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Abstract

Person re-identification (Re-ID) across multiple datasets is a
challenging task due to two main reasons: the presence of
large cross-dataset distinctions and the absence of annotated
target instances. To address these two issues, this paper pro-
poses a domain adaptive attention learning approach to reli-
ably transfer discriminative representation from the labeled
source domain to the unlabeled target domain. In this ap-
proach, a domain adaptive attention model is learned to sep-
arate the feature map into domain-shared part and domain-
specific part. In this manner, the domain-shared part is used
to capture transferable cues that can compensate cross-dataset
distinctions and give positive contributions to the target task,
while the domain-specific part aims to model the noisy in-
formation to avoid the negative transfer caused by domain
diversity. A soft label loss is further employed to take full use
of unlabeled target data by estimating pseudo labels. Exten-
sive experiments on the Market-1501, DukeMTMC-reID and
MSMT17 benchmarks demonstrate the proposed approach
outperforms the state-of-the-arts.

Introduction

The task of person re-identification (Re-ID) is to match peo-
ple across non-overlapping camera views. It has become one
of the most studied problems in video surveillance due to its
great potential for security and safety management applica-
tions. It is a challenging task because a person’s appearance
often changes dramatically across camera views caused by
changes in body pose, view angle, occlusion and illumina-
tion condition.

In order to address these issues, most of the existing
person Re-ID methods are designed on supervised learn-
ing (Sun et al. 2018; Wang et al. 2018a; Li, Zhu, and Gong
2018) and have obtained significant performance improve-
ment by the deep learning (Huang et al. 2017; Chollet 2017;
He et al. 2016). However, these methods require a large
number of labeled data to train the Re-ID model, which are
limited in many real-world applications (Peng et al. 2016).
In order to make person Re-ID method more scalable, one
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Figure 1: The visualizations of the proposed DAAM. The
DAAM (the warmer color means the greater weight) sepa-
rates the original image (a) into two parts: the domain-shared
part (b) and the domain-specific part (c). The former is dis-
criminative and useful to the person Re-ID task, and the lat-
ter is used to model the domain-specific information (such
as background) caused by the domain divergence.

solution is to formulate the person Re-ID task as an unsu-
pervised domain adaption problem (UDA) (Fernando et al.
2013; Gong et al. 2012; Gopalan, Li, and Chellappa 2011;
Long et al. 2016), where the existing labeled dataset and the
current unlabeled dataset are modeled as source and target
domains, respectively. The source and target domains con-
tain the identical feature space with the same dimension but
totally different person identities (IDs). It is a challenging
task to transfer a Re-ID model from the source domain to the
target domain due to two reasons: Firstly, since the source
and target datasets are often collected from totally different
environments which contains various illuminations, back-
grounds and image qualities, the data distributions of the
source and target data are different with a large proba-
bility and the domain divergence (Ben-David et al. 2007;
2010) may cause negative transfer. Secondly, the target
dataset is unlabeled, while most of the existing loss func-
tions of Re-ID are designed for the supervised learning and
cannot be employed directly.
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To handle the first challenge, a novel domain adaptive at-
tention module (DAAM) is proposed to alleviate the nega-
tive transfer caused by the domain divergence. Given a fea-
ture map of any image from a backbone network, the pro-
posed domain adaptive attention module (DAAM) aims to
separate the feature map into the domain-shared (DSH) fea-
ture map and the domain-specific (DSP) feature map simul-
taneously. Specifically, the DAAM focuses on capturing the
attentive parts of the DSH feature map which is discrimi-
native and transferable, and thus it can help the Re-ID task
in the target dataset. Then, the DSP feature map is used to
model the residual part corresponding to the domain spe-
cific information such as background. The residual mecha-
nism encourages the DSH and DSP feature maps separable
and complementary to each other. Although the DSP fea-
ture map is useless for the Re-ID task, it makes sure that the
domain-specific information is accounted for in the model
rather than acting as a distracter to corrupt the learning of
the DSH feature map. Several visualized examples of the
DAAM are shown in Fig. 1. Following the DSH and DSP
feature map, two branches are introduced respectively. Then,
the DSH branch is trained by the person Re-ID loss to en-
sure the DSH feature map discriminatively, and a domain-
specific loss is introduced to ensure that the DSP feature map
is distinguishable for different domains.

