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Abstract

Vehicle re-identification (Re-ID) is a crucial task in smart
city and intelligent transportation, aiming to match vehicle
images across non-overlapping surveillance camera views.
Currently, most works focus on RGB-based vehicle Re-ID,
which limits its capability of real-life applications in adverse
environments such as dark environments and bad weathers.
IR (Infrared) spectrum imaging offers complementary infor-
mation to relieve the illumination issue in computer vision
tasks. Furthermore, vehicle Re-ID suffers a big challenge of
the diverse appearance with different views, such as trucks.
In this work, we address the RGB and IR vehicle Re-ID
problem and contribute a multi-spectral vehicle Re-ID bench-
mark named RGBN300, including RGB and NIR (Near In-
frared) vehicle images of 300 identities from 8 camera views,
giving in total 50125 RGB images and 50125 NIR images
respectively. In addition, we have acquired additional TIR
(Thermal Infrared) data for 100 vehicles from RGBN300 to
form another dataset for three-spectral vehicle Re-ID. Fur-
thermore, we propose a Heterogeneity-collaboration Aware
Multi-stream convolutional Network (HAMNet) towards au-
tomatically fusing different spectrum features in an end-
to-end learning framework. Comprehensive experiments on
prevalent networks show that our HAMNet can effectively
integrate multi-spectral data for robust vehicle Re-ID in day
and night. Our work provides a benchmark dataset for RGB-
NIR and RGB-NIR-TIR multi-spectral vehicle Re-ID and a
baseline network for both research and industrial communi-
ties. The dataset and baseline codes are available at: https:
//github.com/ttaalle/multi-modal-vehicle-Re-ID.

Introduction

Vehicle re-identification (Re-ID) is to identify vehicle im-
ages from the gallery that shares the same identity as the
given probe. It is an active and challenging computer vision
task and has drawn much attention due to its wide applica-
tions in video surveillance, social security, smart city, and in-
telligent transportation, to name a few. Despite recent break-
throughs in vehicle Re-ID, it still faces huge challenging es-
pecially in adverse illumination conditions, such as strong or
poor lighting, shadow or black night. The main reason is the
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Figure 1: Examples of images captured by RGB and NIR
cameras from six camera views. Middle: the RGB images of
six camera views. Bottom: the corresponding NIR images.

RGB camera can only capture visible light (0.38−0.78μm)
reflected by subjects, which significantly affects the imaging
quality of the visible spectrum, as shown in Fig. 1 (Middle).
Therefore, identifying the vehicles with various illumination
environments in day and night is an imminent question in
vehicle Re-ID.

The NIR (near infrared) camera can capture near infrared
light (0.78− 3μm) reflected by subjects and is not affected
in dark environments and bad weathers, which are more cru-
cial for social security. As shown in Fig. 1 (Bottom), NIR in-
formation is able to handle the imaging limitations of visible
ones, herein can handle the conventional RGB vehicle Re-ID
in adverse illumination conditions and expand its application
from daytime to nighttime. Recently, some works propose
RGB-Infrared cross-modality Re-ID to overcome the limi-
tation of RGB imagination in dark environments. However,
infrared images contain no color information. The large het-
erogeneous issue between RGB and NIR modalities brings
a big challenge for cross-modal matching. Furthermore, ex-
isting vehicle Re-ID methods and datasets only focus on the
single visible spectrum, which limits its capability of real-
life applications in adverse environments such as dark envi-
ronments and bad weathers.
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Table 1: Publicly available benchmark datasets for per-
son/vehicle re-identification (Re-ID). In the column of
modality, ’+’ and ’/’ denote multi-modality and cross-
modality respectively.

