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Abstract

Human parsing, or human body part semantic segmentation,
has been an active research topic due to its wide poten-
tial applications. In this paper, we propose a novel GRAph
PYramid Mutual Learning (Grapy-ML) method to address
the cross-dataset human parsing problem, where the anno-
tations are at different granularities. Starting from the prior
knowledge of the human body hierarchical structure, we de-
vise a graph pyramid module (GPM) by stacking three lev-
els of graph structures from coarse granularity to fine gran-
ularity subsequently. At each level, GPM utilizes the self-
attention mechanism to model the correlations between con-
text nodes. Then, it adopts a top-down mechanism to pro-
gressively refine the hierarchical features through all the lev-
els. GPM also enables efficient mutual learning. Specifically,
the network weights of the first two levels are shared to ex-
change the learned coarse-granularity information across dif-
ferent datasets. By making use of the multi-granularity la-
bels, Grapy-ML learns a more discriminative feature repre-
sentation and achieves state-of-the-art performance, which is
demonstrated by extensive experiments on the three popular
benchmarks, e.g. CIHP dataset. The source code is publicly
available at https://github.com/Charleshhy/Grapy-ML.

Introduction

Human parsing, or human body part semantic segmentation,
refers to assigning dense pixel-wise category labels for each
human body parts. It is a fundamental computer vision task
and plays a critical role in human-centric analysis and po-
tential down-stream applications, e.g., action recognition,
video surveillance and virtual reality. However, it is very
challenging due to the large appearance variance, the lack
of quality on labeled samples and the domain gap between
training and testing data.

To deal with these issues, prior methods have achieved
significant progress based on the success of the deep neu-
ral network. Since human body is highly structural, many
methods have been proposed to model the context corre-
lations efficiently between body parts using convolutional
neural network (CNN) (Liang et al. 2015b; Li et al. 2017;
Zhu et al. 2018; Ruan et al. 2019), recurrent network
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Figure 1: (a) Label discrepancy between different datasets.
(b) Multi-granularity lexical pyramid representation of the
human body.

with long short-term memory units (LSTM) (Liang et al.
2016b; 2016b; 2017), and graph convolutional neural net-
work (GCN) (Gong et al. 2019). For instance, Ruan et al.
propose a context embedding with edge perceiving (CE2P)
network for single human parsing after identifying three key
factors affecting the parsing performance, including high-
resolution maintenance, global context embedding, and edge
perceiving (Ruan et al. 2019). However, multi-human pars-
ing is a more common setting for real-world applications. To
this end, Li et al. introduce a multi-human parsing (MHP)
dataset and a novel bottom-up multi-human parser based
on graph-GAN model (Li et al. 2017). Besides, many re-
searches use LSTM to model structural dependencies in
feature learning, such as local-global LSTM (Liang et al.
2016b), Graph LSTM (Liang et al. 2016a), and structure-
evolving LSTM (Liang et al. 2017). However, these meth-
ods do not utilize the strong hierarchical relations in body
parts. In contrast, Zhu et al. propose a progressive cogni-
tive network (PCNet) to segment hierarchical human parts
using a component-aware region convolution structure (Zhu
et al. 2018). Although progressive cognitive human parsing
achieves better results than segmenting each part simultane-
ously, it still remains open that how to efficiently incorpo-
rate the hierarchically structural prior information into fea-
ture learning to further improve the parsing performance.

Another direction is to explore multiple datasets or het-
erogeneous annotations by utilizing multi-task learning,
transfer learning, or mutual learning (Xiao et al. 2018;
Nie, Feng, and Yan 2018; Gong et al. 2019). For instance,
Xiao et al. propose a multi-task learning framework to learn
visual concepts from heterogeneous image annotations for
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unified perceptual scene parsing (Xiao et al. 2018). How-
ever, adding extra parallel branches for different tasks does
not explicitly model their relationships. Nie et al. propose a
mutual learning method adapting human parsing and pose
estimation, which explicitly incorporates the guidance in-
formation from their parallel tasks via a mutual adaptation
module (Nie, Feng, and Yan 2018). As shown in Figure 1(a),
the annotations from different human parsing datasets are at
different granularity levels. It is not trivial to convert them
into a consensus form or transfer one to another. To leverage
the granularity-inconsistency problems, Gong et al. propose
a universal human parsing model named Graphonomy by in-
tegrating intra-graph reasoning and inter-graph transferring
together (Gong et al. 2019). A learnable transfer matrix is
utilized to directly map the heterogeneous graph represen-
tation from one dataset to another. Although the transfer
dependency between source graph nodes and target graph
nodes is enabled, the transfer matrix is strictly defined by
the granularity level of annotations, for example, a R7×20