To take full use of the unlabeled target data, the pseudo
labels (Fan et al. 2018; Song et al. 2018; Lin et al. 2019;
Yu et al. 2019; Fu et al. ; Zhong et al. 2019) are widely used
to the unsupervised Re-ID task. The standard pipeline often
employs the clustering methods (such as DBSCAN (Ester et
al. 1996)) to segment the unlabeled training data into several
independent clusters, and assumes that the data in the same
cluster have same person ID. However, different with manu-
ally annotation, the pseudo labels are approximated and in-
accurate. Hence, we consider the pseudo labels as the soft
constrains, and a novel soft person Re-ID loss is proposed
according to the relationship between the training data and
the clusters. Specifically, the clusters are regarded as the po-
tential IDs, and the pseudo labels are assigned as possibil-
ity distributions rather than definitely ID (Fan et al. 2018;
Song et al. 2018).

The whole framework of the proposed method is shown
in Fig. 2, and the main technical contributions are outlined
as below:
• A novel domain adaptive attention model is proposed to

automatically separate the feature map of an image to the
domain-shared feature map and the domain-specific fea-
ture map simultaneously.

• A soft label based person Re-ID loss is introduced for the
unlabeled target dataset.

• Extensive experimental analyses and evaluations on the
Market-1501, DukeMTMC-reID and MSMT17 bench-
marks demonstrate the proposed method can achieve the
state-of-the-art performance.

Related Works

Person Re-ID has been one of the most studied problems
due to its important application, and most of the existing

works are based on supervised learning frameworks (Sun
et al. 2018; Wang et al. 2018a; Li, Zhu, and Gong 2018)
which require sufficient labeled images across cameras. This
severely limits the scalability of these supervised learning
based methods.To solve the above scalability issue, a natural
solution is to utilize unsupervised domain adaption method
which aims to transfer useful Re-ID information from the
labeled source domain (dataset) to unlabeled target domain
(dataset). However, most of existing unsupervised domain
adaptation methods (Long et al. 2016; Bousmalis et al. 2016;
Tzeng et al. 2017) are designed to the cases where the source
and target domains have the same recognition tasks (i.e.
having the same set of classes), which is invalid to person
Re-ID problem as different datasets contain totally differ-
ent person identities. In order to address the problem, early
unsupervised domain adaptation methods (Ma et al. 2015;
Peng et al. 2016) are proposed based on hand-craft features,
but they are less effective than the deep model when a large
number of training samples are available. Recently, several
deep-learning-based methods are proposed and mainly can
be categorised into two groups:
Pseudo Label Based Methods. Another focus of unsu-
pervised cross-domain person Re-ID works is estimating
pseudo identity labels (Fan et al. 2018; Song et al. 2018;
Lin et al. 2019; Yu et al. 2019; Fu et al. ; Zhong et al. 2019)
for target dataset which is similar to our method. PUL (Fan
et al. 2018), BUC (Lin et al. 2019), SSG (Fu et al. ) and
UDAP (Song et al. 2018) generate hard pseudo labels for
unlabeled target data by iterative clustering. The key dif-
ferent with them, in view of inaccuracy of pseudo labels,
our method estimates probabilistic class labels for unlabeled
samples in a soft way like LSR (Szegedy et al. 2016). How-
ever, LSR assigns a uniform label distribution to all sam-
ples, while our method assigns a label distribution according
to the reliability of pseudo label. ECN (Zhong et al. 2019)
uses k-nearest neighbors to exploit the target labels also in
a soft way, but it introduces the camera-invariance into the
model,which requires that each real image and its style-
transferred counterparts share the same identity. MAR (Yu
et al. 2019) using soft multilabel representing an unlabeled
target person by other different reference persons, while our
soft labels not only used to represent an unlabeled target per-
son but also measure the reliability of the pseudo labels.
GAN Based Methods. To reduce the discrepancy, several
methods employ GAN to transfer the style of different do-
main person images (Wei et al. 2018; Deng et al. 2018;
Zhong et al. 2018b; Liu et al. 2018; Zhong et al. 2019;
Qi et al. ). The proposed method does not contradict with
those GAN based methods. They aim to increase the cross-
domain training samples with style transfer methods, while
our goal is to make better use of existing samples. Further-
more, their generated images can also be used in our method
as training samples.

