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Abstract

We addressed the challenging task of video question an-
swering, which requires machines to answer questions about
videos in a natural language form. Previous state-of-the-art
methods attempt to apply spatio-temporal attention mecha-
nism on video frame features without explicitly modeling
the location and relations among object interaction occurred
in videos. However, the relations between object interaction
and their location information are very critical for both ac-
tion recognition and question reasoning. In this work, we
propose to represent the contents in the video as a location-
aware graph by incorporating the location information of an
object into the graph construction. Here, each node is asso-
ciated with an object represented by its appearance and lo-
cation features. Based on the constructed graph, we propose
to use graph convolution to infer both the category and tem-
poral locations of an action. As the graph is built on objects,
our method is able to focus on the foreground action con-
tents for better video question answering. Lastly, we lever-
age an attention mechanism to combine the output of graph
convolution and encoded question features for final answer
reasoning. Extensive experiments demonstrate the effective-
ness of the proposed methods. Specifically, our method sig-
nificantly outperforms state-of-the-art methods on TGIF-QA,
Youtube2Text-QA and MSVD-QA datasets.

1 Introduction

Recently, deep learning has witnessed a great process (Tan,
Tsang, and Wang 2014; Cao et al. 2018; 2019; Gan et al.
2019; Guo et al. 2019a). Video question answering (video
QA) has become an emerging task in computer vision and
has drawn increasing interests over the past few years due
to its vast potential applications in artificial question an-
swering system and robot dialogue, video retrieval, etc. In
this task, a robot is required to answer a question after
watching a video. Unlike the well-studied Image Question
Answering (image QA) task which focuses on understand-
ing static images (Anderson et al. 2018; Singh et al. 2018;
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Spin laptop Spin bucket
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Spinning laptop

Question
What does the man do before
spinning bucket?

Figure 1: One question-answer (QA) pair in video QA task.
To answer the question, the model is required to recognize
actions (labeled in green) from the interaction between ob-
jects (labeled in blue boxes) and be aware of their temporal
order (e.g., before).

Xiong, Merity, and Socher 2016), video QA is more practi-
cal since the input visual information often change dynami-
cally, as shown in Figure 1.

Compared with image QA, video QA is much more chal-
lenging due to several reasons. (1) Visual content is more
complex in a video since it may contain thousands of frames,
as shown in Figure 1. More importantly, some frames may
be dominated with strong background content which how-
ever is irrelevant to questions. (2) Videos often contain mul-
tiple actions, but only a part of them are of interest to ques-
tions. (3) Questions in video QA task often contain queries
related to temporal cues, which implies we should consider
both temporal location of objects and complex interaction
between them for answer reasoning. For example in Figure
1, to answer the question “What does the man do before
spinning bucket?”, the robot should not only recognize the
actions “spin laptop” and “spin bucket” by understanding
the interaction between the man and objects (i.e., laptop and
bucket) in different frames, but also find out the temporal or-
der of actions (e.g., before/after) for answer reasoning along
time axis.

Taking video frames as inputs, most existing methods
(Chenyou Fan 2019; Li et al. 2019b) employ some spatio-
temporal attention mechanism on frame features to ask the
network “where and when to look”. However, these methods
are often not robust due to complex background content in

11021



videos. Lei et al. (Lei et al. 2018) tackle this problem by de-
tecting the objects in each frame and then processing the se-
quence of object features via an LSTM. However, the order
of the input object sequence, which may affect the perfor-
mance, is difficult to arrange. More importantly, processing
the objects in a recurrent manner will inevitably neglect the
direct interaction between nonadjacent objects. This is criti-
cal for video QA (see experiments in Section 4.4).