Benchmark cameras ID images modality Multiview

person

VIPER 2 632 1264 RGB no
iLIDS 2 119 476 RGB no

CUHK01 2 972 1942 RGB no
Market 6 1501 32668 RGB yes

DukeMTMC-ReID 8 1404 36411 RGB yes
PAVIS - 79 788 RGB+D no
BIWI - 50 39280 RGB+D no

RegDB - 412 8240 RGB+T no
SYSU-MM01 6 491 303357 RGB/N yes

vehicle

VeRi-776 20 776 49357 RGB yes
VehicleID - 26267 221763 RGB no

Vehicle-1M - 55527 936051 RGB no
CityFlow-ReID 40 666 229680 RGB yes

RGBN300 8 300 100250 RGB+N yes

In this work, we contribute a comprehensive RGB-
NIR multi-spectral vehicle Re-ID dataset called RGBN300.
RGBN300 contains 50125 image pairs of 300 vehicles from
8 camera views with RGB and NIR spectra. To the best of
our knowledge, this dataset provides the first time for the
study of multi-spectral vehicle Re-ID. Compared with other
existing commonly used Re-ID datasets (Gray, Brennan, and
Tao 2007; Zheng, Gong, and Xiang 2009; Dong et al. 2011;
Ristani et al. 2016; Barbosa et al. 2012; Munaro et al. 2014;
Nguyen et al. 2017; Wu et al. 2017; Liu et al. 2016b; 2016a;
Guo et al. 2018; Tang et al. 2019) as shown in Table 1, our
dataset has the following major advantages. 1) It contains
spatially aligned RGB-NIR vehicle image pairs. 2) It in-
cludes a large number of video frames, which enables users
to perform large-scale performance evaluations. 3) It con-
tains 2-8 views per vehicle, which supports vehicle match-
ing from different views. In addition, we have acquired ad-
ditional TIR (Thermal Infrared) data for 100 vehicles from
RGBN300 to form another dataset for three-spectral vehicle
Re-ID.

Although a number of works investigate the TIR (thermal
infrared) or depth information as the complementary modal-
ity in person Re-ID (Barbosa et al. 2012; Munaro et al. 2014;
Nguyen et al. 2017; Wu, Zheng, and Lai 2017), Most of the
existing works directly utilized the TIR or depth informa-
tion as auxiliary information or connective feature for per-
son Re-ID. We argue that it is essential to explore the abil-
ity of heterogeneous data to collaborate to identify the same
ID and effective ways to aware of the contribution of differ-
ent spectra to the same class. To provide a powerful base-
line algorithm, we propose a Heterogeneity-collaboration
Aware Multi-stream convolutional Network (HAMNet) to-
wards automatically fusing different spectrum features in an
end-to-end learning framework. First, we naturally build a
multi-stream convolutional network and use two indepen-
dent ID losses to constrain two heterogeneous data with
the same identity. Second, we propose to constrain multi-
spectral heterogeneous data with a similar score distribu-
tion and combine it with the spectra independent ID losses
to form a heterogeneity-collaboration loss. In other words,
we enforce the similarity between score distribution of het-

erogeneous data to be consistent, in addition to be with
the same class/identity. Inspired by Class Activation Map
(CAM) (Zhou et al. 2016), which can indicate the locations
of informative parts and the richness of features, we fur-
ther propose to measure the importance of each spectrum
for classification by the CAMs of different spectra. Finally,
we combine class activation maps from different spectra ac-
cording to the importance of CAM and constrain it with a
class-aware ID loss.

Comprehensive experiments on prevalent networks show
that our HAMNet can effectively integrate multi-spectral
data for robust vehicle Re-ID in day and night. With our new
benchmark dataset, we propose a novel multi-stream convo-
lutional network to adaptively incorporate the information
from multi-spectrum images for vehicle Re-ID.

The contribution of this paper can be summarized as fol-
lows.
• We are the first time to contribute a standard benchmark

dataset RGBN300 to support the study of multi-spectral
vehicle Re-ID. We also construct another benchmark
datasets with RGB, near infrared and thermal infrared im-
ages for related researches and applications. These bench-
mark datasets will be open to the public for free academic
usage.

• We propose a Heterogeneity-collaboration Aware Multi-
stream convolutional Network (HAMNet) towards auto-
matically fusing spectrum-specific features in the network
for multi-spectral matching, which provide a powerful
baseline algorithm for the future study.

• Comprehensive experiments on our challenging bench-
mark datasets RGBN300 and RGBNT100 validate the su-
perior performance of our model for multi-spectral vehi-
cle Re-ID.

Related Work

We briefly review the related works in the following
three folds, i.e., vehicle Re-ID, cross-modality, and multi-
modality person Re-ID.