Besides, there are other deep transfer learning ap-
proaches (Wang et al. 2018b; Huang et al. 2018; Li et al.
2018). Wang et al. (Wang et al. 2018b) introduce a trans-
ferable joint attribute-identity deep learning to the target do-
main for Re-ID tasks, but the method requires additional at-
tribute annotations. EANet (Huang et al. 2018) also intro-
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Figure 2: The framework of the proposed method. The domain adaptive attention module separates the feature map into domain-
shared (DSH) and domain-specific (DSP) feature maps simultaneously. Then, a DSH branch and a DSP branch are introduced
to learn these two feature maps respectively. The soft-label based cross entropy and hard-label based losses are adopted to the
DSH branch to make the DSH feature discriminative to different persons and transferable to different domains. In contrary, the
domain-specific loss is employed to make the DSP branch capture the domain distinguishable information to avoid to distract
the DSH feature and separate the untransferable to different domains.

duces additional pose segmentation infromation to enhance
alignment. However, our method does not require any addi-
tional information. ARN (Li et al. 2018) extends the domain
separation network (Bousmalis et al. 2016) for person Re-ID
task which leverages encoder to model domain-shared and
domain-specific features. Different with these two methods,
we propose a domain adaptive attention module (DAAM) to
separate feature map which is more direct than the learned
encoder. Based on the above analysis, in this paper, we aim
to address unsupervised domain adaptation problem for per-
son Re-ID by learning domain adaptive attention represen-
tations based on soft labels.

Methodology

Suppose there are two types of training data including: A
labeled source dataset Ds = {xs

i , y
s
i }Ns

i=1 and an unlabeled
target dataset Dt = {xt

i}Nt
i=1, where xs

i and xt
i are pedestrian

images from the source and target datasets respectively. The
person identity (ID) of each image is only available in the
source training data and denoted by ysi ∈ {1, 2, ..., N ids}.
The source and target datasets are collected from different
environments and have different data distributions. To trans-
fer the dataset-shared discriminative representations from
the source dataset to the target dataset (the source and tar-
get datasets are represented by source and target domains
respectively), person Re-ID task is formulated as an un-
supervised domain adaptation problem (Long et al. 2016),
where the labeled source and unlabeled target domains con-
tain the identical feature space with the same dimension but

totally different IDs. To resolve this problem, as is shown
in Fig. 2, a novel deep network is designed which consists
of four modules: A backbone network, a domain adaptive
attention module, a domain-shared branch and a domain-
specific branch. ResNet-50 is chosen as our backbone net-
work as same to most recent person Re-ID methods (Wang
et al. 2018b; Li et al. 2018; Fan et al. 2018). Given any image
x, the output of the backbone network is the corresponding
feature map Fx ∈ Rh×w×c where h, w and c are the height,
width and the number of channels, respectively.

Domain Adaptive Attention Module

Given Fx, the goal of domain adaptive attention module
(DAAM) is to focus on the domain shared (DSH) and dis-
criminative part of Fx while eliminating the irrelevant do-
main specific (DSP) noise such as backgrounds. Specifically,
the input of DAAM is Fx, while the output is the DSH at-
tention maps A(Fx) ∈ (0, 1)h×w×c. Then, the DSH feature
map can be calculated as:

F sh
x = A(Fx)⊗ Fx, (1)

where ⊗ means element-wise product. Due to the irrelevant
and complementary of the DSH feature map F sh

x and the
DSP feature map F sp

x , we have:

F sp
x = (1−A(Fx))⊗ Fx. (2)

Inspired by many recent attention techniques (Li, Zhu,
and Gong 2018; Chen et al. 2019), we learn the spatial atten-
tion and the channel attention sequentially. For the spatial at-
tention, a depthwise separable convolution layer containing
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Figure 3: Diagram of domain adaptive attention module.

c
2 3×3 kernels are employed on Fx where the stride is 2. The
layer exploits the inter-pixel relationship of feature maps and
preserves channel-specific characteristics. After that, a re-
sizing bilinear layer is introduced to make the attention map
have same size with Fx. For the channel attention, two con-
volution layers with 1 × 1 kernels are introduced to exploit
the inter-channel relationship of feature maps. Specifically,
the first layer contains c

16 kernels and project the feature map
to a new down sampling channel space, and then the second
layer with c kernels is performed to recover the size. In ad-
dition, the batch normalization layer and ReLU activation
function are followed by each above convolution layer, and
the network architecture of the DAAM is shown in Fig. 3.