In this paper, we introduce a simple yet powerful network
named Location-aware Graph Convolutional Networks (L-
GCN) to model the interaction between objects related to
questions. We propose to represent the content in a video
as a graph and identify actions through graph convolu-
tion. Specifically, the objects of interest are first detected
by an off-the-shelf object detector. Then, we construct a
fully-connected graph where each node is an object and
the edges between nodes represent their relationship. We
further incorporate both spatial and temporal object loca-
tion information into each node, letting the graph be aware
of the object locations. When performing graph convolu-
tion on the object graph, the objects directly interact with
each other by passing message through edges. Last, the out-
put of GCNs and question features are fed into a visual-
question interaction module to predict a answer. Extensive
experiments demonstrate the effectiveness of the proposed
location-aware graph. We achieve state-of-the-art results on
TGIF-QA, Youtube2Text-QA and MSVD-QA datasets.

The main contributions of the proposed method are as
follows: (1) we propose to explore actions for video QA
task through learning interaction between detected objects
such that irrelevant background content can be explicitly ex-
cluded; (2) we propose to model the relationships between
objects through GCNs such that all objects are able to in-
teract with each other directly; (3) we propose to incorpo-
rate object location information into graph such that the net-
work is aware of the location of a specific action; (4) our
method achieves state-of-the-art performance on TGIF-QA,
Youtube2Text-QA and MSVD-QA datasets.

2 Related Work
Visual Question Answering (VQA) is a task to answer the
given question based on the input visual information.

Based on the visual sources, we can classify the VQA
tasks into two categories: image QA (Goyal et al. 2017;
Gan et al. 2017) and video QA (Lei et al. 2018; Yi et al.
2019). Image QA focuses on spatial information. Most im-
age QA models adopt attention mechanism to capture spa-
tial area that related to question words. Yang et al. (Yang
et al. 2016) proposed a multi-layer Stacked Attention Net-
work (SAN) which uses questions as query to extract the
image region related to the answer. Anderson et al. (Ander-
son et al. 2018) combined bottom-up and top-down atten-
tion which connect questions to specific objects detected by
Faster-RCNN. After that, associating feature vector with vi-
sual regions becomes a popular framework in the VQA re-
search (i.e. Pythia (Singh et al. 2018)). Xiong et al. (Xiong,
Merity, and Socher 2016) introduced the dynamic memory
network (DMN) architecture to image QA, which strength-
ens the reasoning ability of network.

In video QA task, understanding untrimmed videos (Zeng
et al. 2019a; Wu et al. 2019) is important. To this end, Jang
et al. (Jang et al. 2017) utilized both motion (i.e. C3D) and
appearance (i.e., ResNet (He et al. 2016)) features to better
represent the video. Li et al. (Li et al. 2019b) replaced RNN
with self-attention together with location encoding to model
long-range dependencies. However, all the existing methods
neglect the interaction between objects, which is vital for
video QA task.

Graph-based reasoning has been popular in recent years
(Zeng et al. 2019b; Guo et al. 2019b) and shown to be power-
ful for relation reasoning. To dynamically learn graph struc-
tures, CGM (Tan et al. 2015) applied a cutting plane algo-
rithm to iteratively activate a group of cliques. Recently,
Graph Convolution Networks (GCNs) (Kipf and Welling
2017) have been used for semi-supervised classification. In
text-based tasks, such as machine translation and sequence
tagging, GCNs breaks the sequence restriction between each
word and learns the graph weight by attention mechanism,
which makes it work better in modeling longer sequence
than LSTM. Some methods (Norcliffe-Brown, Vafeias, and
Parisot 2018; Cadène et al. 2019; Li et al. 2019a) took into
consideration the object position for image QA tasks. In
video recognition, Wang et al. (Wang and Gupta 2018) pro-
posed to use GCNs to capture relations between objects in
videos, where objects are detected by an object detector pre-
trained on extra training data. Despite their success, there is
no efficient graph model for video QA task.