matrix from PASCAL-Person Part dataset to CIHP dataset.
In fact, as shown in Figure 1(b), the heterogeneous anno-

tations at different granularity levels still share some under-
lying coarse-granularity concepts, which can be explored to
improve the transferring performance further. Motivated by
this observation, we propose a novel graph pyramid mutual
learning (Grapy-ML) method to address the cross-dataset
human parsing problem by making use of the heterogeneous
multi-granularity annotations. At first, we define two levels
of coarse-granularity categories as shown in the upper part
of Figure 1(b). At the coarsest level, only the foreground
human body and the background are involved. Then, we di-
vide the foreground human body into four parts with clear
semantics, e.g., head, torso, legs and arms. As can be seen,
Although the annotations from different benchmarks are di-
verse, they share the same underlying coarse-level categories
as defined above. Based on the definition, we devise a graph
pyramid module (GPM) by stacking three levels of graph
structures from coarse granularity to fine granularity sub-
sequently. At each level, the node represents a category-
wise feature representation by aggregating the pixel-level
encoding features from the previous stage according to the
category mask. GPM utilizes the self-attention mechanism
to model the correlations between context nodes. Then, it
adopts a top-down mechanism to progressively refine the hi-
erarchical node features through all the levels. In this way,
the proposed GPM is able to explicitly incorporate the hier-
archical structural prior to feature learning.

Moreover, GPM also enables efficient mutual learning
owing to its hierarchical multi-granularity structure. Since
the annotations from different datasets share the same
coarse-level categories, we keep the network weights of the
first two levels shared across different datasets to learn a
common coarse-granularity category-wise feature represen-
tation. Consequently, due to the accessibility of more train-
ing samples, GPM is able to learn more robust coarse-level
features, which further enhances the finest-level features
progressively with the hierarchical refinement and improve
the final parsing performance correspondingly.

The main contributions of this paper are summarized as

follows. Firstly, we define a hierarchical multi-granularity
representation of the human body. Based on it, we pro-
pose a novel graph pyramid module, which enables in-
corporating the hierarchical structural prior explicitly into
feature learning via self-attention based graph reasoning
and progressive feature refinement. Secondly, we build a
novel mutual learning method on the GPM, which lever-
ages the multi-granularity annotations explicitly from differ-
ent human parsing datasets. Finally, the proposed Grapy-ML
model achieves state-of-the-art performance on several pop-
ular benchmarks including PASCAL-Person Part dataset,
CIHP dataset, and ATR dataset.

Related work
Human parsing methods can be categorized into single hu-
man parsing methods (Liang et al. 2015b; Gong et al.
2017) and multi-human parsing methods (Li et al. 2017;
Gong et al. 2018; Zhao et al. 2018). It is noteworthy that
single human parsing methods can also be used for multi-
human parsing after integrating with a person detector (He
et al. 2017), known as instance-level multi-human parsing
(Ruan et al. 2019; Yang et al. 2019). Our method belongs
to the latter category which segments all body parts within a
given image. Since it mainly targets at improving the learned
model from multiple datasets with heterogeneous multi-
granularity annotations, we briefly review recent methods
related to ours from the following two aspects: 1) hierarchi-
cal structure modeling; 2) multi-task learning and transfer
learning.