Domain-Shared Branch

The domain-shared (DSH) branch is designed to extract fea-
ture representations from F sh

x which are applied for the per-
son Re-ID task at the target domain. Specifically, a Global
Average Pooling (GAP) operation is performed to get the
feature vector fsh

x . To make fsh
x discriminative to different

persons, two types of person Re-ID loss functions, including
the hard-label based cross entropy loss and soft-label based
cross entropy loss, are introduced for source dataset and tar-
get respectively.
Hard-label Based Cross Entropy Loss. For the labeled
source dataset, the cross entropy loss is adopted as same
to the existing supervised learning methods. Considering
every person as a class, and person Re-ID task is formu-
lated as a classification task. That is, the label of each sam-
ple is hard and denoted by one-hot coding. Therefore, a
2048 × N ids FC layer and a softmax activate function are
performed sequentially following fsh

x to output the proba-
bilities {pid(y|x)}Nids

y=1 of that the image x is from person y.
Then, the cross-entropy loss is formulated as:

Lcros = − log(pid(ysi |xs
i )). (3)

Soft-label Based Cross Entropy Loss. Since the training
data in the target domain are unlabeled, Eq. (3) cannot be
directly applied to the target dataset. Motivated by (Peng
et al. 2016), we assume that images with more similar ap-
pearances are more likely from the same person. Based on
this assumption, a widely used solution (Fan et al. 2018;
Song et al. 2018; Fu et al. ) is to estimate the pseudo la-
bel of unlabeled data by the clustering method. Specifically,

the feature fsh
x of the target data is extracted by the pre-

trained model, and the distance matrix D between sam-
ples can be calculated by the k-reciprocal encoding (Zhong
et al. 2017a). As same to (Song et al. 2018; Fu et al. ),
the density-based clustering method DBSCAN (Ester et al.
1996) is used to segment the train data of the target do-
main into K groups, denoted as {Ck}Kk=1 respectively. Then,
most existing methods (Fan et al. 2018; Song et al. 2018;
Fu et al. ) assign the pseudo label ỹti of a sample xt

i by which
group Ck is belongs. That is, if fsh

xt
i
∈ Ck, ỹti = k. Based on

ỹti , the supervised losses are directly calculated.
However, unlike manually annotations, ỹti is approxi-

mated and may be inaccurate. Motivated by LSR (Szegedy
et al. 2016), if the model learns to assign full probability to
the pseudo label for each training example, it is easy to get
caught up in overfitting on unreliable pseudo labels. To han-
dle this challenge, we argue that the model should have less
confident on the approximated pseudo labels and mine the
potential association information between different groups.
Following this line, a soft label based loss is proposed. Dif-
ferent with the hard label, the soft label is denoted by K
weights which is used to measure the relationship between
the sample with K groups. Generally speaking, the sam-
ple closer to a group center Ck should have a larger confi-
dence, hence the weight of sample belonging to each center
{wi,k}Kk=1 is defined as a descending function of the dis-
tance between xt

i and every group {Ck}Kk=1:

wi,k =

⎧⎨
⎩

1
K×‖fsh

xt
i

−Ck‖2
2
, k �= ỹti

ε+ 1
K×‖fsh

xt
i

−Ck‖2
2
, k = ỹti ,

(4)

where k ∈ {1, 2, ...,K} and ε ∈ [0, 1]. ε has the function
of ensuring a minimum weight for the assigned cluster and
encourages the weights of the group Ck containing xt

i when
k = ỹti , and is set to 0.9 in our experiments.

Combining the soft label and the cross entropy loss, the
person Re-ID loss of the unlabel target data is formulated
as:

Lcrot = −
K∑

k=1

wi,k log(p
id(k|xt

i)). (5)

where {pid(k|x)}Kk=1 is calculated by performing a 2048 ×
K FC layer and a softmax function sequentially to fsh

x .