Attention mechanism has been leveraged in various
tasks. Several works (Gan et al. 2015; Long et al. 2018) used
attention model to improve the performance on video recog-
nition. Vaswani et al. (Vaswani et al. 2017) utilized self-
attention mechanism for language translation and (Nguyen
and Okatani 2018) proposed Co-Attention which can be
stacked to form a hierarchy for multi-step interactions be-
tween visual and language features. Jang et al. (Jang et al.
2017) proposed a simple baseline which uses both spatial
and temporal attention to reason the video and answer the
question. In our proposed method, we use attention mecha-
nism to fuse video and question modalities.

3 Proposed Method

3.1 Notation and Problem Definition

Given a video containing N frames with K detected objects
on each frame, let R={on,k,bn,k}n=N,k=K

n=1,k=1 be the detected
object set, where o denotes the object feature obtained by
RoIAlign (He et al. 2017) and b is the spatial location of
each object. We use T=N×K to denote the total number of
objects in one video. We denote a graph as G = (V, E) with
M nodes vi ∈ V and edges eij ∈ E . The adjacency matrix
of graph is represented as A ∈ R

M×M . The question with
κ words is denoted as Q.

In this paper, we focus on video QA task, which requires
the model to answer questions related to a video. This task
is challenging as video contents are complex with strong ir-
relevant backgrounds. Besides, most QA pairs in video QA
task are related to more than one action with temporal cues.
To answer the question correctly, the model is required not
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Figure 2: Illustration of the proposed method. L-GCN consists of two streams, namely the question encoder stream and the
video encoder stream, which process queries and video contents, respectively. The outputs of two streams are combined with
a visual-question (VQ) interaction module. The location-aware graph built on objects considers both interactions of objects
and their temporal location information.

only to recognize the actions correctly from complex con-
tents but also to be aware of their temporal order.

3.2 General Scheme

The general scheme of our method is shown in Figure 2,
which consists of two streams. The first stream is regard-
ing a question encoder, which processes queries with a Bi-
LSTM. The second stream is related to a video encoder,
which focuses on understanding video contents by exploit-
ing a location-aware graph built on objects. The outputs of
two streams are then combined by a visual-question (VQ) in-
teraction module, which employs an attention mechanism to
explore which question words are more relevant to the visual
representation. Last, the answer is predicted by applying an
FC layer on top of the VQ interaction module.

In this paper, the location-aware graph plays a critical
role. Specifically, we use an object graph G=(V, E) to model
the relationships between objects in a video. Note the tem-
poral ordering of actions in the video is important for an-
swer reasoning w.r.t. a question in a video QA task. We thus
propose to integrate the spatial and temporal location infor-
mation into the object features of each node in a graph (See
details in Section 3.4). In this way, we can exploit both spa-
tial and temporal order information of actions for temporally
related answer reasoning.

For convenience, we present the overall training pro-
cess in Algorithm 1. In the following, we first describe the
question encoder. Then we depict the construction of the
location-aware graph and the graph convolution for mes-
sage passing, followed by description of visual encoder. Af-

Algorithm 1 Overall training process.
Input: Video frame features; object set R; question Q

1: Construct the location-aware graph G as in Section 3.4
2: while not converges do
3: Extract question features FQ via Eq. (1)
4: Encode object location via Eq. (2), (3) and (4)
5: Compute the node features via Eq. (5)
6: Update adjacent matrix via Eq. (8)
7: Perform reasoning on graph via Eq. (6)
8: Obtain visual features FV via Eq. (10)
9: Obtain FC from FV and FQ via Eq. (12)

10: Predict answers from FC with answer predictor
11: end while

Output: Trained model for video QA

ter that, we detail the visual-question interaction module.
Last, we present the answer reasoning and loss functions.

3.3 Question Encoder Stream

Given a question sentence, the question encoder is to model
the question for video QA. To handle the out-of-vocabulary
words as well as the misspelling words, we apply both
character embedding Qc ∈ R

κ×c×dc and word embedding
Qw ∈ R

κ×dw to represent a question Q with κ words, where
dc and dw denote the dimensions of character embedding
and word embedding, respectively.