Vehicle Re-ID

With the development of person Re-ID, the vehicle re-
identification task has gained more and more attention in
recent years. Liu et al. (2016b) proposed a dataset VeRi-
776 and built a coarse-to-fine progressive search frame-
work by adding license plates and spatio-temporal labels.
Liu et al. (2016a) released a benchmark dataset, called Vehi-
cleID and presented a deep relative distance learning method
to learn a Euclidean space where distance can be directly
used to measure the similarity of vehicle images. Wang et
al. (2017) proposed an orientation invariant feature embed-
ding module and a spatial-temporal regularization module
for vehicle Re-ID. Shen et al. (2017) proposed a two-stage
framework that incorporates complex spatio-temporal infor-
mation for effectively regularizing the vehicle Re-ID results.
Yan et al. (2017) modeled the relationships of vehicle im-
ages as a multi-grain list and proposed two ranking meth-
ods for vehicle Re-ID. Lou et al. (2019) resorted to adver-
sarial learning to generate cross views examples, while He
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et al. (2019) proposed a part-regularized approach to en-
hance the discriminative capability of global features for ve-
hicle Re-ID. Recently, Guo et al. (2018) proposed a larger
dataset Vehicle-1M, including 936,051 images of 55,527 ve-
hicles with only the head and rear of the vehicles. Tang et
al. (2019) proposed a large city-scale benchmark for vehi-
cle Re-ID, called CityFlow-ReID, containing 666 vehicles
from 40 cameras. However, existing vehicle Re-ID datasets
and methods only devote to the single RGB modality, while
neglecting the crucial mission of Re-ID task in adverse il-
lumination conditions, which are even important in social
security and video surveillance.

RGB-IR Cross-Modality Person Re-ID

One pioneer cross-modality person Re-ID problem is the
text-to-image person retrieval (Ye et al. 2015; Li et al. 2017a;
2017b), which aimed to search a person with a natural lan-
guage description. To relieve the illumination limitation in
the dark area or nighttime, the RGB-IR cross-modality per-
son Re-ID emerges. Wu et al. (2017) contributed for the
first time a standard benchmark RGB-NIR cross-modality
Re-ID dataset SYSU-MM01 and proposed a deep zero-
padding network for modality shareable feature representa-
tions learning. Ye et al. (2018) introduced a two-stage frame-
work to learn sequentially discriminate features and dis-
tance metrics for RGB-NIR cross-modality person Re-ID.
Recently, Dai et al. (2018) presented a cross-modality gener-
ative adversarial network to jointly discriminate the modali-
ties and identities. Ye et al. (2019) designed a dual-path net-
work with bi-directional dual constrained top-ranking loss
to learn discriminative feature representations for RGB-NIR
cross-modality Re-ID. Nguyen et al. (Nguyen et al. 2017)
proposed a novel RGB-TIR dataset RegDB with RGB-TIR
image pairs, and it is widely used for cross-modality person
Re-ID but only captured by one RGB-T camera. However,
the heterogeneous issue across different modalities brings an
additional challenge for the Re-ID task.

RGB-D Multi-Modality Person Re-ID

To integrate additional modality into Re-ID, some works
proposed the indoor RGB-Depth (RGB-D) multi-modality
datasets (Barbosa et al. 2012; Munaro et al. 2014). John et
al. (John, Englebienne, and Krose 2013) combined RGB-
Height histogram and gait feature of depth information. Pala
et al. (Pala et al. 2016) improved the accuracy of appearance
descriptors by fusing them with anthropometric measures
extracted from depth data. Wu et al. (Wu, Zheng, and Lai
2017) proposed a locally rotation invariant depth shape de-
scriptor for depth data and empirically fused the traditional
RGB features to identify a person. However, it is hard to cap-
ture the depth information outdoor which significantly limits
the application in real-life surveillance. Furthermore, most
of the existing works directly utilize the multi-modality in-
formation as auxiliary information or connective feature for
Re-ID while ignoring the common expression ability of the
multi-modality information.

RGBN300 Benchmark

To overcome the illumination limitation in the conventional
RGB-based vehicle Re-ID, we are the first time to contribute
a new dataset named RGBN300 for multi-spectral vehicle
Re-ID. We will elaborate on the acquisition details, followed
by the dataset constructions and the challenges in our dataset
in this section.