Domain-Specific Branch

To make the model easy to learn, the domain-specific at-
tention map is approximated by Eq. (1). Similar to the DSH
branch, the domain-specific (DSP) branch adopts a GAP op-
eration to get a 2048-dimensional feature vector fsp

x . And
the network parameters of the DSP branch are independent
to DSH branch since they are designed to different tasks.
To ensure fsp

x domain-specific, fsp
x should be distinguish-

able to different domains. Therefore, a domain classifier is
introduced which is composed of a 2048 × 2 FC layer and
a softmax function, and it is used to predict the probabilities
(ps(x) and pt(x)) of that image x is from the source do-
main or the target domain, respectively. The domain classi-
fier should predict the domain well, and the domain-specific
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loss is defined as a cross-entropy loss:

LDSP =

{− log(ps(xs
i )), xi ∈ Ds

− log(pt(xt
i)), xi ∈ Dt.

(6)

Finally, the proposed network is optimized by minimizing
Eq. (3), Eq. (5) and Eq. (6) jointly. The total loss function is
defined as:

Ltotal =

{Lcros + LDSP , xi ∈ Ds

Lcrot + LDSP , xi ∈ Dt
(7)

Learning
In the learning procedure, we firstly pre-train the network
on the labeled source dataset in a supervised way only us-
ing Lcros . Then, {fsh

x }x∈Dt
of target data are extracted by

the pre-trained model, and the pseudo labels {ỹx}x∈Dt
of

the target data are estimated by performing the clustering
method DBSCAN to the distance matrix of {fsh

x }x∈Dt
after

the k-reciprocal encoding, and sample weights in Eq. (5) is
calculated by Eq. (4) with {fsh

x }x∈Dt
. Note that, DBSCAN

has two hyper-parameters: eps and the minimum number M
of points required to form a dense region. In order to es-
timate eps effectively, we firstly calculate and sort the dis-
tance between all target samples, and then select a certain
proportion p to get the average distance as eps. Secondly,
the whole network is updated by minimizing Ltotal over
both source and target datasets, and new {fsh

x }x∈Dt
are ex-

tracted. Then, the pseudo labels and sample weights are up-
dated by the new {fsh

x }x∈Dt
, and we re-train the network

by updated pseudo labels and sample weights to enter the
next iteration. The iterations terminate when a stopping cri-
terion is met, and the number of iterations is typically < 10
in our experiments. Alg. 1 concludes the proposed learning
method.

Algorithm 1: The proposed learning algorithm.

Input: Labeled source data Ds = {xs
i , y

s
i }Ns

i=1,
unlabeled target data Dt = {xt

i}Nt
i=1,

percentage p, the mininum size of a cluster M ,
iteration number Iteration;

Output: The trained network parameters.
1 Pre-train the network on Ds by Lcros .
2 for iter = 1, ..., Iteration do

3 Extract {fsh
x }x∈Dt .

4 Update {ỹi}Nt
i=1 and {Ck}Kk=1 by DBSCAN.

5 Compute sample weights according to Eq. (4).
6 Update the network by minimizing Eq. (7).

Experiment

Datasets

Market-1501 (Zheng et al. 2015) contains 32, 668 images
of 1, 501 identities captured by 6 camera views. The pedes-
trians are cropped with bounding-boxes predicted by DPM
detector (Pandey and Lazebnik 2011). Following the stan-
dard setting (Zheng et al. 2015), the whole dataset is di-
vided into a training set containing 12, 936 images of 751

identities and a testing set containing 19, 732 images of 750
identities. DukeMTMC-reID (Ristani et al. 2016) consists
of 36,411 images of 1,812 persons from 8 high-resolution
cameras, where 1,404 people appear more than two cam-
eras and other 408 people images are regarded as distrac-
tors. 16,522 images of 702 persons are randomly selected
from the dataset as the training set, and the remaining 702
persons are divided into the testing set where contains 2,228
query images and 17,661 gallery images. The dataset split
setting is same to (Ristani et al. 2016). MSMT17 (Wei et al.
2018) is a larger and more challenging dataset collected with
12 outdoor cameras and 3 indoor cameras during 4 days. The
training set contains 32,621 bounding boxes of 1,041 iden-
tities, and the testing set contains 93,820 bounding boxes of
3,060 identities.