In the optimization, the word embedding function is ini-
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tialized with a pre-trained 300-dimension GloVe (Penning-
ton, Socher, and Manning 2014), and the character embed-
ding function is randomly initialized. Given the character
and word embeddings, the question embedding can be rep-
resented by a two-layer highway network h(·, ·) (Srivastava,
Greff, and Schmidhuber 2015), which is proven to be effec-
tive to solve the training difficulties, that is:

Q = h(Qw, g(Qc)), (1)

where the character embedding is further processed by a g(·)
which consists of a 2D convolutional layer.

To better encode the question, we feed the question em-
bedding Q into a bi-directional LSTM (Bi-LSTM). Then we
obtain the question feature FQ by stacking the hidden states
of the Bi-LSTM from both directions at each time step.

3.4 Location-aware Graph Construction

Given a video with K detected objects for each frame, we
seek to represent the video into a graph. Noting that actions
can be inferred from the interaction between objects, we thus
construct a fully-connected graph on the detected objects.
We may use object features to represent each node. How-
ever, this node type ignores the location information of ob-
jects, which is vital for temporally related answer reasoning.
To address this, we will describe how to encode the location
information with so-called location features. With location
features, we are able to construct a location-aware graph,
namely, we concatenate both object appearance and location
features as node features.

Location Encoding. Given a detected object in the nth

frame with spatial location b and aligned feature o, we en-
code its spatial location feature ds with a Multilayer Percep-
tron (MLP(·)) which consists of two FC layers and a ReLU
activation function (Nair and Hinton 2010), that is:

ds = MLP(b), (2)

where b is represented by the top-left coordinate and the
width and the height of detected objects.

Moreover, we also encoder temporal location feature dt

of objects using sine and cosine functions of different fre-
quencies (Vaswani et al. 2017) as follows:

dt2j = sin(n/100002j/dp), (3)

dt2j+1 = cos(n/100002j/dp), (4)

where dti is the i-th entry of the temporal location feature dt,
and dp is its dimension. Then, the feature of each graph node
can be defined as:

v = [o;ds;dt], (5)

where [·; ·; ·] concatenates three vectors into a longer vector.
In this way, each node in the graph contains not only the
object appearance features but also the location information.

3.5 Reasoning with Graph Convolution

Given the constructed location-aware graph, we perform
graph convolution to obtain the regional features. In our im-
plementation, we build P -layer graph convolutions. Specif-
ically, for the p-th layer (1 ≤ p ≤ P ), the graph convolution
can be formally represented as:

X(p) = A(p)X(p−1)W(p), (6)

where X(p) is the hidden features of the p-th layer; X(0) is
the input node features v in Eq. (5); A(p) is the adjacency
matrix calculated from the node features in the p-th layer;
and W(p) is the trainable weight matrix. Let X(P ) be the
output of the last layer of the P -layer GCNs. Then, we define
the regional features FR as:

FR = X(P ) +X(0). (7)

This can be considered as a skip connection of input X(0)

and output X(P ), and it helps to improve the training perfor-
mance, similar to ResNet (He et al. 2016). In our method,
the adjacency matrix is a learnable matrix, which is able to
simultaneously infer a graph by learning the weight of all
edges. We calculate the adjacency matrix by:

A(p) = softmax
(
X(p−1)W1 · (X(p−1)W2)

T
)
, (8)

where W1 and W2 are projection matrices. The softmax
operation is performed in the row axis.

3.6 Visual Encoder Stream

The visual encoder is to model video contents via object in-
teraction for video QA. Given a N -frame video, we extract
frame features using a fixed feature extractor (e.g., ResNet-
152). At the same time, K bounding boxes are detected
for each frame by an off-the-shelf object detector. The ob-
ject features o are obtained using RoIAlign (He et al. 2017)
on top of the image features, followed by an FC layer and
ELU activation function (Clevert, Unterthiner, and Hochre-
iter 2016) to reduce dimension.