The human body is highly structural which has defi-
nite semantical body parts, e.g., arms, legs. Different body
parts are connected by physical joints, e.g., elbows and
knees. This structural prior knowledge can be utilized dur-
ing modeling and training for learning a better feature rep-
resentation (Dong et al. 2014; Dai, He, and Sun 2016;
Huang, Gong, and Tao 2017; Xiao et al. 2018). For exam-
ple, Nie et al. propose a mutual adaptation module to guide
the human parsing task by leveraging the learned structural
information from the pose estimation task and vice versa
(Nie, Feng, and Yan 2018). Gong et al. propose a self-
supervised structure-sensitive learning approach for human
parsing, which generates pose structures from parsing re-
sults and impose joint structure loss as extra self-supervision
(Gong et al. 2017). In addition, the human body has a hi-
erarchical structure with different granularities. For exam-
ple, it consists of upper and lower parts where the upper
body has arms, neck, and head, and the arms can be further
categorized as upper-arm and lower-arm. The hierarchical
structure prior is also useful for improving parsing results.
Recently, Zhu et al. propose to parse the human body pro-
gressively where layers benefit from prior coarse-granularity
component information from the previous layers (Zhu et al.
2018). Luo et al. propose a macro-micro adversarial net to
enforce low-level local consistency and high-level semantic
consistency (Luo et al. 2018). In contrast to them, we devise
a graph pyramid module to explicitly model the hierarchi-
cal multi-granularity structure of the human body. It aims to
progressively refine the learned features rather than progres-
sively predicting the parsing results.
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Recognizing a human body can be carried out at different
granularities. For example, for PASCAL-Person part dataset,
it only needs to parse 7 categories of body parts. How-
ever, for CIHP dataset, the parsing task should be carried
out at all 20 categories. Due to the heterogeneous annota-
tions from different datasets, it is straight forward to em-
ploy multi-task learning. For example, Gong et al. propose
a part grouping network to unify the semantic part segmen-
tation task and instance-aware edge detection. Xiao et al.
propose a multi-task framework to learn from heterogeneous
image annotations for unified perceptual parsing (Xiao et
al. 2018). The most related work to this paper is Graphon-
omy, which is proposed by Gong et al (Gong et al. 2019).
It aims at conducting universal human parsing which ex-
plicitly utilizes multiple dataset heterogeneous annotations
by intra-graph reasoning and inter-graph transfer and avoids
fitting the parsing results into one dataset. There are several
differences between Graphonomy and the proposed Grapy-
ML: 1) we propose a graph pyramid module to explore the
multi-granularity hierarchical structure of human body at
each dataset. In contrast, they use a transfer matrix to ex-
plore the dependency between the graph representations pre-
defined according to the annotations of each dataset; 2) we
propose a mutual learning approach by sharing the first two
coarse levels across different datasets, where they use inter-
graph transfer to exchange the learned knowledge; 3) we
use category-aware pooling to aggregate the semantics as
the node features and self-attention for context information
propagation. However, they directly project the image fea-
tures into node features and use graph convolution to per-
form graph propagation. Experiments on three benchmarks
validate the competitiveness of Grapy-ML against Graphon-
omy thanks to the GPM and mutual learning.

Graph Pyramid Mutual Learning for

Cross-dataset Human Parsing

In this section, we introduce a novel graph pyramid mutual
learning method to address the cross-dataset human pars-
ing problem by leveraging multi-granularity annotations.
Firstly, we define a hierarchical multi-granularity lexical
representation of the human body based on its structural
prior. Then, inheriting from this representation, we build up
a graph pyramid module, which can be integrated into the
deep encoder-decoder framework seamlessly. The GPM not
only enables graph reasoning between context nodes but also
enables mutual learning across different datasets. Details are
presented as follows.

Hierarchical Multi-granularity Representation

As is shown in Figure 1(b), the human body is highly struc-
tural and can be viewed at different granularities. For sim-
plicity, we decompose the human body into three levels af-
ter analyzing the linguistic connections between different
body parts at different granularities. For instance, Level 1:
Foreground and Background, where the foreground refers
the human body as a whole; Level 2: Head, Torso, Arm,
Leg, and Background, where the human body is roughly
divided into four sub-parts; Level 3: Head, Torso, Upper
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Figure 2: Illustration of the proposed GPM at Level 2.

