap model (Gu et al. 2018), Text-Guided Attention (Tex-
tAtt) model (Mun, Cho, and Han 2017), Convolutional Im-
age Captioning (CNN+Att) model (Aneja and Deshpande
2018), Group-based Image Captioning (GroupCap) model
(Chen et al. 2018), Neural Baby Talk (NBT) model (Lu et
al. 2018). In the experiments, the results of baseline meth-
ods in Tables 1 are retrieved from previous papers.

Implementation Details Following previous work (An-
derson et al. 2018), we use the faster R-CNN to detect ob-
jects and extract 100 image region features. In this manner,
the decoder is able to attend to specific parts of an image
by selecting a subset of the feature vectors. The number of
hidden units in LSTM caption encoder is set to 512. The pa-
rameters of the LSTM networks are initialized with normal
distribution N (0, 0.01), and the other parameters are initial-
ized by using the uniform distribution [-0.01, 0.01]. We set
the number of hidden units in TopDown attention LSTM
(LSTM(1)) and language model LSTM (LSTM(2)) to 1,024.
The numbers of hidden units of LSTMs used in Eq. (14)
and Eq. (17) are set to 512. During adversarial training, the
two generators (Gθ1 and Gθ2 ) produce M1 = M2 = 5 can-
didate captions. The value of γ1, γ2, γ3 equal to 0.2, 1, 0.8
respectively. We pre-train Gθ1 for 30 epochs with maximum
likelihood and Dφ2

for 5 epochs with triplet loss. After that,
we optimize the whole model with interactive adversarial
training for 30 epochs.

Automatic Evaluation Metrics We adopt the official
evaluation metrics of MSCOCO Image Captioning Chal-
lenge that are widely used in previous work (Karpathy
and Fei-Fei 2015; Vinyals et al. 2015), including BLEU-
N (N=1,2,3,4) (Papineni et al. 2002), METEOR (Banerjee
and Lavie 2005), ROUGE (Lin 2004), CIDEr (Vedantam,
Lawrence Zitnick, and Parikh 2015). These metrics estimate
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Ground truth “there is a woman sit-
ting next to a statue on
the bench”

“an old bench is right
on the oceans edge”

“the boy is doing a trick
on his skate board”

“a man with a mask on
holding up a phone”

TopDown “a man and a woman
sitting on a bench”

“a bench sitting on top
of a beach”

“a man riding a skate-
board on a street”

“a man wearing a hat
holding a cell phone”

IDGAN “a woman sitting on a
bench with a statue”

“a wooden bench sit-
ting on the beach next
to the ocean”

“a man is doing a trick
on a skateboard”

“a person in a mask
holding a cell phone”

Table 3: Example captions generated by different models.

the consistency between the n-gram existence in the pro-
duced text descriptions and the ground truth captions.

6 Experimental Results

6.1 Quantitative Evaluation

We firstly report the model comparison from the quanti-
tative perspective. The experimental results on MSCOCO
are summarized in Table 1. The results are calculated using
the COCO captioning evaluation tool (Lin et al. 2014). Our
model achieves statistically significantly better performance
than the state-of-the-art competitors on MSCOCO. Specif-
ically, the proposed IDGAN successfully obtains higher
scores over all automatic evaluation measures compared to
the TopDown model which adopts the same CNN-LSTM
framework as IDGAN.

To investigate the impact of different components of the
proposed IDGAN for image captioning, we also conduct the
ablation study of IDGAN on MSCOCO by removing the
retrieval-based generator Gθ2 (w/o Gθ2 ), the retrieval-based
discriminator Dφ2 (w/o Dφ2 ), the generation-based discrim-
inator Dφ1

(w/o Dφ1
), and copy mechanism (w/o copy), re-

spectively. It is no surprise that combining all the factors
achieves the best performance for all evaluation metrics. The
retrieval-based generator and discriminator (Gθ2 and Dφ2

)
contribute a great improvement to our model by providing
ranking scores to guide the generation-based generator pro-
ducing better captions.

6.2 Human Evaluation

Similar to previous works (Xu et al. 2015; Rennie et al.
2017), we also use human annotation to evaluate the image
captioning systems quantitatively. We randomly sample 100
images from the MSCOCO test set and invite three human
annotators to score the generated captions based on their In-
formativeness (whether the caption is appropriate and natu-
ral to an image) and Fluency (whether the generated caption
is fluent with a proper grammatical structure). The annota-
tors are asked to assign each caption a score of 1 (bad), 2
(poor), 3 (not bad), 4 (satisfactory), 5 (good) for Informa-
tiveness and Fluency, respectively. The human evaluation

results are summarized in Table 2. According to Table 2,
IDGAN substantially outperforms the compared approaches
by a noticeable margin on the MSCOCO dataset.

6.3 Case Study

To measure the performance of IDGAN from the qualitative
perspective, we report several produced image captions in
Table 3. We can easily observe from Table 3 that IDGAN
is able to generate reasonable and relevant text descriptions
of the given images. For example, the sentence “a woman
sitting on a bench with a statue” generated by IDGAN pre-
cisely describes the content of the image. In contrast, the
Top-Down method often fails in such cases.

6.4 Error Analysis

To examine the limitations of the proposed model, we
additionally carry out an analysis of the errors made by
IDGAN. Specifically, we randomly choose 100 images from
MSCOCO test set whose captions generated by our model
have low human evaluation scores. We reveal several rea-
sons for the low evaluation scores, which can be divided
into two primary categories. First, IDGAN fails to generate
semantically diverse image captions across visually similar
images. For example, IDGAN tends to generate the same
caption for two different images that are semantically re-
lated or have similar objects, ignoring some details of the
two images. One possible solution is to devise a new met-
ric to measure the semantic diversity of image captions, and
then the diversity score can be used as a reward in reinforce-
ment learning so as to encourage the model to consider both
diversity and accuracy. Second, IDGAN fails to detect some
objects in the images that have no high-quality retrieved cap-
tions. It suggests that certain object detection strategy needs
to be devised in the future so as to generate better captions
for specific images.

7 Conclusion

In this paper, we proposed IDGAN to enhance a generation-
retrieval ensemble model with dual adversarial learning, al-
lowing for both generation-based and retrieval-based image
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captioning methods to be mutually enhanced. We integrated
retrieved guidance captions into word decoding process by a
copy mechanism, which enriched the meaning of the gener-
ated captions. Extensive experiments revealed that the pro-
posed IDGAN model significantly outperformed the com-
pared methods by a remarkable margin.
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