Given the detected object set R, we construct a location-
aware graph G(V, E) on the objects. Then, we perform graph
convolution to enable the message passing between objects
through edges, which can be formally represented as:

GCN(G(V, E), {[ot; f(bt)]}Tt=1), (9)

where [·; ·] indicates the concatenation of vectors and f(·)
denotes for any mapping function, e.g., multi-layer percep-
tron (MLP). The output of GCNs is termed as regional fea-
tures FR. Besides, in order to introduce the context informa-
tion, we apply global average pooling on the frame features
to generate global features FG.

The global features are further processed by a 1D convo-
lutional layer and an ELU activation function to merge the
information from neighbor frames. After that, we replicate
the global features K times and employ Multilayer Percep-
tron (MLP) (with one hidden layer and an ELU activation
function) to merge the concatenation of FR and FG, which
yields visual features FV and that is:

FV = MLP([FR,FG]). (10)
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3.7 Visual-question Interaction Module

After obtaining visual and question representations, we pro-
pose a visual-question (VQ) interaction module to combine
them for predicting answer. The framework of VQ inter-
action module is shown in Figure 2(b). We first map FV

and FQ into the same subspace with dimension ds through
two independent FC layers, leading to FV ∈ R

T×ds and
FQ ∈ R

L×ds . Then, we explore which question words are
more relevant to each visual representation for video QA. In
this paper, we leverage attention mechanism to learn a cross
modality representation inspired by (Seo et al. 2017).

Specifically, we first calculate similarity matrix S between
FV and FQ via dot product together with a softmax function
applying along each row, that is:

S = softmax
(
FV (FQ)T

)
. (11)

Then, we calculate the weighted question features F̃Q cor-
responding to each visual feature via dot product between S
and FQ. The cross modality representation FC ∈ R

P×3ds

is calculated by:

FC = [FV , F̃Q,FV �F̃Q], (12)

where � means the element-wise product operation. To
yield the final representation for answer prediction, we lever-
age a Bi-LSTM followed by a max pooling layer across the
dimension T .

3.8 Answer Reasoning and Loss Function

The questions for video QA can be summarized as three
types: multiple-choice, open-ended and counting. In this
subsection, we will describe how to predict answers for each
question type given cross modality features FC .

Multiple-choice question: for this kind of questions,
there exist U choices and the model is required to choose
the correct one. We first embed the content of each choice
in the same way as question encoding described in Section
3.3, leading to U independent answer features FA. Then,
each answer feature is interacted with visual features in the
way described in Section 3.7, where we replace the question
feature by answer question, yielding the weighted answer
features F̃A. Then, the cross modality representation FC in
Eq. (12) is constructed as [FV , F̃Q, F̃A,FV�F̃Q,FV�F̃A].
We leverage an identical FC layer on U cross modality rep-
resentations to predict scores A = {a1, . . . , aU}. The scores
are processed by a softmax function. We use cross entropy
loss as the loss function:

LM = −∑U
i=1 yi log

(
eai

∑U
j=1 eaj

)
, (13)

where yi = 1 if answer ai is the right choice, otherwise
yi = 0. We take the choice with the highest score as the
prediction.

Open-ended question: for these questions, the model is
required to choose a correct word as answer from the pre-
defined answer set of C candidate words in total. We predict
the scores A = {a1, . . . , aC} of each candidate word using

an FC layer together with a softmax layer. Also, we use the
cross entropy loss as the loss function:

LO = −∑C
i=1 yi log

(
eai

∑C
j=1 eaj

)
, (14)

where yi = 1 if answer ai is the right answer, otherwise yi =
0. We take the word with the highest score as our prediction.