Arm, Lower Arm, Upper Leg, Lower Leg, and Back-
ground. Level 3 is specified by the exact definition of anno-
tations in each dataset. Here we take PASCAL-Person Part
dataset as an example. As can be seen, the two categories
of Arm and Leg are divided into two finer sub-parts further.
For CIHP dataset and ATR dataset, there are 18 and 20 cat-
egories at Level 3 correspondingly, i.e., Level 3 (CIHP):
Face, Hat, Hair, Sunglasses, Upper Clothes, Dress, Coat,
Socks, Pants, Torso Skin, Scarf, Skirt, Left Arm, Right
Arm, Left Leg, Right Leg, Left Shoe, Right Shoe, and
Background, and Level 3 (ATR): Face, Hat, Hair, Sun-
glasses, Upper Clothes, Dress, Pants, Scarf, Skirt, Belt,
Bag, Left Arm, Right Arm, Left Leg, Right Leg, Left
Shoe, Right Shoe, and Background. It can be seen that all
the categories at Level 3 within each dataset share the same
coarse-granularity categories at Level 1 and Level 2.

Graph Pyramid Module

Based on the above definition, we devise a graph pyramid
module by stacking three levels of graph structures from
coarse granularity to fine granularity subsequently. At each
level, GPM utilizes self-attention mechanism to model the
correlations between context nodes and refine the learned
features. Generally, it can be divided into three phases:
Graph Semantics Aggregation (GSA), Graph Context Rea-
soning (GCR), and Graph Semantics Distribution (GSD) as
illustrated in Figure 2. Details are presented as follows.

Graph Semantics Aggregation In this paper, we choose
Deeplab v3+ as the strong baseline and choose the decoded
feature from the penultimate layer as the input of our GPM
since these features are directly related to the final predicted
categories. For simplicity, we denote the decoded feature as
f ∈ RH×W×C , where h, w, and c denotes the height, width,
and channels of the feature map. Then, the prediction by
Deeplab v3+ can be written as:

y = p (f) , (1)

where p (·) denotes the final prediction layer in Deeplab v3+,
y ∈ RH×W×K , K denotes the number of parsing category.

To map the decoded feature into graph representation, we
adopt category-aware pooling to aggregate the semantical
features at each category, namely graph semantics aggrega-
tion. Specifically, we utilize y as the raw parsing results and
calculate the category-wise feature as follows:

vavelk =
1

|Λlk|
∑

(i,j)∈Λlk

fl−1 (i, j, c), c ∈ [1, Cl] , k ∈ [1,Kl] ,

(2)
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Figure 3: Diagram of the proposed Grapy-ML. (a) The structure of the graph pyramid module. (b) The structure of the proposed
GPM-based mutual learning. Please refer to the main text for more details.

where vlk ∈ RCl is the category-wise feature of the kth

category at Level l, Kl is the number of categories at Level l,
i.e., K1 = 2, K2 = 5. fl is the feature map at Level l and we
define f0 = f . Λlk is the index set (category mask) denoting
the pixel index corresponding to the kth category at Level l
in the final prediction. To enhance the feature representation,
we also adopt max pooling instead of average pooling as in
Eq. (2) to calculate the category-wise features, i.e.,

vmax
lk = max

(i,j)∈Λlk

fl−1 (i, j, c) , c ∈ [1, Cl] , k ∈ [1,Kl] .

(3)
Then, we concatenate vavelk and vmax

lk as the aggregated node
feature:
vlk = concat (vavelk , vmax

lk ) . It is noteworthy that obtain-
ing the predictions at different levels is straightforward by
referring the definition in the above section. This process is
illustrated in the left part in Figure 2. Consequently, we can
construct a graph representation Gl = (Vl, El) at each level.
Vl and El are the node set and edge set in the graph. Accord-
ingly, we use vlk denotes the kth node feature in Gl.

Graph Context Reasoning As the nodes in the aforemen-
tioned graph corresponds to the specific human body parts,
they are correlated with each other. For example, the head,
arms, and legs are connected to the torso. Usually, for an
upright human body, the legs are on the bottom part, the
torso is on the middle part, and the head is on the top part.
To model the correlations within nodes, a naive choice is
graph convolutional neural network (Li, Han, and Wu 2018;
Gong et al. 2019). However, we argue that it is not trivial to
define the adjacent matrix. For example, one node may de-
pend on the other even if they are not connected. In this case,
though using graph convolution for multiple times can prop-
agate information from one node to its target node, it is in-
efficient to model such a long-range dependency. To address
this issue, we adopt self-attention to model the correlations
between context nodes, where the dependency between any
two nodes is learnable as the attention weight. Mathemati-
cally, it can be formulated as:

al = softmax
(
(vlQl1) · (vlQl2)