Imaging Platform

The dataset is captured in a campus by eight RGB-NIR
camera pairs shooting at eight views of vehicles, as shown
in Fig. 2. Our image acquisition platform is based on two
HIKVSION cameras, each consisting of one near infrared
camera and one visible camera with the same imaging pa-
rameters. We manually align the images of two modalities
by moving the visible image to totally contain the entire near
infrared one. Then, we manually crop the RGB-NIR image
pair with a small part of the background with different views.

front

back

left side right side

left front side

left back side right back side

right front side

RGB Camera

NIR Camera

Figure 2: Illustration of eight camera views and correspond-
ing samples in our dataset.

Dataset Construction

RGBN300 contains 50125 image pairs of 300 vehicle iden-
tities in both RGB and near infrared modalities. The num-
ber of image pairs of each vehicle varies from 50 to 200.
We provide at least 2 and at most 8, coming up with aver-
agely 6.7 camera views per vehicle. We randomly select 150
vehicles with 25200 image pairs as the training set, while
the rest 150 vehicles with 24925 image pairs as the test-
ing set (gallery). We further randomly selected 4985 image
pairs from the gallery as the query (probe). Fig. 3 (a) and
(b) demonstrates the distribution of the attributes of 8 types
and 9 colors in RGBN300, which covers the most types and
colors of modern vehicles.

Challenges. In addition to the common challenges, such
as view changes (VC) as Fig. 4 (a, b) and occlusion (OC)
as Fig. 4 (c), our dataset contains more challenges including

11347



VC LI SH OC AL GL BN

(c)(a) (b)

Figure 3: The distribution of (a) nine colors, (b) eight types,
and (c) seven challenges in RGBN300.

abnormal lighting (AL) and glaring (GL) as shown in Fig. 4
(d) and (f), which significantly affect the color appearance
on the vehicle images in RGB spectrum. The poor illumina-
tion caused by shadow (SH) (Fig. 4 (e) ), low illumination
(LI) (Fig. 4 (g)) and even black night (BN) (Fig. 4 (h)) also
bring severe challenges for vehicle Re-ID. The distribution
of challenges in our dataset is shown in Fig. 3 (c).

TIR

RGB

NIR

a hgfec db

Figure 4: Challenges of our dataset. (a) normal condition. (b)
view change (VC). (c) occlusion (OC). (d) abnormal lighting
(AL). (e) shadow (SH). (f) glare (GL). (g) low illumination
(LI). (h) black night (BN).

Extension. To fully verify the robustness of the proposed
multi-spectral vehicle Re-ID method in the next section, we
have captured additional 17250 TIR (thermal infrared) im-
ages of 100 vehicles from RGBN300. Fig. 4 (bottom) shows
the TIR image in each challenge scenario. Supplemental TIR
data and corresponding RGB-NIR image pairs constitute the
dataset with 17250 image triples named RGBNT100 in this
paper. In RGBNT100, the training set contains 50 vehicles
with 8675 image triples, while the other 50 vehicles with
8575 image pairs for testing/gallery, from which 1715 im-
age triples are randomly selected as the query/probe. From
Fig. 4 (bottom) we can see, TIR images reflect the thermal
temperature information of the object which is not affected
by illumination changes. In particular, both RGB and NIR
cameras are with the resolution of 1920 ∗ 1080, while the
TIR camera is 640∗480. The cameras from three modalities
are with the same frame rate of 25 fps.

Baseline Approach

We follow a widely used ID-discriminative embedding
(IDE) model (Zheng, Zheng, and Yang 2018) as standard

baseline, and utilize five state-of-the-art networks as the
backbones, including ResNet50 (He et al. 2016), SeRes-
Net50 (Hu, Shen, and Sun 2018), Densenet121 (Huang et
al. 2017), InceptionResNetV3 (Szegedy et al. 2017) and Mo-
bileNetV2 (Sandler et al. 2018), all of which are pre-trained
on ImageNet (Deng et al. 2009) and with the same hyper-
parameter settings. The sizes of input images are fixed to
128 × 256 for ResNet50, Densenet121 and MobileNetV2,
224 × 224 for SeResNet50, and 299 × 299 for Inception-
ResNetV3. We design a multi-stream convolutional network
(MSN) for multi-spectral vehicle Re-ID, where multiple
CNN models are trained with the sum of ID losses from each
stream (spectrum). Then we sum up the features from each
stream/spectrum in the test procedure. The generated feature
dimension is between 512 and 2048 for final matching.