Counting question: for these questions, the model is re-
quired to predict a number ranging from 0 to 10. We leverage
an FC layer upon FC to predict the number. We use mean
square error loss to train the model:

LC = ‖x− y‖22 , (15)

where x is the predicted number, y is the ground truth. Dur-
ing the testing, the prediction is rounded to the nearest inte-
ger and clipped within 0 to 10.

4 Experiments

In this section, we first introduce three benchmark datasets
and implementation details. Then, we compare the perfor-
mance of our model with the state-of-the-art methods. Last,
we perform ablation studies to understand the effect of each
component.

4.1 Datasets

We evaluate our method on three video QA datasets. The
statistics of the datasets are listed in Table 1. More details
are given below.

TGIF-QA (Jang et al. 2017) consists of 165K QA pairs
from 72K animated GIFs. The QA-pairs are splited into
four tasks: 1) Action: a multiple-choice question recogniz-
ing action repeated certain times; 2) Transition (Trans.): a
multiple-choice question asking about the state transition;
3) FrameQA: an open-ended question that can be inferred
from one frame in videos; 4) Count: an open-ended question
counting the number of repetition of an action. The multiple-
choice questions in this dataset have five options and the
open-ended questions are with a pre-defined answer set of
size 1,746.

Youtube2Text-QA (Ye et al. 2017) includes the videos
from MSVD video set (Chen and Dolan 2011) and
the question-answer pairs collected from Youtube2Text
(Guadarrama et al. 2013) video description corpus. It con-
sists of open-ended and multiple-choice questions, which
are divided into three types (i.e., what, who and others).

MSVD-QA (Xu et al. 2017) is based on MSVD video set.
It consists of five types of questions, including what, who,
how, when and where. All questions are open-ended with a
pre-defined answer set of size 1,000.

4.2 Implementation Details

Evaluation metrics. (1) For the “Count” task in TGIF-QA
dataset, we adopt the Mean Square Error (MSE) between the
predicted answer and the ground truth answer as the evalu-
ation metric. (2) For all other tasks in our experiments, we
use accuracy to evaluate the performance.
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Table 1: Statistics of three video QA datasets. #MC denotes the number of options for multiple-choice questions.
Dataset Vocab. size #Video #Question Answer size #MC Feature type #Sampled frame

TGIF-QA 8,000 71,741 165,165 1,746 5 ResNet-152 35
Youtube2Text-QA 6,500 1,970 99,429 1,000 4 ResNet-101+C3D 40

MSVD-QA 4,000 1,970 50,505 1,000 NA VGG+C3D 20

Table 2: Comparisons with state-of-the-arts on TGIF-QA
dataset. R, C and F denote features extracted by ResNet,
C3D and Optical Flow, respectively.

Model Action Trans. FrameQA Count (MSE)
ST-VQA(R+C) 60.8 67.1 49.3 4.28
Co-Mem(R+F) 68.2 74.3 51.5 4.10

PSAC(R) 70.4 76.9 55.7 4.27
HME(R+C) 73.9 77.8 53.8 4.02

Ours(R) 74.3 81.1 56.3 3.95

Training details. We convert all the words in the question
and answer to lower cases, and then transform each word
to a 300-dimension vector with a pre-trained GloVe model
(Pennington, Socher, and Manning 2014). For fair compar-
isons, we adopt the same feature extractors as those are used
in the compared methods. More details can be found in Table
1. We use Mask R-CNN (He et al. 2017) as object detector
and select K detected objects with the highest score for each
frame. By default, K is set to 5. The number of GCNs lay-
ers is set to 2. We employ a Adam optimizer (Kingma and
Ba 2015) to train the network with an initial learning rate of
1e-4. We set the batch size to 64 and 128 for multiple-choice
and open-ended tasks, respectively.