T
)
, (4)

where vl ∈ RKl×Cl is the above concatenated node fea-
ture, Ql1 (or Ql2) ∈ RCl×Cl

8 denotes the weight matrix in
a bottleneck 1*1 convolutional layer, which projects vl into
a low-dimensional feature. Then we get the attention vector
al ∈ RKl×Kl by multiplying them and a softmax. Then, the
self-attended node feature can be calculated as follows:

vattl = alvl. (5)

Finally, the refined node feature is obtained by adding the
node feature and self-attended node feature together follow-
ing the residual learning strategy, i.e.,

vgcrl = vl + vattl , (6)

where vgcrl is the refined node feature. The above refine-
ment can be carried out several times (3 in this paper) where
the refined node feature is used as the input of the latter re-
finement again. In this way, we can model the correlations
within context nodes and call this process as graph context
reasoning as illustrated in Figure 2. For simplicity, we reuse
the notation vgcrl without causing ambiguity.

Graph Semantics Distribution After obtaining the re-
fined node feature, we can re-project it onto the feature map
fl−1 and fuse them. It can be formulated as:

fl (i, j, c) = fl−1 (i, j, c) +

Kl∑
k=1

vgcrl (k, c) δ (i, j, k), (7)

where δ (·) is an indicator function, i.e., δ (i, j, k) = 1 if
(i, j) ∈ Λlk, else 0. This process distributes the refined
semantical node features to corresponding pixels under the
guidance of category masks. So, we call it graph semantics
distribution as illustrated in the right part in Figure 2.

Progressive Hierarchical Refinement As we have con-
structed a graph representation at each level and defined con-
text feature refinement on it, we can cascade them sequen-
tially to make a graph pyramid. Figure 3(a) illustrate the
graph pyramid module. As can be seen, we start aggregat-
ing, refining and distributing the graph node features at the
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coarse level. Then, we move to the next level and progres-
sively refine the learned features step by step. Finally, we
concatenate the refined feature at each level with the initial
one as the input of the final prediction layer. Mathematically,
it can be formulated as:

f̂ = concat (fl |l = 0, 1, 2, 3) , (8)

ŷ = p̂
(
f̂
)
, (9)

where f̂ denotes the fused feature, p̂ (·) and ŷ denotes the
final prediction layer and the final prediction at the GPM
branch, respectively. They have similar meanings and di-
mensions as in Eq. (1).

Training objective Once we obtain the predictions from
the main branch (y) and the GPM branch (ŷ), we can use the
cross-entropy loss as training objectives and employ SGD
optimizer to train the whole network. Here, we define the
multi-task training objective as follows:

L = Lmain + LGPM

= − ∑
i,j,k

q (i, j, k) log (y (i, j, k))

−λ
∑
i,j,k

q (i, j, k) log (ŷ (i, j, k))
, (10)

where Lmain and LGPM are the losses in the main branch
and the GPM branch, respectively. λ is the weight for loss.
q is the ground truth label at the finest level.

GPM-based Mutual Learning for Cross-dataset
Human Parsing

As we have mentioned that the annotations are heteroge-
neous and at different granularities. To learn a robust feature
presentation and improve the parsing performance, it is ben-
eficial to leverage the heterogeneous multi-granularity an-
notations across different datasets. To this end, we propose
a novel mutual learning method based on the GPM.

Retrospecting the graph pyramid we have defined above,
ground truth category labels at the first two coarse granular-
ity levels can be deduced from the annotations in any of the
popular human parsing datasets, such as PASCAL-Person
Part dataset, CIHP dataset, and ATR dataset. Therefore, one
possible solution is to add three GPM branches for each
of the datasets and employ multi-task learning to train the
whole network. However, we argue that the categories at the
first coarse levels have clear definitions, which are the same
among all the three datasets. Based on this observation, we
propose a mutual learning method by sharing the first two
levels of the GPM and adding three specific branches at the
finest level for each dataset, as illustrated in Figure 3(b). In
this way, the network is divided into two parts: Domain Ag-
nostic Module and Domain Specific Module. In the DAM,
the node features at the first two levels are learned by us-
ing all the datasets, which will be more robust and discrim-
inative. In addition, since the coarse granularity nodes are
shared by the following three branches, a better coarse gran-
ularity node feature representation will benefit the feature
learning at the finest level through the proposed progressive

refinement in DSM. In this sense, the human body infor-
mation learned from all the datasets are exchanged via the
forward prediction and the backward propagation.