In the experiments, the training data in source and target
datasets are supposed to be labeled and unlabeled respec-
tively. We employ the Rank-1 accuracy and mean Average
Precision (mAP) (Zheng et al. 2015) as evaluation metrics.
All the results are achieved under the single-query model
without Re-Ranking (Zhong et al. 2017a) refinement for fair
comparison.

Implementation Details

The parameters of ResNet-50 (He et al. 2016) are pre-trained
on ImageNet, and other network parameters are all initial-
ized randomly. The code is implemented on Pytorch and all
images are resized to 384 × 128. Similar to (Zhong et al.
2019; Fu et al. ), we perform random flipping, random crop-
ping and random erasing (Zhong et al. 2017b) for data aug-
mentation in training. The stochastic gradient descent with
a momentum of 0.9 is adopted. At each iteration of Alg. 1,
the learning rate is set to 1.5 × 10−4 for ResNet-50 base
layers and 3 × 10−5 for other layers in the first 20 epoches.
The learning rate drops with 0.1 for every 60 epochs. The
training at each iteration lasts for 260 epochs and the mini-
batch is composed of 32 images. During testing, the domain-
shared features are used for matching.

Comparisons with State-of-the-Art Methods

The proposed work is compared with 18 state-of-the-
arts methods under the same setting, including hand-
crafted feature based approaches (LOMO (Liao et al.
2015), BoW (Zheng et al. 2015) and UMDL (Peng et al.
2016)), pseudo label based methods (CAMEL (Yu, Wu,
and Zheng 2017), PUL (Fan et al. 2018), BUC (Lin et
al. 2019),UDAP (Song et al. 2018), SSG (Fu et al. ) and
MAR (Yu et al. 2019)), GAN-based deep learning meth-
ods (SPGAN (Deng et al. 2018), PTGAN (Wei et al. 2018),
CamStyle (Yu, Wu, and Zheng 2017), HHL (Zhong et al.
2018a), UCDA-CCE (Qi et al. ) and ECN (Zhong et al.
2019)) and other deep transfer learning approaches ( TJ-
AIDL (Wang et al. 2018b), ARN (Li et al. 2018) and
EANet (Wang et al. 2018b)).

The comparative results on Market-1501 and
DukeMTMC-reID are shown in Table 1, and it is evi-
dent that:
(1) Our method outperforms hand-crafted feature based ap-
proaches(LOMO, BoW and UMDL) by a large margin, be-
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Table 1: Comparison with state-of-the-art methods on
the Market-1501(Market) and DukeMTMC-reID(Duke)
datasets.

Methods Reference Duke→Market Market→Duke
mAP Rank-1 mAP Rank-1

LOMO CVPR’15 8.0 27.2 4.8 12.3
BoW ICCV’15 14.8 35.8 8.3 17.1
UMDL CVPR’16 12.4 34.5 7.3 18.5
CAMEL ICCV’17 26.3 54.5 - -
PUL ToMM’18 20.5 45.5 16.4 30.0
BUC AAAI’19 38.3 66.2 27.5 47.4
MAR CVPR’19 40.0 67.7 48.0 67.1
UDAP arXiv’18 53.7 75.8 49.0 68.4
SSG ICCV’19 58.3 80.0 53.4 73.0
PTGAN CVPR’18 - 38.6 - 27.4
SPGAN CVPR’18 22.8 51.5 22.3 41.1
SPGAN+LMP CVPR’18 26.7 57.7 26.2 46.4
CamStyle ICCV’17 27.4 58.8 25.1 48.4
HHL ECCV’18 31.4 62.2 27.2 46.9
UCDA-CCE ICCV’19 34.5 64.3 36.7 55.4
ECN CVPR’19 43.0 75.1 40.4 63.3
TJ-AIDL CVPR’18 26.5 58.2 23.0 44.3
ARN CVPRW’18 39.4 70.3 33.4 60.2
EANet arXiv’18 51.6 78.0 48.0 67.7
Ours This work 67.8 86.4 63.9 77.6