4.3 Comparison with State-of-the-art Results

Results on TGIF-QA. We compare our L-GCN with
the state-of-the-art methods, including ST-VQA (Jang et al.
2017), Co-Men (Gao et al. 2018), PSAC (Li et al. 2019b)
and HME (Chenyou Fan 2019). From Table 2, our L-GCN
achieves the best performance on four tasks. It is worth not-
ing that our method outperforms HME, ST-VQA and Co-
Mem by a large margin even if they use additional features
(i.e., C3D features (Tran et al. 2015) and optical flow fea-
ture) to model actions. These results demonstrate the effec-
tiveness of leveraging an object graph to capture the object-
object interaction and perform reasoning.

Results on Youtube2Text-QA. For further compari-
son, we test our model on a more challenging dataset
Youtube2Text-QA. This dataset consists of open-ended and
multiple-choice questions, which are divided into three cate-
gories (i.e., what, who and others). We consider two state-of-
the-art baseline methods (HME and r-ANL (Ye et al. 2017)),
and report the results in Table 3.

From Table 3, compared with the baselines, our method
achieves better performance in overall accuracy in both
multi-choice and open-ended questions. More specifically,
for multiple-choice questions, we achieve the best perfor-
mance on what and who tasks. The relatively poor perfor-
mance on others task cannot represent the ability of different

Table 3: Comparisons with state-of-the-art methods on
Youtube2Text-QA.

Task Method What Who Other All

Multiple-Choice
r-ANL 63.3 36.4 84.5 52.0
HME 83.1 77.8 86.6 80.8
Ours 86.0 81.5 80.6 83.9

Open-Ended
r-ANL 21.6 29.4 80.4 26.2
HME 29.2 28.7 77.3 30.1
Ours 24.5 53.2 70.4 38.0

Table 4: Comparisons with state-of-the-arts on MSVD-QA.
Model ST-VQA Co-Mem AMU HME Ours

Acc 31.3 31.7 32.0 33.7 34.3

models because this kind of questions only occupies 2% of
all QA pairs. For open-ended questions, our L-GCN signif-
icantly improves the accuracy from 29.4% to 53.2% on who
task, where most questions are related to the subject of ac-
tions. This demonstrates the superiority of leveraging object
features, which explicitly localizes the object for video QA
task.

Results on MSVD-QA. In Table 4, we compare our L-
GCN with ST-VQA, Co-Mem, AMU (Xu et al. 2017) and
HME on MSVD-QA dataset. From Table 4, our L-GCN
achieves the most promising performance in overall accu-
racy, which demonstrates the superiority of the proposed
method on the non-trivial scenarios.

4.4 Ablation Study

Impact of each component. We first construct a simple
variant of the proposed method as baseline, which uses only
the global frame features FG to generate visual features FV

via Eq. (10). Then, the object features, GCNs, and location
features will be incorporated into the baseline progressively
to generate visual features in higher quality, and we denote
them as “OF”, “GCNs” and “Loc”, respectively. “FC”and
“LSTM” represent the models where GCNs are replaced by
two Fully-Connected (FC) layers or a 2-layer LSTM, respec-
tively. “Loc T”and “Loc S” represent the location features
which only consist of temporal or spatial location informa-
tion, respectively.

We show the results on TGIF-QA dataset in Table 5. (1)
Compared with the baseline, incorporating object features
boosts the performance in all tasks consistently, demonstrat-
ing the effectiveness of using detected objects for video
QA task. We speculate that the detected objects explicitly
help the model exclude irrelevant background. (2) Apply-
ing GCNs on object features further boosts the performance,
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Table 5: Performance comparisons of different variants on
TGIF-QA. “OF” and “Loc” denote object and location fea-
tures, respectively.