Heterogeneity-collaboration Aware

Multi-Stream Convolutional Network

To maintain the similarity between heterogeneous spec-
tra about aligned images and measure the importance of
each spectrum for consistent vehicle identity, we propose
a Heterogeneity-collaboration Aware Multi-stream convolu-
tional Network (HAMNet) for multi-spectral vehicle Re-ID.

Network Architecture

As shown in Fig. 5, HAMNet consists of multi-stream equiv-
alent backbones to extract multi-spectral features. To guar-
antee the predicted ID for each stream to be consistent with
the ground truth, we firstly design the multi-stream identifi-
cation loss Lmsid by the summation of independent identi-
fication loss Lj

id from the corresponding backbone (stream).
Considering the consistency of intrinsic geometric struc-
tures among different spectral images, we secondly propose
a novel loss function called heterogeneous score coherence
loss (Lhsc) to maintain the score coherence of the multi-
spectral information of the same identity. Lhsc is summed
with Lmsid called heterogeneity-collaboration (Lhc) loss,
to enforce the similarity consistency among heterogeneous
data, in addition to the ID consistency. Meanwhile, inspired
by Class Activation Map(CAM) (Zhou et al. 2016), which
can indicate the locations of informative parts and features.
We use the information parts indicated by CAM to learn
the class-aware weights associated with the multi-spectrum.
We adaptively fuse class activation maps of multi-spectrum
based on the weights, and constrain the final class activation
map with a class-aware identification loss (Lcaid). Finally,
our HAMNet model is trained by the summation of Lhc and
Lcaid.

Loss Functions

Heterogeneity-Collaboration loss (Lhc). Given the ve-
hicle image Ij from the j-th spectrum, we can obtain the
class activation maps M j ∈ Rh×w×C . The global average
pooling (GAP) is used to transfer M j into the class scores
Sj ∈ RC .

Sj = GAP (M j) (1)
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Figure 5: Pipeline of Heterogeneity-Collaboration Aware Multi-Stream Convolutional Network (HAMNet). Given the aligned
images {I1, I2, . . . , Im} with label c, we first extract the corresponding tensors {F 1, F 2, . . . , Fm} via m-stream equivalent
backbones. Then, we weight F j ∈ Rh×w×d, j = {1, . . . ,m} by W j ∈ Rd×C to obtain the class activation maps (CAMs)
M j ∈ Rh×w×C . The class scores Sj ∈ R1×C is obtained by the Global Average Pooling (GAP). In (a), we enforce the multi-
stream identification loss Lmsid by the sum of identification losses Lj

ids to guarantee the predicted ID from each stream j to
be consistent with the ground truth. Meanwhile, we enforce the heterogeneous score coherence (Lhsc) loss by multiple class
scores {S1, S2, . . . , Sm} to maintain the score similarity among m streams. The heterogeneity-collaboration (Lhc) loss is then
constructed by Lmsid and Lhsc. In (b), we use M j

c ∈ Rh×w measures the class-aware weights from each stream j so that
the information in different streams can fuse to one class activation map M ′

c adaptively. M ′
c is constrained by the class-aware

identification loss (Lcaid), which enforces the same class information of multi-spectral data. Finally, our HAMNet model is
trained by the sum of Lhc and Lcaid.

Sj is further normalized by a softmax function into a
probability distribution p̂j ∈ RC :

p̂j = softmax(Sj) (2)

The identification loss corresponding to image Ij is calcu-
lated as the cross entropy between the predicted probability
p̂j and the ground-truth class c:

Lj
id =

C∑

i=1

−pji log(p̂
j
i ), i ∈ {1, 2, . . . , C} (3)

where p̂j is the predicted probability, pji is the target proba-
bility. pji = 0 for all i except pjc = 1.