cause the deep network model can learn more discriminative
representations than hand-crafted features.
(2) The proposed method significantly exceeds the
pseudo label based unsupervised Re-ID models. In par-
ticular, we achieve mAP = 67.8%(63.9%) on Market-
1501(DukeMTMC-reID), which outperforms the best unsu-
pervised method SSG by +9.5%(+10.5%). A key reason is
that pseudo labels are approximated and inaccurate, and the
proposed method regards them as soft labels rather than hard
labels.
(3) Compared with GAN-based methods, the proposed
method can achieve higher performance without generating
new images. It indicates that the proposed method can make
use of the unlabeled data more effectively.
(4) Compared with ARN which also separates the feature to
the DSH and DSP parts, our advantages are obvious. The
reason is that the proposed attention can separate the feature
map more directly than the encoder used in ARN.

Due to different baselines of the methods may effect the
final performances, an additional experiment is conducted to
better validate the effects of different methods. Specifically,
we consider the performance of the direct transfer (D) of
each method as the baseline, and evaluate the performances
gain (G) between the final result (U) and the corresponding
baseline. As shown in Table 2, the proposed method can im-
prove the baseline more significantly. Specifically, the previ-
ous best method UDAP improves mAP by +34.6% (+37.1%)
on Market-1501 (DukeMTMC-reID) than the direct trans-
fer, while the corresponding gain of the proposed method is
+44.4% (+41.0%) on Market-1501 (DukeMTMC-reID).

In addition, we also evaluate the proposed method on a
larger and challenging dataset MSMT17. As shown in Ta-
ble 3, the proposed method clearly exceeds three existing
methods including PUL, ECN and SSG. Specifically, com-

Table 2: Performance gain analysis. D: Direct Transfer; U:
Unsupervised Learning; G: Performance Gain.

Methods D/U/G Duke → Market Market → Duke
mAP Rank-1 mAP Rank-1

MAR
D 24.6 46.2 28.8 43.1
U 40.0 67.7 48.0 67.1

G(U-D) 15.4 21.5 19.2 24.0

ECN
D 17.7 43.1 14.8 28.9
U 43.0 75.1 40.4 63.3

G(U-D) 25.3 32.0 25.6 34.4

UDAP
D 19.1 46.8 11.9 27.3
U 53.7 75.8 49.0 68.4

G(U-D) 34.6 29.0 37.1 41.1

SSG
D 26.6 54.6 16.1 30.5
U 58.3 80.0 53.4 73.0

G(U-D) 31.7 25.4 37.3 42.5

Ours
D 23.4 51.5 22.9 40.6
U 67.8 86.4 63.9 77.6

G(U-D) 44.4 34.9 41.0 37.0

Table 3: Comparison with state-of-the-art methods on the
MSMT17 dataset.

Methods Reference Market→MSMT17 Duke→MSMT17
mAP Rank-1 mAP Rank-1

PTGAN CVPR’18 2.9 10.2 3.3 11.8
ECN CVPR’19 8.5 25.3 10.2 30.2
SSG ICCV’19 13.2 31.6 13.3 32.2
Ours This work 20.8 44.5 21.6 46.7

pared to the current best method SSG, we improve the per-
formance by +12.9%(+18.5%) in Rank-1 accuracy when
test on Market-1501 (DukeMTMC-reID). It shows that our
method still works well even with a larger and more compli-
cated dataset.

Ablation Study

In this section, two groups of ablation studies are conducted
to evaluate contributions of two proposed components, in-
cluding the soft-label based loss Eq. (5) and the DAAM, as
shown in Table 4.
Effect of The Soft-label Based Loss. In the first group of
experiments, the DAAM and the DSP branch are removed
firstly and we aim to evaluate the individual effect of the
loss. Specifically, based on the estimated pseudo labels, 3
losses are adopted on the target data respectively, includ-
ing 1) “Pseudo Label + Hard-Label” which performs the
hard-label based loss Eq. (3) on the pseudo labels directly
(as same to (Fan et al. 2018; Song et al. 2018)), 2) “Pseudo
Label + LSR” where the LSR loss (Szegedy et al. 2016) is
adopted and 3) “Pseudo Label + Soft-Label” correspond-
ing to the proposed soft-label based loss. As shown in Ta-
ble 4, the proposed soft-label based loss outperforms oth-
ers clearly. The reason is that the pseudo labels are approx-
imated and inaccurate, and the proposed loss can alleviate
the over-fitting on the unreliable pseudo labels. In addition,
compared with LSR which fix the original distribution by
the uniform distribution, the proposed soft-label based loss
utilizes the relationship between the samples and the groups,
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Table 4: Ablation studies of the proposed model and loss.
IA denotes two individual attention modules are used to the
domain-shared and domain-specific part.