Specifically, the training objective Lml for mutual learn-
ing on multiple datasets can be formulated as follows:

Lml =

3∑
d=1

Ld
main + Ld

GPM , (11)

where d is the index of the training dataset, Ld
main and

Ld
GPM have the same definition as in Eq. (10).

Experiments
In this section, we evaluated Grapy-ML on three datasets
including PASCAL-Person Part dataset (Chen et al. 2014),
CIHP (Gong et al. 2018) and ATR (Liang et al. 2015a)
from three aspects: quantitative comparison, visual inspec-
tion, and ablation study.

Datasets and Implementation Details

Datasets and Evaluation Metric PASCAL-Person-Part
(Chen et al. 2014) dataset contains 3,535 annotated images
distributed to 1,717 for training and 1,818 for testing, among
which only 7 categories are labeled including 6 human body
parts and the background. 7,700 images with 18 categories
are provided in ATR dataset (Liang et al. 2015a), and (Liang
et al. 2017) enriched it with 10000 more annotated im-
ages. Different from previous single-person datasets, CIHP
dataset (Gong et al. 2018) is a popular multi-person one that
has 28,280 images for training, 5,000 images for testing and
5,000 images for validation with 20 categories. Following
(Chen et al. 2018; Gong et al. 2019), we carried out multi-
person human parsing without using the provided instance
maps. In this section, we use mean accuracy and mean inter-
section over union (IoU) as the evaluation matrix.

Implementation Details We adopt DeepLab v3+ (Chen et
al. 2018) with Xception (Chollet 2017) as our backbone net-
work and the output stride was set to 16. All experiments
were conducted using two NVIDIA Tesla V100 GPUs with
batch size 10. The training images were augmented by a ran-
dom resize from 0.5 to 2, 512 × 512 cropping and horizon-
tal flipping. We used a poly learning policy during training
(Chen et al. 2018). λ in Eq. (10) was set to 1. Two models
named GPM and Grapy-ML were trained, where GPM was
trained on a single dataset without using mutual learning.
Specifically, we first pretrained the backbone network for
100 epochs with an initial learning rate of 0.007 for the GPM
model. Note that the pretrain stage was necessary since we
needed a good initial prediction to calculate graph node fea-
tures. Then the whole model was trained for another 200,
100 and 100 epochs on PASCAL, CIHP, and ATR dataset
by decreasing the learning rate to 0.0007. When training
the Grapy-ML model, the pretrain stage was conducted on
the combination of all three datasets with the same hyper-
parameters. Then, we adopt a fine-tuning strategy to adapt
the model to the target dataset for another 30 epochs. Dur-
ing testing for both models, we averaged all predictions from
horizontal flipped and multi-scale inputs as the final predic-
tion by referring to Graphonomy(Gong et al. 2019).
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Methods mIoU
PGN (Gong et al. 2018) 68.4

Bilinski (Bilinski and Prisacariu 2018) 68.6
DeepLab v3+ (Chen et al. 2018) 68.6

GPM 69.50

Graphonomy (Universal) (Gong et al. 2019) 69.12
Graphonomy (Transfer) (Gong et al. 2019) 71.14

Grapy-ML 71.65

Table 1: Comparison on PASCAL-Person-Part Dataset.

Methods Mean Accuracy mIoU
JPPNet (Liang et al. 2018) — 54.45

DeepLab v3+ (Chen et al. 2018) 0.8407 76.52
GPM 0.8444 76.97

Graphonomy (Universal) (Gong et al. 2019) 0.8398 76.35
Grapy-ML 0.8522 77.88

Table 2: Comparison on ATR Dataset.