Our baseline multi-stream convolutional network (MSN)
is trained by the multi-stream identification loss Lmsid,
which is defined as:

Lmsid =

m∑

j=1

Lj
id (4)

Although MSN takes into account the different spectral
losses and joint training, these losses are essentially inde-
pendent of each other. In multi-spectral Re-ID, we argue

that the heterogeneous feature maps derived from the multi-
spectral images of the same vehicle tend to have similar ge-
ometric distribution in their source domains, as shown in
Fig. 5. Herein we propose to enforce this constraint on multi-
spectral images to obtain the consistent probability distribu-
tion. Specifically, we propose a heterogeneous score coher-
ence loss (Lhsc) to consider the score consistency among
multi-spectral features, which is defined as:

Lhsc = 1−
C∑

i=1

(

m∏

j=1

p̂ji ) (5)

where
∏

denotes the element multiplication. p̂ji denotes the
i-th class predicted probability of j-th spectrum.

We combine the heterogeneous score coherence loss Lhsc

and the multi-stream identification loss Lmsid to form a
heterogeneity-collaboration loss (Lhc) to maintain the data
heterogeneity and score coherence of different spectra point-
ing to the same identity as:

Lhc = Lmsid + αLhsc (6)

where α is a hyper-parameter setting as 0.001.
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Class-Aware ID loss (Lcaid). One can directly concate-
nate the multi-spectral features for multi-spectral vehicle
Re-ID. However, it may not be reliable enough because
the information provided by different spectra is various in
challenge scenarios. Inspired by Class Activation Mapping
(CAM), which can highlight the class-specific discrimina-
tive regions. We propose to measure the importance of dif-
ferent spectra by CAM, and further obtain one more robust
class activation map by different class-aware wights in dif-
ferent spectra. The fused class activation map is finally con-
strained by the class-aware identification loss Lcaid.

As shown in Fig. 5, after obtaining the CAM, i.e., M j ∈
Rh×w×C , for each spectrum, we first normalize it into 0 ∼ 1
by the sigmoid function:

Aj
c =

1

1 + exp(−M j
c )

(7)

The most interesting regions of the heterogeneous activa-
tion maps can be expressed as:

Bc = max(A1
c , A

2
c , . . . , A

m
c ) (8)

The response value of each class activation map can be
obtained by following operation:

ηjc =
∑

Aj
c �Bc (9)

where � denotes the element multiplication. The class-
aware weight of each spectrum for classification can be mea-
sured as:

αj
c =

ηjc∑m
j=1 η

j
c

(10)

The fused class activation map can be expressed as:

M ′
c =

m∑

j=1

αj
cM

j
c (11)

After global average pooling (GAP) over the fused class
activation map M ′

c, we obtain the corresponding class score
S′
c, which is further normalized by a softmax function into a

probability value y′c. The class-aware ID loss Lcaid is em-
ployed to guarantee the predicted ID for fused activation
map to be consistent with the ground truth:

Lcaid = − log(y′c) (12)

The final objective function for the HAMNet model is de-
fined as the sum of the heterogeneity-collaboration loss Lhc

and the class-aware ID loss Lcaid.

Ltotal = Lhc + Lcaid. (13)

Experimental Results

To evaluate the effectiveness of the proposed HAM-
Net on multi-spectral vehicle Re-ID, we integrate HAM-
Net into the five state-of-the-art networks, including
ResNet50 (He et al. 2016), SeResNet50 (Hu, Shen, and
Sun 2018), Densenet121 (Huang et al. 2017), InceptionRes-
NetV3 (Szegedy et al. 2017) and MobileNetV2 (Sandler et
al. 2018).

Experimental Settings

Evaluation Metrics. Following (Zheng, Zheng, and Yang
2018), we use the Cumulative Matching Characteristic
(CMC) curve and the mean average precision (mAP) for
evaluation. CMC scores reflect the retrieval precision, where
Rank-1 (R-1), Rank-5 (R-5), Rank-10 (R-10) scores are re-
ported in our experiments. mAP measures the mean of all
queries of average precision (the area under the Precision
Recall curve) which reflects the recall.

Implementation Details. We adopt the network that pre-
trained on ImageNet (Deng et al. 2009) as the backbone. The
common backbone in the different streams does not share
parameters. The classifier weights are randomly initialized.
For data augmentation, standard random cropping and hori-
zontal flipping are used during training. The Adam (Kingma
and Ba 2014) optimizer is used with the batch size of 16.
We use warmup (Fan et al. 2019) to bootstrap the network,
which spent 10 epochs linearly increasing the learning rate
from 3.5×10−5 to 3.5×10−4. The learning rate is decayed
to 3.5×10−5 and 3.5×10−6 at 40-th epoch and 70-th epoch
respectively. Our model is trained in total 120 epochs.