Methods Duke → Market Market → Duke
mAP Rank-1 mAP Rank-1

Supervised Learning 77.2 90.8 70.1 84.1
Direct Transfer 23.4 51.5 22.9 40.6
Pseudo Label+Hard-Label 61.1 81.8 56.2 71.1
Pseudo Label+LSR 62.4 82.7 56.9 72.4
Pseudo Label+Soft-Label 63.9 83.7 57.8 73.3

Baseline+DSH+DSP 63.2 82.3 59.7 74.0
Baseline+DSH+DAAM 64.7 84.4 60.8 74.9
Baseline+DSH+DSP+IA 66.6 85.2 61.7 76.0
Baseline+DSH+DSP+DAAM 67.8 86.4 63.9 77.6

Figure 4: Evaluation with different Iteration.

which is important to unsupervised learning.
Effect of The DAAM. In this group of experiments, the
“Pseudo Label+Soft-Label” is regarded as the baseline.
Firstly, we add the DSP branch to the baseline without the
DAAM (denoted as “Baseline+DSH+DSP”) and with the
DAAM (denoted as “Baseline+DSH+DAAM”) respectively.
Then, two independent attention modules are introduced
to the DSH and DSP branches independently (denoted as
“Baseline+DSH+DSP+IA”). In addition, the performances
of full model “Baseline+DSH+DSP+DAAM” are listed as
reference. The comparison results in Table 4 demonstrates
the effectiveness of the DAAM. In particular, the perfor-
mance gain compared to “Baseline+DSH+DSP+IA” indi-
cates that the improvement of our method is caused by the
residual mechanism which can separate the feature map into
the DSH and DSP parts effectively, rather than just employ-
ing the attention techniques.

Parameter Analysis

In this section, we mainly evaluate the influence of two main
hyper-parameters, including the number of iterations in in
Alg. 1 and the hyper-parameters related with DBSCAN.
The Number of Iterations. We evaluate the learned model
after Iterations = 1, 2, ..., 6 in Alg. 1 respectively, and the
evaluation results are shown in Fig. 4. As the model becomes
stronger in each iteration and more reliable pseudo labels of
target images are generated, the performance is improved
in early iterations. Finally, it converges after 5 iterations for
both datasets.
The Robustness of Parameters of DBSCAN. DBSCAN
has two hyper-parameters: the distance threshold of the
neighborhood estimated by a proportion p and the sample
size threshold size of neighborhood M . Here we evaluate
the robustness of the two hyper-parameters. (1)As shown in

Figure 5: Evaluation with different percentage p.

Figure 6: Evaluation with different minimum number M of
a cluster.

Fig. 5, We studied the effects of different proportions on the
experimental results. It is observed that our approach is very
stable and does not fluctuate greatly with different p. (2)We
also set the minimum size of a cluster M as 2, 4, ..., 18 re-
spectively and the results are shown in Fig. 6. We observe
that our model learning is stable within a wide range for
different M . Especially, when we transfer knowledge from
Market-1501 to DukeMTMC-reID, the experimental result
changes by no more than 1% on Rank-1 accuracy as the
change of M .

Conclusion

In the paper, we have proposed a novel unsupervised cross-
domain transfer learning network architecture by using at-
tention model for Re-ID task. With the attention model
based on residual mechanism, it can transfer knowledge
from the labeled dataset to the unlabeled dataset by jointly
modelling the domain-shared and domain-specific features.
Moreover, it differs significantly from existing methods in
that a soft label loss is proposed to alleviate the negative
effect of inaccuracy pseudo labels. Extensive experiments
on Market-1501, DukeMTMC-reID and MSMT17 datasets
have demonstrated the effectiveness and robustness of the
proposed model.
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