Main Results

Quantitative Results We evaluate the performance of our
model in this section with the best performance highlighted
in bold. For fairness, the results of the GPM model are com-
pared with previous methods trained on a single dataset, and
Grapy-ML model is with those on multi-datasets.

The results of PASCAL-Person-Part dataset are shown in
Table 1. From the table, our proposed GPM model achieves
the best performance with a mIoU 69.5, proving that our
pyramid structure has a good ability to model the relations
among body parts. When incorporating multi-datasets, the
performance is further improved to 71.65 mIoU. As can
be seen, our Grapy-ML model outperforms Graphonomy
(Transfer) (Gong et al. 2019) method by a healthy margin,
i.e., 0.5 mIoU. The improvement of mutual learning comes
from two aspects. Firstly, PASCAL-Person-Part dataset it-
self is relatively small, within which only 1,717 training
data are provided. Thus abundant extra annotated samples in
the other two datasets help enhance the generalization abil-
ity. Secondly, the coarse-grained category information in the
other datasets (ATR dataset and CIHP dataset) boosts the
fine-grained parsing quality in all three datasets through the
shared two coarse-grained levels, which demonstrates the
superiority of our Grapy-ML model.

However, comparing to Graphonomy, such performance
gain by Grapy-ML is not as significant as ATR and CIHP.
Since Graphonomy models the implicit relationship between
cross-dataset features by utilizing inter-dataset transferring
matrix. In contrast to it, the proposed Grapy-ML learns a

Methods Mean Accuracy mIoU
PGN (Gong et al. 2018) 64.22 55.80

DeepLab v3+ (Chen et al. 2018) 67.69 58.95
GPM 68.95 60.36

Graphonomy (Universal) (Gong et al. 2019) 65.73 57.78
Graphonomy (Transfer) (Gong et al. 2019) 66.65 58.58

Grapy-ML 68.97 60.60

Table 3: Comparison on CIHP Dataset.

unified feature representation at the coarse levels from all
the datasets under the explicit guidance of the hierarchical
category-wise masks. Then, by sharing the coarse-level fea-
tures, it further refines the fine-grained features at level 3
accordingly. Therefore, Grapy-ML achieves larger gains on
ATR and CIHP with fine-grained annotations compared with
the Graphonomy model.

We present the mean accuracy and mIoU on ATR dataset
in Table 2. According to the table, our proposed model ob-
tains the best performance both on the single dataset and on
multi-human datasets settings. Specifically, the mean accu-
racy and mIoU reaches 84.44 and 76.97 respectively on the
single dataset and increases to 85.22 and 77.88 when incor-
porating mutual learning strategy. It is noted that the gran-
ularity levels of labels in ATR dataset (18 labels in total)
are different from the ones in other datasets. Nevertheless,
Grapy-ML achieves a gain of 1 mIoU which again validates
the effectiveness of the proposed GPM-based mutual learn-
ing. The graph pyramid module successfully learns more ro-
bust coarse-level features, which further improve the parsing
performance at the fine-granularity level through progres-
sive refinement.

It is worth mentioning that the GPM model only improves
the performance by 0.45 compared with the baseline, which
is less than the improvement on the other two datasets. It is
because parsing a single person with limited pose and size
diversity from ATR is much easier than its counterpart from
PASCAL and CIHP. Therefore, the baseline Deeplab v3+
have achieved fairly good performance and the improvement
by GPM is marginal.

We report the results on CIHP dataset in Table 3. The pro-
posed model still outperforms representative state-of-the-
art methods significantly, with the mean accuracy reach-
ing 68.97 and mIoU reaching 60.60, proving the superiority
of the proposed graph pyramid module. However, the im-
provement after using mutual learning is marginal. It owes
to the large volume of CIHP dataset that extra comparable
amount of data contributes marginally (28k in CIHP dataset
v.s. 21k in PASCAL-Person Part + ATR datasets), espe-
cially when there exists a potential domain gap. We antic-
ipate that further improvement can be achieved by utilizing
the instance-level annotations and domain adaptation tech-
niques. We leave it as our future work.