Evaluation on RGBN300 Dataset

Table 2 reports the evaluation results of five backbones on
RGBN300 dataset. One-stream denotes the Re-ID on the
corresponding spectrum, e.g., single-spectral Re-ID. MSN
denotes the multi-stream network for multi-spectral Re-ID
without the heterogeneous score coherence loss and the
class-aware ID loss, which is the baseline approach of our
HAMNet.

From which we can see, i) The accuracy on the RGB spec-
trum clearly outperforms the NIR spectrum as expected on
all the five backbones, since RGB images contain richer ap-
pearance information than NIR ones. ii) By integrating NIR
to RGB, the MSN significantly improves the performance
which verifies the effectiveness of the multi-spectral infor-
mation in vehicle Re-ID. iii) By introducing the heteroge-
neous score coherence loss and the class-aware ID loss, our
HAMNet consistently beats both MSN on RGB-NIR multi-
spectral vehicle Re-ID and the single spectrum ones, which
validates the contrition of our method.

Evaluation on RGBNT100 Dataset

To further verify the robustness of multi-spectral meth-
ods, we additionally evaluate our HAMNet on the extended
RGB-NIR-TIR dataset RGBNT100. The evaluation results
on RGBNT100 are shown in Table 3. From which we can
see, i) By integrating NIR or TIR to RGB, the multi-spectral
results of MSN on either RGB-NIR or RGB-TIR outper-
forms the single-spectrum ones on RGB, NIR or TIR spec-
trum, which consistently verifies the effectiveness of multi-
spectrum information for vehicle Re-ID. ii) By integrating
TIR to RGB-NIR, MSN on RGB-NIR-TIR significantly im-
proves the performance, which further confirms the contri-
bution of multi-spectrum information. iii) Our HAMNet fur-
ther boosts the performance on RGB-NIR-TIR comparing
to MSN, which validates the effectiveness of the proposed
method.
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Table 2: State-of-the-art networks for vehicle Re-ID on RGBN300 (in %).
Modality ResNet50 SeResNet50 Densenet121 InceptionResNetV3 MobileNetV2

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10
RGB one-stream 49.5 72.6 76.4 78.6 48.2 72.9 76.2 78.1 36.1 61.4 65.1 67.3 41.1 67.6 70.7 72.5 44.9 68.7 73.4 76.0
NIR one-stream 42.1 61.9 65.4 67.5 41.2 65.1 67.3 68.5 28.8 50.5 53.2 55.2 34.4 57.5 61.0 64.0 39.1 62.7 67.1 69.1
RGB-N MSN 56.9 77.2 79.9 81.4 56.9 80.5 82.1 83.2 46.1 74.0 76.2 77.6 52.8 77.1 78.8 80.2 54.3 78.9 81.2 82.7
RGB-N HAMNet 61.9 84.0 86.0 87.0 61.8 84.3 86.6 87.9 46.7 75.1 76.9 78.2 56.6 82.0 84.2 85.5 56.9 80.0 82.1 83.5

Table 3: State-of-the-art networks for vehicle Re-ID on RGBNT100 (in %).
Modality ResNet50 SeResNet50 Densenet121 InceptionResNetV3 MobileNetV2

mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10
RGB one-stream 41.0 58.5 63.6 66.9 39.1 57.9 60.5 62.2 35.2 54.4 58.5 61.3 37.5 57.1 62.2 64.9 37.3 58.1 63.3 66.4
NIR one-stream 37.1 52.8 56.4 59.1 37.3 53.2 56.4 58.4 27.2 43.8 46.0 47.8 31.1 51.6 56.2 58.3 36.9 56.9 62.4 65.0
TIR one-stream 35.7 61.8 66.5 69.9 39.1 67.1 72.6 74.9 27.5 50.8 56.3 59.6 40.5 70.8 75.3 78.2 39.9 68.3 73.1 75.6
RGB-N MSN 43.1 65.4 70.6 73.6 43.7 64.6 68.2 70.4 40.9 61.5 63.2 64.9 45.9 71.8 75.6 77.6 48.2 70.3 73.4 75.5
RGB-T MSN 56.2 80.7 83.3 86.2 57.3 81.4 83.2 85.4 45.9 73.8 76.9 78.4 49.3 78.0 82.4 85.5 52.9 79.1 82.8 84.7
RGB-N-T MSN 60.5 82.6 85.7 87.1 60.0 82.6 85.2 87.3 51.0 76.8 78.9 80.1 53.9 81.2 84.1 86.1 57.1 82.3 85.7 87.8
RGB-N-T HAMNet 64.1 84.7 88.0 89.4 65.4 85.5 87.9 88.8 54.3 80.9 83.1 84.8 56.3 85.0 86.0 87.6 58.2 83.9 86.2 88.5