Model Action Trans. FrameQA Count
baseline 70.58 79.59 55.37 4.33
baseline+OF 72.82 80.10 55.79 4.24
baseline+OF+GCNs 74.10 80.39 56.10 4.15
baseline+OF+GCNs+Loc 74.32 81.13 56.32 3.95

baseline+OF+FC 72.96 80.18 55.94 4.22
baseline+OF+LSTM 72.65 80.07 55.49 4.25
baseline+OF+GCNs+Loc T 73.75 80.97 55.54 4.17
baseline+OF+GCNs+Loc S 73.58 80.89 56.07 4.12

Table 6: Ablation study on #GCNs layers on TGIF-QA.
#GCNs layers Action Trans. FrameQA Count

1 74.24 81.02 55.97 4.16
2 74.32 81.13 56.32 3.95
3 74.32 81.58 56.23 4.16
4 73.97 80.86 56.01 4.10

demonstrating the importance of modeling relationships be-
tween objects through GCNs. On the other hand, using FC
layer or LSTM only brings minor increases or even drops
the performance. This is not surprising because the model
cannot learn object-object relationship when applying FC
layer on each object separately. Besides, objects in different
spatial locations cannot be regarded as a sequence and thus
LSTM is not suitable for modeling their relationship. (3)
Adding location features further increases the performance.
Especially, the improvements on the task of transition and
count are more significant. One possible reason is that these
two tasks are more sensitive to the knowledge of event’s or-
der, where the transition task asks about the action transition
and the count task asks the number of repetition of an action.
We also try to only incorporate temporal or spatial location
information into L-GCN. The performance decreases com-
pared to the variant using both location types, demonstrating
that these two location information are complementary and
both vital for video QA task.

Impact of #GCNs layers and detected objects. In this
paper, we propose to leverage GCNs on detected objects to
learn actions. Here, we conduct ablation studies on the depth
of GCNs and the number of the objects in each frame. From
Table 6, GCNs with two layers performs best on three tasks.
Considering the efficiency and performance, we leverage 2-
layer GCNs by default. Besides, as shown in Table 7, GCNs
with 5 detected objects achieves the best performance on
three tasks. It is not surprising that the network with 2 de-
tected objects performs worst because the network may ne-
glect some important objects. Additionally, as most of the
question answering pairs in TGIF-QA dataset are only rel-
ative to a few salient objects, feeding too many objects into
network may cripple the performance. By default, we lever-
age 5 detected objects in experiments.

4.5 Qualitative Analysis

We demonstrate the similarity matrix in the GCNs using two
examples in Figure 3. We draw two conclusions from these

Table 7: Performance comparisons between different num-
bers of detected objects on TGIF-QA dataset.

#objects per frame Action Trans. FrameQA Count
2 74.11 80.95 55.61 4.13
5 74.32 81.13 56.32 3.95

10 74.01 81.43 55.88 3.99

Question : What does the airplane do after go along grass?

Ground Truth: run over boy Prediction: run over boy

Question : How many times does the person lift motorcycle ?

Ground Truth: 4 Prediction: 4

Figure 3: Visualization on TGIF-QA dataset. The boxes in
transparent green are K detected objects. The boxes in red
are the query object. The boxes in blue are the objects with
high values regarding to query object in the adjacent matrix.

examples: 1) Almost all salient objects which are related
to question answering pair have been detected beforehand,
such as the airplane and the boy in example 1, the man and
the motorcycle in example 2, etc. These detected objects
explicitly help the network avoid the influence from com-
plex irrelevant background content. 2) Our graph not only
captures relationships between similar objects in different
frames but also focuses on semantic similarity. For the first
example, the airplane is correlative to not only itself in dif-
ferent frames but also the little boy. This is helpful to recog-
nize the action of “airplane running over boy”.

5 Conclusion

In this paper, we have proposed a location-aware graph to
model the relationships between detected objects for video
QA task. Compared with existing spatio-temporal attention
mechanism, L-GCN is able to explicitly get rid of the in-
fluences from irrelevant background content. Moreover, our
network is aware of the spatial and temporal location of
events, which is important for predicting correct answer.
Our method outperforms state-of-the-art techniques on three
benchmark datasets.
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