Visual Inspection Some visual results on CIHP and
PASCAL-Person-Part dataset from the GPM model, the
Grapy-ML model and representative models are visualized
in Figure 4. As can be seen, our Grapy-ML model produces
parsing results with higher precision and consistency. For
example, part of the tie enclosed by the white circle in (a)
is occluded by the man’s right hand and is divided into two
discontinuous parts. In this case, the other two methods fail
to capture the lower part. However, owing to the graph se-
mantics aggregation and progressive graph context reason-
ing which effectively explicitly models body-parts correla-
tions, our Grapy-ML successfully eliminates the side-effects
of occlusion and correctly segments out the tie. In (b) and
(c), the similar colors and textures lead to ambiguity for the
other two methods, i.e., the woman’s dark blue clothes and
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Figure 4: Visualized results from the validation set of CIHP (a, b, c, d) and PASCAL-Person-Part (e, f, g).

the man’s black coat, the greyish-white bag and the man’s
white T-shirt, while this issue is addressed by the coarse-
to-fine learning strategy in the proposed model. For (b), the
pixels of the upper clothes belong to the torso category at
Level 2. Then at the finest level, they are further associated
with some fine-grained categories including upper clothes,
dress, and coat. Thus the finest-level network in our model
can focus on the inner difference of similar items, and the
whole parsing task is not as hard as the single-pass meth-
ods without using hierarchical multi-granularity refinement.
Consequently, the clothes and coats in (b) are segmented ap-
propriately. In (c), the left arm, bag, background, and T-shirt
torso are distinguished correctly. The parsing result seems
marginal more smooth without the black background holes,
especially for the pixels of the upper clothes (orange). Be-
sides, the benefit of the coarse-to-fine strategy appears in
small size items, as shown in (d), where nearly all parts in-
cluding arms, hair, hats and even feet are segmented into
the right categories. The same conclusion can also be drawn
from (e), (f), and (g).

We investigate the effectiveness of key components in our
Grapy-ML model on CIHP dataset in Table 4. Firstly, we
examine the graph context reasoning methods by comparing
graph convolutions and self-attention. As can be seen, em-
ploying GCN for reasoning after GSA leads to a significant
margin of 0.9 mIoU over the strong Deeplab v3+ baseline.
For the proposed GCR using self-attention with both average
and max feature, a gain of 1.2 mIoU is achieved, proving the
effectiveness of our proposed GCR module. Then the result

reaches 60.36 mIoU after employing the complete multi-
granularity graph pyramid module. However, when using
GCR with only average feature, GPM obtains an mIoU of
60.05 (59.89 for using only max feature). The two results
are marginally inferior to the one using both features. More-
over, the proposed GPM-based mutual learning method fur-
ther improve the performance to 60.6 mIoU as shown in
the last row, which set a new state-of-the-art result on this
benchmark. It demonstrates that the Grapy-ML takes the ad-
vantages of the abundant multi-granularity annotations from
multiple datasets via the efficient graph pyramid representa-
tion.

GPM
Mutual Learning mIoULevel 3 Level 1 & Level 2GCN GCR-ave GCR-max

58.95
� 59.81

� � 60.10
� � 60.05

� � 59.89
� � � 60.36
� � � � 60.60

Table 4: Human parsing ablation study in CIHP dataset.
Level 1∼3 denote the three levels of GPM. GCN repre-
sents using graph convolutions for graph context reasoning
in the proposed GPM. GCR represents using self-attention
for graph context reasoning in the proposed GPM.
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Conclusion

In this work, we introduce a novel graph pyramid mu-
tual learning method named Grapy-ML to address the
cross-dataset human parsing problem. Grapy-ML is built
on a three-level graph pyramid module by inheriting from
a specifically defined multi-granularity lexical pyramid.
Within the GPM, features are progressively refined through
graph semantics aggregation, graph context reasoning, and
graph semantics distribution, where self-attention is ex-
plored to model the correlations between graph node fea-
tures at different granularities. Furthermore, we adopt mu-
tual learning on GPM by sharing the coarse-level graphs
across different datasets, which efficiently makes use of the
heterogeneous multi-granularity annotations to learn robust
features and improve the parsing performance. The experi-
ments demonstrate that Grapy-ML produces satisfying pars-
ing results on several popular human parsing datasets and
outperforms state-of-the-art models.
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