RGB

NIR

TIR

RGBNT

query

ranking list: R-1 R-5

RGBN

Figure 6: Top 5 ranking results on RGBNT100. The images
with green bounding boxes and the rest ones indicate the
correct and wrong matchings respectively.

Comparing to State-of-the-art Methods

As the first work on multi-spectral vehicle Re-ID, we ex-
tend the state-of-the-art RGB single spectrum Re-ID meth-
ods to multi-spectral cases for comparison. Specifically, we
first train the methods on the three spectra respectively and
then directly sum up the learned deep features from each
spectrum for testing. Table 4 reports the results comparing
to three state-of-the-art Re-ID methods, including PCB (Sun
et al. 2018), MGN (Wang et al. 2018) and ABD (Chen et al.
2019)) on RGBN300 and RGBNT100.Note that few of vehi-
cle Re-ID methods have released their codes, we herein ex-
tend the recently advanced methods on person Re-ID task,
which shares a common objective as vehicle Re-ID. From
Table 4 we can see that the compared methods achieve good
performance at Rank-1 due to their powerful capabilities of
feature extraction. However, the mAPs are overshadowed
comparing to our HAMNet, which implies that, HAMNet
can better capture the complementary information provided
among multiple heterogeneity spectral information even on
the simple backbone (ResNet-50).

Table 4: Comparing to State-of-the-art Re-ID methods (in
%). (Backbone: ResNet-50).

Methods RGBN300 RGBNT100
mAP Rank-1 mAP Rank-1

PCB (ECCV2018) 57.7 82.0 57.2 83.5
MGN (MM2018) 60.5 83.7 58.1 83.1
ABD (ICCV2019) 58.9 83.1 60.4 85.1
OURS 61.9 84.0 64.1 84.7

Table 5: Ablation study on RGBN300 and RGBNT100 (in
%). (Backbone: ResNet-50).

Models RGBN300 RGBNT100
mAP Rank-1 mAP Rank-1

baseline (MSN) 56.9 77.2 60.5 82.6
+ Lhsc 59.1 80.1 61.4 83.4
+ Lcaid 59.4 79.2 61.4 83.1
+ Lhsc + Lcaid 61.9 84.0 64.1 84.7

Ablation Study

To verify the contribution of the components in our model,
we implement the ablation study of several variants of our
method on RGBN300 and RGBNT100 datasets, as reported
in Table 5. Note that, both heterogeneous score coherence
loss Lhsc and class-aware ID loss Lcaid surpass the baseline
MSN, which demonstrates the contribution of each loss. By
simultaneously enforcing both losses, our HAMNet can fur-
ther boost the performance.

Summary

To our best knowledge, this is the first work to iden-
tify the RGB-IR multi-spectral vehicle Re-ID problem. We
have contributed two new multi-spectral Re-ID datasets, to-
gether with a novel multi-spectral Re-ID method. Compar-
ing with RGB-RGB vehicle Re-ID, additional infrared im-
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ages can help identify vehicles in adverse illumination con-
ditions. Extensive experiments demonstrate the promising
performance of the proposed method. In addition, based
on evaluation results, we highlight some critical obser-
vations for RGB-IR multi-spectral vehicle Re-ID. First,
the ability of heterogeneous data to identify the same ID
is worth considering. Second, adaptive fusion is effec-
tive. Third, powerful feature representations are essential
for high-performance achievement. Improving above men-
tioned components will further advance the state-of-the-art
of RGB-IR multi-spectral vehicle Re-ID.
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